Issue |
A&A
Volume 475, Number 3, December I 2007
|
|
---|---|---|
Page(s) | 851 - 857 | |
Section | Galactic structure, stellar clusters, and populations | |
DOI | https://doi.org/10.1051/0004-6361:20078450 | |
Published online | 24 September 2007 |
On the efficiency of field star capture by star clusters
1
European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany e-mail: smieske@eso.org
2
Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn, Germany e-mail: holger@astro.uni-bonn.de
Received:
9
August
2007
Accepted:
30
August
2007
Context.An exciting recent finding regarding scaling relations among globular clusters is the so-called “blue tilt”: clusters of the blue sub-population follow a trend to become redder with increasing luminosity.
Aims.In this paper, we evaluate to what extent field star capture over a Hubble time changes the photometric properties of star clusters. Given that field stars in early type giant galaxies are very metal-rich, their capture will make blue globular clusters redder and may in principle explain the “blue tilt”.
Methods.We perform collisional N-body simulations to quantify the amount of field star capture occuring over a Hubble time to star clusters with 103 to 106 stars. In the simulations we follow the orbits of field stars passing through a star cluster and calculate the energy change that the field stars experience due to gravitational interaction with cluster stars during one passage through the cluster. The capture condition is that their total energy after the passage is smaller than the gravitational potential at the cluster's tidal radius. By folding this with the fly-by rates of field stars with an assumed space density as in the solar neighbourhood and a range of velocity dispersions σ (15 to 485 km s-1), we derive estimates on the mass fraction of captured field stars as a function of environment.
Results.We find that integrated over a Hubble time, the ratio between
captured field stars and total number of clusters stars is very low
(10-4), even for the smallest field star velocity dispersion
σ = 15 km s-1. This holds for star clusters in the
mass range of both open clusters and globular clusters. Furthermore we
show that tidal friction has a negligible effect on the energy
distribution of field stars after interaction with the cluster. We
note that field star capture at the time of cluster formation, when
the cluster potential increases with time, is more efficient. However, it
cannot explain the trend that more massive star clusters are
redder.
Conclusions.Field star capture is not a probable mechanism for creating the colour-magnitude trend of metal-poor globular clusters.
Key words: globular clusters: general / open clusters and associations: general / galaxies: kinematics and dynamics / stars: kinematics
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.