Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Euclid preparation

B. Csizi, T. Schrabback, S. Grandis, H. Hoekstra, H. Jansen, L. Linke, G. Congedo, A. N. Taylor, A. Amara, S. Andreon, C. Baccigalupi, M. Baldi, S. Bardelli, P. Battaglia, R. Bender, C. Bodendorf, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, C. Carbone, J. Carretero, S. Casas, et al.
Astronomy & Astrophysics 695 A283 (2025)
https://doi.org/10.1051/0004-6361/202452129

Euclid preparation

D. Scognamiglio, T. Schrabback, M. Tewes, B. Gillis, H. Hoekstra, E. M. Huff, O. Marggraf, T. Kitching, R. Massey, I. Tereno, C. S. Carvalho, A. Robertson, G. Congedo, N. Aghanim, B. Altieri, A. Amara, S. Andreon, N. Auricchio, C. Baccigalupi, M. Baldi, S. Bardelli, P. Battaglia, C. Bodendorf, D. Bonino, E. Branchini, et al.
Astronomy & Astrophysics 694 A262 (2025)
https://doi.org/10.1051/0004-6361/202451587

FORKLENS: Accurate weak-lensing shear measurement with deep learning

Zekang Zhang, Huanyuan Shan, Nan Li, Chengliang Wei, Ji Yao, Zhang Ban, Yuedong Fang, Qi Guo, Dezi Liu, Guoliang Li, Lin Lin, Ming Li, Ran Li, Xiaobo Li, Yu Luo, Xianmin Meng, Jundan Nie, Zhaoxiang Qi, Yisheng Qiu, Li Shao, Hao Tian, Lei Wang, Wei Wang, Jingtian Xian, Youhua Xu, et al.
Astronomy & Astrophysics 683 A209 (2024)
https://doi.org/10.1051/0004-6361/202345903

Euclid preparation

G. Congedo, L. Miller, A. N. Taylor, N. Cross, C. A. J. Duncan, T. Kitching, N. Martinet, S. Matthew, T. Schrabback, M. Tewes, N. Welikala, N. Aghanim, A. Amara, S. Andreon, N. Auricchio, M. Baldi, S. Bardelli, R. Bender, C. Bodendorf, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, et al.
Astronomy & Astrophysics 691 A319 (2024)
https://doi.org/10.1051/0004-6361/202450617

Accurately Estimating Redshifts from CSST Slitless Spectroscopic Survey Using Deep Learning

Xingchen Zhou, Yan Gong, Xin Zhang, Nan Li, Xian-Min Meng, Xuelei Chen, Run Wen, Yunkun Han, Hu Zou, Xian Zhong Zheng, Xiaohu Yang, Hong Guo and Pengjie Zhang
The Astrophysical Journal 977 (1) 69 (2024)
https://doi.org/10.3847/1538-4357/ad8bbf

Impact of PSF misestimation and galaxy population bias on precision shear measurement using a CNN

L M Voigt
Monthly Notices of the Royal Astronomical Society 528 (2) 3217 (2024)
https://doi.org/10.1093/mnras/stae038

Euclid: Improving the efficiency of weak lensing shear bias calibration

H. Jansen, M. Tewes, T. Schrabback, N. Aghanim, A. Amara, S. Andreon, N. Auricchio, M. Baldi, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, C. Carbone, V. F. Cardone, J. Carretero, S. Casas, M. Castellano, S. Cavuoti, A. Cimatti, G. Congedo, L. Conversi, Y. Copin, L. Corcione, F. Courbin, et al.
Astronomy & Astrophysics 683 A240 (2024)
https://doi.org/10.1051/0004-6361/202347833

Clusternets: a deep learning approach to probe clustering dark energy

Amirmohammad Chegeni, Farbod Hassani, Alireza Vafaei Sadr, Nima Khosravi and Martin Kunz
Monthly Notices of the Royal Astronomical Society 531 (1) 1534 (2024)
https://doi.org/10.1093/mnras/stae1075

Measurement and calibration of non-linear shear terms in galaxy cluster fields

Binyang Liu, Ian Dell’Antonio, Nicolas Chotard and Douglas Clowe
Frontiers in Astronomy and Space Sciences 11 (2024)
https://doi.org/10.3389/fspas.2024.1411810

Realistic galaxy images and improved robustness in machine learning tasks from generative modelling

Benjamin J Holzschuh, Conor M O’Riordan, Simona Vegetti, Vicente Rodriguez-Gomez and Nils Thuerey
Monthly Notices of the Royal Astronomical Society 515 (1) 652 (2022)
https://doi.org/10.1093/mnras/stac1188

Comparison of Observed Galaxy Properties with Semianalytic Model Predictions Using Machine Learning

Melanie Simet, Nima Chartab, Yu Lu and Bahram Mobasher
The Astrophysical Journal 908 (1) 47 (2021)
https://doi.org/10.3847/1538-4357/abd179

Cosmic Velocity Field Reconstruction Using AI

Ziyong Wu, Zhenyu Zhang, Shuyang Pan, Haitao Miao, Xiaolin Luo, Xin Wang, Cristiano G. Sabiu, Jaime Forero-Romero, Yang Wang and Xiao-Dong Li
The Astrophysical Journal 913 (1) 2 (2021)
https://doi.org/10.3847/1538-4357/abf3bb

Baryon acoustic oscillations reconstruction using convolutional neural networks

Tian-Xiang Mao, Jie Wang, Baojiu Li, et al.
Monthly Notices of the Royal Astronomical Society 501 (1) 1499 (2020)
https://doi.org/10.1093/mnras/staa3741

Constraining the masses of high-redshift clusters with weak lensing: Revised shape calibration testing for the impact of stronger shears and increased blending

B. Hernández-Martín, T. Schrabback, H. Hoekstra, et al.
Astronomy & Astrophysics 640 A117 (2020)
https://doi.org/10.1051/0004-6361/202037844

Cosmological parameter estimation from large-scale structure deep learning

ShuYang Pan, MiaoXin Liu, Jaime Forero-Romero, et al.
Science China Physics, Mechanics & Astronomy 63 (11) (2020)
https://doi.org/10.1007/s11433-020-1586-3

Noise from undetected sources in Dark Energy Survey images

K Eckert, G M Bernstein, A Amara, et al.
Monthly Notices of the Royal Astronomical Society 497 (3) 2529 (2020)
https://doi.org/10.1093/mnras/staa2133

Testing Shear Recovery with Field Distortion

Jun Zhang, Fuyu Dong, Hekun Li, Xiangchong Li, Yingke Li, Dezi Liu, Wentao Luo, Liping Fu, Guoliang Li and Zuhui Fan
The Astrophysical Journal 875 (1) 48 (2019)
https://doi.org/10.3847/1538-4357/ab1080

Galaxy shape measurement with convolutional neural networks

Dezső Ribli, László Dobos and István Csabai
Monthly Notices of the Royal Astronomical Society 489 (4) 4847 (2019)
https://doi.org/10.1093/mnras/stz2374