Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

This article has been cited by the following article(s):

Ubiquitous Computing and Ambient Intelligence

Daniel Garabato, Carlos Dafonte, Marco A. Álvarez and Minia Manteiga
Lecture Notes in Computer Science, Ubiquitous Computing and Ambient Intelligence 10586 840 (2017)
DOI: 10.1007/978-3-319-67585-5_81
See this article

The Dawes Review 10: The impact of deep learning for the analysis of galaxy surveys

M. Huertas-Company and F. Lanusse
Publications of the Astronomical Society of Australia 40 (2023)
DOI: 10.1017/pasa.2022.55
See this article

Increasing the share of correct clustering of characteristic signal with random losses in self-organizing maps

Svitlana Shapovalova and Yurii Moskalenko
Eastern-European Journal of Enterprise Technologies 2 (4 (98)) 13 (2019)
DOI: 10.15587/1729-4061.2019.160670
See this article

Classification of large-scale stellar spectra based on the non-linearly assembling learning machine

Zhongbao Liu, Lipeng Song and Wenjuan Zhao
Monthly Notices of the Royal Astronomical Society 455 (4) 4289 (2016)
DOI: 10.1093/mnras/stv2600
See this article

Gaia Data Release 2

René Andrae, Morgan Fouesneau, Orlagh Creevey, et al.
Astronomy & Astrophysics 616 A8 (2018)
DOI: 10.1051/0004-6361/201732516
See this article

Density-based outlier scoring on Kepler data

Daniel K Giles and Lucianne Walkowicz
Monthly Notices of the Royal Astronomical Society 499 (1) 524 (2020)
DOI: 10.1093/mnras/staa2736
See this article

GUASOM: Gaia Utility for Analysis and Knowledge Discovery based on Self Organizing Maps

D. Fustes, M. Manteiga, C. Dafonte, et al.
EAS Publications Series 67-68 373 (2014)
DOI: 10.1051/eas/1567073
See this article

SOMBI: Bayesian identification of parameter relations in unstructured cosmological data

Philipp Frank, Jens Jasche and Torsten A. Enßlin
Astronomy & Astrophysics 595 A75 (2016)
DOI: 10.1051/0004-6361/201628393
See this article

MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS

Daniel Masters, Peter Capak, Daniel Stern, et al.
The Astrophysical Journal 813 (1) 53 (2015)
DOI: 10.1088/0004-637X/813/1/53
See this article

Neural Information Processing

Marco Antonio Álvarez, Carlos Dafonte, Daniel Garabato and Minia Manteiga
Lecture Notes in Computer Science, Neural Information Processing 9950 137 (2016)
DOI: 10.1007/978-3-319-46681-1_17
See this article

A Blended Artificial Intelligence Approach for Spectral Classification of Stars in Massive Astronomical Surveys

Carlos Dafonte, Alejandra Rodríguez, Minia Manteiga, Ángel Gómez and Bernardino Arcay
Entropy 22 (5) 518 (2020)
DOI: 10.3390/e22050518
See this article

GUASOM: an adaptive visualization tool for unsupervised clustering in spectrophotometric astronomical surveys

M. A. Álvarez, C. Dafonte, M. Manteiga, D. Garabato and R. Santoveña
Neural Computing and Applications 34 (3) 1993 (2022)
DOI: 10.1007/s00521-021-06510-9
See this article

Intelligent Astrophysics

Lars Doorenbos, Stefano Cavuoti, Massimo Brescia, Antonio D’Isanto and Giuseppe Longo
Emergence, Complexity and Computation, Intelligent Astrophysics 39 197 (2021)
DOI: 10.1007/978-3-030-65867-0_9
See this article

Gege Zhang, Weixing Zhou, Yuanyuan Zhang, Xiaohui Hu, Yun Xue, Jianping Wang and Meihang Li
346 (2014)
DOI: 10.1109/FSKD.2014.6980858
See this article

Distributed Fast Self-Organized Maps for Massive Spectrophotometric Data Analysis

Carlos Dafonte, Daniel Garabato, Marco Álvarez and Minia Manteiga
Sensors 18 (5) 1419 (2018)
DOI: 10.3390/s18051419
See this article

Identifying strong lenses with unsupervised machine learning using convolutional autoencoder

Ting-Yun Cheng, Nan Li, Christopher J Conselice, Alfonso Aragón-Salamanca, Simon Dye and Robert B Metcalf
Monthly Notices of the Royal Astronomical Society 494 (3) 3750 (2020)
DOI: 10.1093/mnras/staa1015
See this article

Jan Lachmair, Thomas Mieth, Rene Griessl, Jens Hagemeyer and Mario Porrmann
4299 (2017)
DOI: 10.1109/IJCNN.2017.7966400
See this article

Detecting outliers in astronomical images with deep generative networks

Berta Margalef-Bentabol, Marc Huertas-Company, Tom Charnock, et al.
Monthly Notices of the Royal Astronomical Society 496 (2) 2346 (2020)
DOI: 10.1093/mnras/staa1647
See this article

Where’s Swimmy?: Mining unique color features buried in galaxies by deep anomaly detection using Subaru Hyper Suprime-Cam data

Takumi S Tanaka, Rhythm Shimakawa, Kazuhiro Shimasaku, Yoshiki Toba, Nobunari Kashikawa, Masayuki Tanaka and Akio K Inoue
Publications of the Astronomical Society of Japan 74 (1) 1 (2022)
DOI: 10.1093/pasj/psab105
See this article

YOUNG Star detrending for Transiting Exoplanet Recovery (YOUNGSTER) – II. Using self-organizing maps to explore young star variability in sectors 1–13 of TESS data

Matthew P Battley, David J Armstrong and Don Pollacco
Monthly Notices of the Royal Astronomical Society 511 (3) 4285 (2022)
DOI: 10.1093/mnras/stac278
See this article

Exploring X-ray variability with unsupervised machine learning

M. Kovačević, M. Pasquato, M. Marelli, A. De Luca, R. Salvaterra and A. Belfiore
Astronomy & Astrophysics 659 A66 (2022)
DOI: 10.1051/0004-6361/202142444
See this article

Identifying Outliers in Astronomical Images with Unsupervised Machine Learning

Yang Han, Zhiqiang Zou, Nan Li and Yanli Chen
Research in Astronomy and Astrophysics 22 (8) 085006 (2022)
DOI: 10.1088/1674-4527/ac7386
See this article