Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Galaxy image classification using hierarchical data learning with weighted sampling and label smoothing

Xiaohua Ma, Xiangru Li, Ali Luo, Jinqu Zhang and Hui Li
Monthly Notices of the Royal Astronomical Society 519 (3) 4765 (2023)
https://doi.org/10.1093/mnras/stac3770

Machine Learning Detects Multiplicity of the First Stars in Stellar Archaeology Data

Tilman Hartwig, Miho N. Ishigaki, Chiaki Kobayashi, Nozomu Tominaga and Ken’ichi Nomoto
The Astrophysical Journal 946 (1) 20 (2023)
https://doi.org/10.3847/1538-4357/acbcc6

Potential scientific synergies in weak lensing studies between the CSST and Euclid space probes

D. Z. Liu, X. M. Meng, X. Z. Er, et al.
Astronomy & Astrophysics 669 A128 (2023)
https://doi.org/10.1051/0004-6361/202243978

Data mining techniques on astronomical spectra data – II. Classification analysis

Haifeng Yang, Lichan Zhou, Jianghui Cai, et al.
Monthly Notices of the Royal Astronomical Society 518 (4) 5904 (2022)
https://doi.org/10.1093/mnras/stac3292

A multi-angle comprehensive solution based on deep learning to extract cultivated land information from high-resolution remote sensing images

Zhenzhen Liu, Ning Li, Lijun Wang, Jun Zhu and Fen Qin
Ecological Indicators 141 108961 (2022)
https://doi.org/10.1016/j.ecolind.2022.108961

Spectral Energy Distributions in Three Deep-drilling Fields of the Vera C. Rubin Observatory Legacy Survey of Space and Time: Source Classification and Galaxy Properties

Fan Zou, W. N. Brandt, Chien-Ting Chen, Joel Leja, Qingling Ni, Wei Yan, Guang Yang, Shifu Zhu, Bin Luo, Kristina Nyland, Fabio Vito and Yongquan Xue
The Astrophysical Journal Supplement Series 262 (1) 15 (2022)
https://doi.org/10.3847/1538-4365/ac7bdf

Using CFSVM model to classify stars from three-colour images

Ya-Kun Lu, Bo Qiu, A-Li Luo, et al.
Monthly Notices of the Royal Astronomical Society 507 (3) 4095 (2021)
https://doi.org/10.1093/mnras/stab1703

Deep transfer learning for star cluster classification: I. application to the PHANGS–HST survey

Wei Wei, E A Huerta, Bradley C Whitmore, et al.
Monthly Notices of the Royal Astronomical Society 493 (3) 3178 (2020)
https://doi.org/10.1093/mnras/staa325

Identification of Young Stellar Object candidates in the Gaia DR2 x AllWISE catalogue with machine learning methods

G Marton, P Ábrahám, E Szegedi-Elek, et al.
Monthly Notices of the Royal Astronomical Society 487 (2) 2522 (2019)
https://doi.org/10.1093/mnras/stz1301

Active galactic nucleus selection in the AKARI NEP-Deep field with the fuzzy support vector machine algorithm

Artem Poliszczuk, Aleksandra Solarz, Agnieszka Pollo, Maciej Bilicki, Tsutomu T Takeuchi, Hideo Matsuhara, Tomotsugu Goto, Toshinobu Takagi, Takehiko Wada, Yoichi Ohyama, Hitoshi Hanami, Takamitsu Miyaji, Nagisa Oi, Matthew Malkan, Kazumi Murata, Helen Kim and Jorge Díaz Tello
Publications of the Astronomical Society of Japan 71 (3) (2019)
https://doi.org/10.1093/pasj/psz043

Applications of machine-learning algorithms for infrared colour selection of Galactic Wolf–Rayet stars

Giuseppe Morello, P. W. Morris, S. D. Van Dyk, A. P. Marston and J. C. Mauerhan
Monthly Notices of the Royal Astronomical Society 473 (2) 2565 (2018)
https://doi.org/10.1093/mnras/stx2474

