The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Y. E. Litvinenko , R. Schlickeiser
A&A, 554 (2013) A59
Published online: 2013-06-05
This article has been cited by the following article(s):
34 articles
A Cosmic Ray Acceleration Mechanism Based on Background Flow Velocity Inhomogeneities Yielding Power-law Spectra
J.-F. 俊芳 Wang 王 and G. 刚 Qin 秦 The Astrophysical Journal 979 (1) 8 (2025) https://doi.org/10.3847/1538-4357/ad93a8
Modeling Cosmic-Ray Transport: A CRPropa based stochastic differential equation solver
Lukas Merten and Sophie Aerdker Computer Physics Communications 311 109542 (2025) https://doi.org/10.1016/j.cpc.2025.109542
High order stable numerical algorithms for generalized time-fractional deterministic and stochastic telegraph models
Anant Pratap Singh, Priyanka Rajput, Rahul Kumar Maurya and Vineet Kumar Singh Computational and Applied Mathematics 43 (7) (2024) https://doi.org/10.1007/s40314-024-02900-6
Fractional heterogeneous telegraph processes: Interplay between heterogeneity, memory, and stochastic resetting
Trifce Sandev and Alexander Iomin Physical Review E 110 (2) (2024) https://doi.org/10.1103/PhysRevE.110.024101
Transport of energetic particles in turbulent space plasmas: pitch-angle scattering, telegraph, and diffusion equations
Andreas Shalchi Frontiers in Astronomy and Space Sciences 11 (2024) https://doi.org/10.3389/fspas.2024.1385820
Quaternionic generalization of telegraph equations
Victor L. Mironov and Sergey V. Mironov International Journal of Geometric Methods in Modern Physics 21 (13) (2024) https://doi.org/10.1142/S0219887824502165
Telegraph equation in polar coordinates: Unbounded domain with moving time-harmonic source
Yuriy Povstenko, Martin Ostoja-Starzewski and Tamara Kyrylych International Journal of Heat and Mass Transfer 207 124013 (2023) https://doi.org/10.1016/j.ijheatmasstransfer.2023.124013
An analytical solution of the time-fractional telegraph equation describing neutron transport in a nuclear reactor
Ashraf M. Tawfik, M. A. Abdou and Khaled A. Gepreel Indian Journal of Physics 96 (4) 1181 (2022) https://doi.org/10.1007/s12648-021-02017-0
Fractional telegraph equation under moving time-harmonic impact
Yuriy Povstenko and Martin Ostoja-Starzewski International Journal of Heat and Mass Transfer 182 121958 (2022) https://doi.org/10.1016/j.ijheatmasstransfer.2021.121958
Stochastic dynamics with multiplicative dichotomic noise: Heterogeneous telegrapher’s equation, anomalous crossovers and resetting
Trifce Sandev, Ljupco Kocarev, Ralf Metzler and Aleksei Chechkin Chaos, Solitons & Fractals 165 112878 (2022) https://doi.org/10.1016/j.chaos.2022.112878
A high-accuracy Vieta-Fibonacci collocation scheme to solve linear time-fractional telegraph equations
Khadijeh Sadri, Kamyar Hosseini, Dumitru Baleanu and Soheil Salahshour Waves in Random and Complex Media 1 (2022) https://doi.org/10.1080/17455030.2022.2135789
Propagation of Cosmic Rays in Plasmoids of AGN Jets-Implications for Multimessenger Predictions
Julia Becker Tjus, Mario Hörbe, Ilja Jaroschewski, Patrick Reichherzer, Wolfgang Rhode, Marcel Schroller and Fabian Schüssler Physics 4 (2) 473 (2022) https://doi.org/10.3390/physics4020032
Cosmic-Ray Transport near the Sun
R. D. Strauss, J. P. van den Berg and J. S Rankin The Astrophysical Journal 928 (1) 22 (2022) https://doi.org/10.3847/1538-4357/ac582a
Cosmic Ray Flux in the Diffusion Approximation
Yu. I. Fedorov Kinematics and Physics of Celestial Bodies 37 (3) 107 (2021) https://doi.org/10.3103/S088459132103003X
Cosmic ray streaming in the diffusion approximation
Yu. I. Fedorov Kinematika i fizika nebesnyh tel (Online) 37 (3) 3 (2021) https://doi.org/10.15407/kfnt2021.03.003
A Primer on Focused Solar Energetic Particle Transport
Jabus van den Berg, Du Toit Strauss and Frederic Effenberger Space Science Reviews 216 (8) (2020) https://doi.org/10.1007/s11214-020-00771-x
