Issue |
A&A
Volume 474, Number 2, November I 2007
|
|
---|---|---|
Page(s) | L17 - L20 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361:20078072 | |
Published online | 13 August 2007 |
Letter to the Editor
Clathrate hydrates as a sink of noble gases in Titan's atmosphere
Institut UTINAM, CNRS-UMR 6213, Université de Franche-Comté, France e-mail: caroline.thomas@univ-fcomte.fr
Received:
13
June
2007
Accepted:
11
July
2007
We use a statistical thermodynamic approach to determine the composition of clathrate hydrates which may form from a multiple compound gas whose composition is similar to that of Titan's atmosphere. Assuming that noble gases are initially present in this gas phase, we calculate the ratios of xenon, krypton and argon to species trapped in clathrate hydrates. We find that these ratios calculated for xenon and krypton are several orders of magnitude higher than in the coexisting gas at temperature and pressure conditions close to those of Titan's present atmosphere at ground level. Furthermore we show that, by contrast, argon is poorly trapped in these ices. This trapping mechanism implies that the gas-phase is progressively depleted in xenon and krypton when the coexisting clathrate hydrates form whereas the initial abundance of argon remains almost constant. Our results are thus compatible with the deficiency of Titan's atmosphere in xenon and krypton measured by the Huygens probe during its descent on January 14, 2005. However, in order to interpret the subsolar abundance of primordial Ar also revealed by Huygens, other processes that occurred either during the formation of Titan or during its evolution must be also invoked.
Key words: planet and satellites: individual: Titan / solar system: general
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.