The Dark Energy Survey: Data Release 1

T. M. C. Abbott, F. B. Abdalla, S. Allam, A. Amara, J. Annis, J. Asorey, S. Avila, O. Ballester, M. Banerji, W. Barkhouse, L. Baruah, M. Baumer, K. Bechtol, M. R. Becker, A. Benoit-Lévy, G. M. Bernstein, E. Bertin, J. Blazek, S. Bocquet, D. Brooks, D. Brout, E. Buckley-Geer, D. L. Burke, V. Busti, R. Campisano, et al.
The Astrophysical Journal Supplement Series 239 (2) 18 (2018)
https://doi.org/10.3847/1538-4365/aae9f0

A Machine-learning Method for Identifying Multiwavelength Counterparts of Submillimeter Galaxies: Training and Testing Using AS2UDS and ALESS

Fang Xia An, S. M. Stach, Ian Smail, A. M. Swinbank, O. Almaini, C. Simpson, W. Hartley, D. T. Maltby, R. J. Ivison, V. Arumugam, J. L. Wardlow, E. A. Cooke, B. Gullberg, A. P. Thomson, Chian-Chou Chen, J. M. Simpson, J. E. Geach, D. Scott, J. S. Dunlop, D. Farrah, P. van der Werf, A. W. Blain, C. Conselice, M. Michałowski, S. C. Chapman and K. E. K. Coppin
The Astrophysical Journal 862 (2) 101 (2018)
https://doi.org/10.3847/1538-4357/aacdaa

Analysis of a custom support vector machine for photometric redshift estimation and the inclusion of galaxy shape information

E. Jones and J. Singal
Astronomy & Astrophysics 600 A113 (2017)
https://doi.org/10.1051/0004-6361/201629558

Automated novelty detection in the WISE survey with one-class support vector machines

A. Solarz, M. Bilicki, M. Gromadzki, et al.
Astronomy & Astrophysics 606 A39 (2017)
https://doi.org/10.1051/0004-6361/201730968

A novel analysis of color component for top dyed melange yarn with support vector machine

Jiajia Shen, Hui Ma, Weiguo Chen and Xiang Zhou
Color Research & Application 41 (6) 636 (2016)
https://doi.org/10.1002/col.22001

Machine-learning identification of galaxies in the WISE × SuperCOSMOS all-sky catalogue

T. Krakowski, K. Małek, M. Bilicki, et al.
Astronomy & Astrophysics 596 A39 (2016)
https://doi.org/10.1051/0004-6361/201629165

Classification of large-scale stellar spectra based on the non-linearly assembling learning machine

Zhongbao Liu, Lipeng Song and Wenjuan Zhao
Monthly Notices of the Royal Astronomical Society 455 (4) 4289 (2016)
https://doi.org/10.1093/mnras/stv2600

An all-sky support vector machine selection ofWISEYSO candidates

G. Marton, L. V. Tóth, R. Paladini, et al.
Monthly Notices of the Royal Astronomical Society 458 (4) 3479 (2016)
https://doi.org/10.1093/mnras/stw398

A support vector machine for spectral classification of emission-line galaxies from the Sloan Digital Sky Survey

Fei Shi, Yu-Yan Liu, Guang-Lan Sun, et al.
Monthly Notices of the Royal Astronomical Society 453 (1) 122 (2015)
https://doi.org/10.1093/mnras/stv1617

Star–galaxy separation strategies for WISE-2MASS all-sky infrared galaxy catalogues

András Kovács and István Szapudi
Monthly Notices of the Royal Astronomical Society 448 (2) 1305 (2015)
https://doi.org/10.1093/mnras/stv063

Mapping the Cosmic Web with the largest all-sky surveys

Maciej Bilicki, John A. Peacock, Thomas H. Jarrett, Michelle E. Cluver and Louise Steward
Proceedings of the International Astronomical Union 11 (S308) 143 (2014)
https://doi.org/10.1017/S1743921316009753