The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
R. Kostik , E. V. Khomenko
A&A, 545 (2012) A22
Published online: 2012-08-30
This article has been cited by the following article(s):
24 articles
Solar Faculae and Flocculent Flows: Spectropolarimetric and Filter Observations in the Fe I, Ba II, and Ca II Lines
R. I. Kostik Kinematics and Physics of Celestial Bodies 40 (1) 40 (2024) https://doi.org/10.3103/S0884591324010069
Solar faculae and floccules: spectropolarimetric and filter observations in Fe I, Ba II, and Ca II lines
R.I. Kostik Kinematika i fizika nebesnyh tel (Online) 40 (1) 65 (2024) https://doi.org/10.15407/kfnt2024.01.065
Results of Observations of Wave Motions in the Solar Facula
N. G. Shchukina and R. I. Kostik Kinematics and Physics of Celestial Bodies 38 (1) 49 (2022) https://doi.org/10.3103/S0884591322010056
Results of observations of wave motions in the Solar facula
N.G. Shchukina and R.I. Kostyk Kinematika i fizika nebesnyh tel (Online) 38 (1) 71 (2022) https://doi.org/10.15407/kfnt2022.01.071
Properties of sound wave propagation in the solar faculae
R. Kostik and N. Shchukina Bulletin of Taras Shevchenko National University of Kyiv. Astronomy (63) 10 (2021) https://doi.org/10.17721/BTSNUA.2021.63.10-14
The multi-thermal chromosphere
J. M. da Silva Santos, J. de la Cruz Rodríguez, J. Leenaarts, et al. Astronomy & Astrophysics 634 A56 (2020) https://doi.org/10.1051/0004-6361/201937117
Solar faculae: microturbulence as an indicator of inclined magnetic fields
M.I. Stodilka and R.I. Kostyk Kinematika i fizika nebesnyh tel (Online) 36 (4) 3 (2020) https://doi.org/10.15407/kfnt2020.04.003
Solar Faculae: Microturbulence as an Indicator of Inclined Magnetic Fields
M. I. Stodilka and R. I. Kostyk Kinematics and Physics of Celestial Bodies 36 (4) 153 (2020) https://doi.org/10.3103/S0884591320040054
Features of Convection in the Atmospheric Layers of the Solar Facula
M. I. Stodilka, A. I. Prysiazhnyi and R. I. Kostyk Kinematics and Physics of Celestial Bodies 35 (6) 261 (2019) https://doi.org/10.3103/S0884591319060059
Intensity contrast of solar plage as a function of magnetic flux at high spatial resolution
F. Kahil, T. L. Riethmüller and S. K. Solanki Astronomy & Astrophysics 621 A78 (2019) https://doi.org/10.1051/0004-6361/201833722
Effect of Wave Motions in the Active Region of the Solar Surface on Convection
R. I. Kostyk Kinematics and Physics of Celestial Bodies 34 (2) 82 (2018) https://doi.org/10.3103/S0884591318020046
Robust Method for Determination of Magnetic Field Strength in the Solar Photosphere
A. I. Prysiazhnyi, M. I. Stodilka and N. G. Shchukina Kinematics and Physics of Celestial Bodies 34 (6) 277 (2018) https://doi.org/10.3103/S0884591318060041
Robust method for determination of magnetic field strength in solar photosphere
A.I. Prysiazhnyi, M.I. Stodilka and N.G. Shchukina Kinematika i fizika nebesnyh tel (Online) 34 (6) 3 (2018) https://doi.org/10.15407/kfnt2018.06.003
Effect of wave motions in the active region of the solar surface on convection
R.I. Kostik Kinematika i fizika nebesnyh tel (Online) 34 (2) 46 (2018) https://doi.org/10.15407/kfnt2018.02.046
Solar Magnetoconvection and Small-Scale Dynamo
J. M. Borrero, S. Jafarzadeh, M. Schüssler and S. K. Solanki Space Science Reviews 210 (1-4) 275 (2017) https://doi.org/10.1007/s11214-015-0204-5
Diagnostics of the solar atmosphere by the Non-LTE inversion method: Line of Ba II λ 455.403 nm
M. I. Stodilka and A. I. Prysiazhnyi Kinematics and Physics of Celestial Bodies 32 (1) 23 (2016) https://doi.org/10.3103/S0884591316010074
The possible origin of facular brightness in the solar atmosphere
R. Kostik and E. Khomenko Astronomy & Astrophysics 589 A6 (2016) https://doi.org/10.1051/0004-6361/201527419
Influence of the Magnetic Field on Oscillation Spectra in Solar Faculae
A. A. Chelpanov, N. I. Kobanov and D. Y. Kolobov Solar Physics 291 (11) 3329 (2016) https://doi.org/10.1007/s11207-016-0954-6
What mechanisms allow 5-minute oscillations in active regions of the solar surface to penetrate from the photosphere into the chromosphere?
R. I. Kostyk Kinematics and Physics of Celestial Bodies 31 (4) 188 (2015) https://doi.org/10.3103/S0884591315040054
Solar Magnetic Fields
J. M. Borrero, S. Jafarzadeh, M. Schüssler and S. K. Solanki Space Sciences Series of ISSI, Solar Magnetic Fields 57 275 (2015) https://doi.org/10.1007/978-94-024-1521-6_10
Influence of magnetic field on propagation of five-minute oscillations in the sun’s atmosphere: Phase shifts
R. I. Kostik, N. G. Shchukina, N. I. Kobanov and V. A. Pulyaev Kinematics and Physics of Celestial Bodies 30 (1) 40 (2014) https://doi.org/10.3103/S0884591314010048
Properties of oscillatory motions in a facular region
R. Kostik and E. Khomenko Astronomy & Astrophysics 559 A107 (2013) https://doi.org/10.1051/0004-6361/201322363
Multiple accretion events as a trigger for Sagittarius A* activity
D. Kunneriath, B. Czerny, V. Karas and T. K. Das Proceedings of the International Astronomical Union 9 (S303) 320 (2013) https://doi.org/10.1017/S1743921314000830
COMPARISON OF PHYSICAL PROPERTIES OF QUIET AND ACTIVE REGIONS THROUGH THE ANALYSIS OF MAGNETOHYDRODYNAMIC SIMULATIONS OF THE SOLAR PHOTOSPHERE
S. Criscuoli The Astrophysical Journal 778 (1) 27 (2013) https://doi.org/10.1088/0004-637X/778/1/27