The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
S. P. James , R. Erdélyi
A&A, 393 1 (2002) L11-L14
Published online: 2002-09-18
This article has been cited by the following article(s):
36 articles
Magnetohydrodynamic waves in the partially ionized solar plasma
Roberto Soler Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 382 (2272) (2024) https://doi.org/10.1098/rsta.2023.0223
Small-scale solar jet formation and their associated waves and instabilities
Samuel Skirvin, Gary Verth, José Juan González-Avilés, et al. Advances in Space Research 71 (4) 1866 (2023) https://doi.org/10.1016/j.asr.2022.05.033
Modeling solar chromospheric spicules with intense lasers
Jianzhao Wang, Jiayong Zhong, Weiming An, Weimin Zhou, Chen Wang, Bo Zhang, Yongli Ping, Wei Sun, Xiaoxia Yuan, Pengfei Tang, Yapeng Zhang, Qian Zhang, Chunqing Xing, Zhengdong Liu, Jiacheng Yu, Jun Xiong, Shukai He, Roger Hutton, Yuqiu Gu, Gang Zhao and Jie Zhang Frontiers in Physics 11 (2023) https://doi.org/10.3389/fphy.2023.1273568
Propagation of Torsional Alfvén Pulses in Zero-beta Flux Tubes
Joseph Scalisi, William Oxley, Michael S. Ruderman and Robertus Erdélyi The Astrophysical Journal 911 (1) 39 (2021) https://doi.org/10.3847/1538-4357/abe8db
Formation of Chromospheric Spicules in Magnetic Bright Points: An Analytical Approach Using Cartesian Slab Geometry
William Oxley, Joseph Scalisi, Michael S. Ruderman and Róbert Erdélyi The Astrophysical Journal 905 (2) 168 (2020) https://doi.org/10.3847/1538-4357/abcafe
Buoyancy-driven Magnetohydrodynamic Waves in a Partially Ionized Plasma
A. Hague and R. Erdélyi The Astrophysical Journal 866 (2) 114 (2018) https://doi.org/10.3847/1538-4357/aae25f
Partially Ionized Plasmas in Astrophysics
José Luis Ballester, Igor Alexeev, Manuel Collados, et al. Space Science Reviews 214 (2) (2018) https://doi.org/10.1007/s11214-018-0485-6
A Three-dimensional Magnetohydrodynamic Simulation of the Formation of Solar Chromospheric Jets with Twisted Magnetic Field Lines
H. Iijima and T. Yokoyama The Astrophysical Journal 848 (1) 38 (2017) https://doi.org/10.3847/1538-4357/aa8ad1
SIMULATIONS OF ALFVÉN AND KINK WAVE DRIVING OF THE SOLAR CHROMOSPHERE: EFFICIENT HEATING AND SPICULE LAUNCHING
C. S. Brady and T. D. Arber The Astrophysical Journal 829 (2) 80 (2016) https://doi.org/10.3847/0004-637X/829/2/80
Torsional Alfvén waves in partially ionized solar plasma: effects of neutral helium and stratification
T. V. Zaqarashvili, M. L. Khodachenko and R. Soler Astronomy & Astrophysics 549 A113 (2013) https://doi.org/10.1051/0004-6361/201220272
PROPAGATION OF ALFVÉNIC WAVES FROM CORONA TO CHROMOSPHERE AND CONSEQUENCES FOR SOLAR FLARES
A. J. B. Russell and L. Fletcher The Astrophysical Journal 765 (2) 81 (2013) https://doi.org/10.1088/0004-637X/765/2/81
Effects of ion-neutral collisions on Alfvén waves: The presence of forbidden zone and heavy damping zone
C. J. Weng, L. C. Lee, C. L. Kuo and C. B. Wang Physics of Plasmas 20 (3) 032902 (2013) https://doi.org/10.1063/1.4796043
Chromospheric jets around the edges of sunspots
R. J. Morton Astronomy & Astrophysics 543 A6 (2012) https://doi.org/10.1051/0004-6361/201219137
TWO-DIMENSIONAL RADIATIVE MAGNETOHYDRODYNAMIC SIMULATIONS OF THE IMPORTANCE OF PARTIAL IONIZATION IN THE CHROMOSPHERE
Juan Martínez-Sykora, Bart De Pontieu and Viggo Hansteen The Astrophysical Journal 753 (2) 161 (2012) https://doi.org/10.1088/0004-637X/753/2/161
The generation of magnetic field via convective motions in the photosphere, Alvén waves, and the origin of chromospheric spicules
A. P. Kropotkin Astronomy Reports 55 (12) 1132 (2011) https://doi.org/10.1134/S1063772911120079
Heating of ions by low-frequency Alfvén waves in partially ionized plasmas
Chuanfei Dong and Carol S. Paty Physics of Plasmas 18 (3) (2011) https://doi.org/10.1063/1.3555532
Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach
T. V. Zaqarashvili, M. L. Khodachenko and H. O. Rucker Astronomy & Astrophysics 529 A82 (2011) https://doi.org/10.1051/0004-6361/201016326
Damping of Alfvén waves in solar partially ionized plasmas: effect of neutral helium in multi-fluid approach
T. V. Zaqarashvili, M. L. Khodachenko and H. O. Rucker Astronomy & Astrophysics 534 A93 (2011) https://doi.org/10.1051/0004-6361/201117380
Alfvén-like mode in partially ionized solar atmosphere
K.A.P. Singh and V. Krishan New Astronomy 15 (1) 119 (2010) https://doi.org/10.1016/j.newast.2009.05.013
Magnetic Coupling between the Interior and Atmosphere of the Sun
E. Scullion, R. Erdélyi and J. G. Doyle Astrophysics and Space Science Proceedings, Magnetic Coupling between the Interior and Atmosphere of the Sun 426 (2010) https://doi.org/10.1007/978-3-642-02859-5_47
MAGNETOSEISMOLOGY: EIGENMODES OF TORSIONAL ALFVÉN WAVES IN STRATIFIED SOLAR WAVEGUIDES
G. Verth, R. Erdélyi and M. Goossens The Astrophysical Journal 714 (2) 1637 (2010) https://doi.org/10.1088/0004-637X/714/2/1637
Heating Diagnostics with MHD Waves
Y. Taroyan and R. Erdélyi Space Science Reviews 149 (1-4) 229 (2009) https://doi.org/10.1007/s11214-009-9506-9
Prominence Seismology Using Small Amplitude Oscillations
Ramón Oliver Space Science Reviews 149 (1-4) 175 (2009) https://doi.org/10.1007/s11214-009-9527-4
Predicting Observational Signatures of Coronal Heating by Alfvén Waves and Nanoflares
P. Antolin, K. Shibata, T. Kudoh, D. Shiota and D. Brooks The Astrophysical Journal 688 (1) 669 (2008) https://doi.org/10.1086/591998
Integrated approach to the coronal heating problem
Y. Taroyan Proceedings of the International Astronomical Union 3 (S247) 184 (2007) https://doi.org/10.1017/S1743921308014865
Theoretical aspects of prominence oscillations
Ramón Oliver Proceedings of the International Astronomical Union 3 (S247) 158 (2007) https://doi.org/10.1017/S1743921308014828
Predicting observational signatures of coronal heating by Alfvén waves and nanoflares
Patrick Antolin, Kazunari Shibata, Takahiro Kudoh, Daiko Shiota and David Brooks Proceedings of the International Astronomical Union 3 (S247) 279 (2007) https://doi.org/10.1017/S174392130801497X
Wave propagation in multiple flux tubes and chromospheric heating
S. S. Hasan, A. van Ballegooijen and O. Steiner Proceedings of the International Astronomical Union 3 (S247) 82 (2007) https://doi.org/10.1017/S1743921308014701
Nonlinear Alfvén wave model of spicules and coronal heating
Takahiro Kudoh Proceedings of the International Astronomical Union 3 (S247) 195 (2007) https://doi.org/10.1017/S1743921308014877
Magnetohydrodynamic modes in a periodic magnetic steady state medium
A. Marcu, I. Ballai and B. Pintér Astronomy & Astrophysics 449 (3) 1193 (2006) https://doi.org/10.1051/0004-6361:20054106
On the mechanisms of MHD wave damping in the partially ionized solar plasmas
M.L. Khodachenko, H.O. Rucker, R. Oliver, T.D. Arber and A. Hanslmeier Advances in Space Research 37 (3) 447 (2006) https://doi.org/10.1016/j.asr.2005.02.025
Can ion-neutral damping help to form spicules?
R. Erdélyi and S. P. James Astronomy & Astrophysics 427 (3) 1055 (2004) https://doi.org/10.1051/0004-6361:20040345
Astrophysics in 2003
Virginia Trimble and Markus J. Aschwanden Publications of the Astronomical Society of the Pacific 116 (817) 187 (2004) https://doi.org/10.1086/383241
Alfvén wave propagation in a partially ionized plasma
Christopher Watts and Jeremy Hanna Physics of Plasmas 11 (4) 1358 (2004) https://doi.org/10.1063/1.1649993
Collisional and viscous damping of MHD waves in partially ionized plasmas of the solar atmosphere
M. L. Khodachenko, T. D. Arber, H. O. Rucker and A. Hanslmeier Astronomy & Astrophysics 422 (3) 1073 (2004) https://doi.org/10.1051/0004-6361:20034207
Can ion-neutral damping help to form spicules?
S. P. James, R. Erdélyi and B. De Pontieu Astronomy & Astrophysics 406 (2) 715 (2003) https://doi.org/10.1051/0004-6361:20030685