An Analytical Treatment for Particle Acceleration at Shocks inside Coronal Mass Ejections near 1 au
G. Li and N. Lugaz The Astrophysical Journal 905 (1) 8 (2020) https://doi.org/10.3847/1538-4357/abc00c
On fractional approximations of the Fokker–Planck equation for energetic particle transport
Ashraf M. Tawfik The European Physical Journal Plus 135 (10) (2020) https://doi.org/10.1140/epjp/s13360-020-00848-0
The Diffusion Coefficient with Displacement Variance of Energetic Particles Caused by Adiabatic Focusing
J. F. Wang and G. Qin The Astrophysical Journal 886 (2) 89 (2019) https://doi.org/10.3847/1538-4357/ab505e
Fickian and non-Fickian diffusion of cosmic rays
Luiz F S Rodrigues, Andrew P Snodin, Graeme R Sarson and Anvar Shukurov Monthly Notices of the Royal Astronomical Society 487 (1) 975 (2019) https://doi.org/10.1093/mnras/stz1354
Analytical solutions of the space–time fractional Telegraph and advection–diffusion equations
Ashraf M. Tawfik, Horst Fichtner, Reinhard Schlickeiser and A. Elhanbaly Physica A: Statistical Mechanics and its Applications 491 810 (2018) https://doi.org/10.1016/j.physa.2017.09.105
Analytical solution of the space–time fractional hyperdiffusion equation
Ashraf M. Tawfik, Horst Fichtner, A. Elhanbaly and Reinhard Schlickeiser Physica A: Statistical Mechanics and its Applications 510 178 (2018) https://doi.org/10.1016/j.physa.2018.07.002
Parallel and Perpendicular Diffusion Coefficients of Energetic Charged Particles with Adiabatic Focusing
J. F. Wang and G. Qin The Astrophysical Journal 868 (2) 139 (2018) https://doi.org/10.3847/1538-4357/aae927
Analytical forms of the first 14 moments of the cosmic ray Fokker–Planck equation
A. Shalchi Journal of Plasma Physics 83 (6) (2017) https://doi.org/10.1017/S0022377817000824
The Role of Diffusion in the Transport of Energetic Electrons during Solar Flares
Nicolas H. Bian, A. Gordon Emslie and Eduard P. Kontar The Astrophysical Journal 835 (2) 262 (2017) https://doi.org/10.3847/1538-4357/835/2/262
Comparison of the telegraph and hyperdiffusion approximations in cosmic-ray transport
Yuri E. Litvinenko and P. L. Noble Physics of Plasmas 23 (6) (2016) https://doi.org/10.1063/1.4953564
Monte Carlo simulations of intensity profiles for energetic particle propagation
R. C. Tautz, J. Bolte and A. Shalchi Astronomy & Astrophysics 586 A118 (2016) https://doi.org/10.1051/0004-6361/201527255
Dissipative effects in nonlinear Klein-Gordon dynamics
A. R. Plastino and C. Tsallis EPL (Europhysics Letters) 113 (5) 50005 (2016) https://doi.org/10.1209/0295-5075/113/50005
Application of the three-dimensional telegraph equation to cosmic-ray transport
Robert C. Tautz and Ian Lerche Research in Astronomy and Astrophysics 16 (10) 162 (2016) https://doi.org/10.1088/1674-4527/16/10/162
Cosmic ray confinement and transport models for probing their putative sources
M. A. Malkov Physics of Plasmas 22 (9) (2015) https://doi.org/10.1063/1.4928941
COSMIC RAY TRANSPORT WITH MAGNETIC FOCUSING AND THE “TELEGRAPH” MODEL
M. A. Malkov and R. Z. Sagdeev The Astrophysical Journal 808 (2) 157 (2015) https://doi.org/10.1088/0004-637X/808/2/157
THE TELEGRAPH APPROXIMATION FOR FOCUSED COSMIC-RAY TRANSPORT IN THE PRESENCE OF BOUNDARIES
Yuri E. Litvinenko, Frederic Effenberger and Reinhard Schlickeiser The Astrophysical Journal 806 (2) 217 (2015) https://doi.org/10.1088/0004-637X/806/2/217
THE DIFFUSION APPROXIMATION VERSUS THE TELEGRAPH EQUATION FOR MODELING SOLAR ENERGETIC PARTICLE TRANSPORT WITH ADIABATIC FOCUSING. I. ISOTROPIC PITCH-ANGLE SCATTERING
Frederic Effenberger and Yuri E. Litvinenko The Astrophysical Journal 783 (1) 15 (2014) https://doi.org/10.1088/0004-637X/783/1/15
ANALYTICAL SOLUTIONS OF A FRACTIONAL DIFFUSION-ADVECTION EQUATION FOR SOLAR COSMIC-RAY TRANSPORT
Yuri E. Litvinenko and Frederic Effenberger The Astrophysical Journal 796 (2) 125 (2014) https://doi.org/10.1088/0004-637X/796/2/125