A pair of early- and late-forming galaxy cluster samples: a novel way of studying halo assembly bias assisted by a constrained simulation

Yen-Ting Lin1*, Hironao Miyatake2,3, Hong Guo4, Yi-Kuan Chiang1, Kai-Feng Chen5, Ting-Wen Lan6,1, and Yu-Yen Chang7

1 Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617, Taiwan
2 Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya, 464-8602, Japan
3 Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Chiba 277-8583, Japan
4 Shanghai Astronomical Observatory, Shanghai 200030, China
5 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
6 Graduate Institute of Astrophysics and Department of Physics, National Taiwan University, Taipei 10617, Taiwan
7 Department of Physics, National Chung Hsing University, Taichung 402, Taiwan

Received XX; accepted XX

ABSTRACT

The halo assembly bias, a phenomenon referring to dependencies of the large-scale bias of a dark matter halo other than its mass, is a fundamental property of the standard cosmological model. First discovered in 2005 from the Millennium Run simulation, it has been proven very difficult to be detected observationally, with only a few convincing claims of detection so far. The main obstacle lies in finding an accurate proxy of the halo formation time. In this study, by utilizing a constrained simulation that can faithfully reproduce the observed structures larger than 2 Mpc in the local universe, for a sample of 634 massive clusters at \(z \approx 0.12 \), we found their counterpart halos in the simulation and used the mass growth history of the matched halos to estimate the formation time of the observed clusters. This allowed us to construct a pair of early- and late-forming clusters, with a similar mass as measured via weak gravitational lensing, and large-scale biases differing at the \(\approx 3 \sigma \) level, suggestive of the signature of assembly bias, which is further corroborated by the properties of cluster galaxies, including the brightest cluster galaxy and the spatial distribution and number of member galaxies. Our study paves a way to further detect assembly bias based on cluster samples constructed purely on observed quantities.

Key words. large-scale structure of Universe -- cosmology: observations -- galaxies: clusters

1. Introduction

It has been well known for more than a decade that, although the large-scale bias of dark matter halos is primarily a function of halo mass, it also has secondary dependencies on other halo properties such as the formation time, concentration, and spin (e.g., Gao et al. 2005, Jing et al. 2007). Such dependencies are loosely referred to as assembly bias (AB; see e.g., Mao et al. 2018; Wechsler & Tinker 2018). As AB is a subtle, yet solid feature of the cold dark matter model with a cosmological constant (ΛCDM; e.g., Contreras et al. 2021), a solid observational detection of the phenomenon will serve as a critical validation of the model.

In this study, we restrict ourselves to investigating the AB as manifested by the differences in the halo formation time; that is, we aim to detect differences in the large-scale bias for halos of the same mass, but with different formation times. Numerous studies have shown that the amplitude of halo AB is dependent on the halo mass (and to some degree, the definition of halo formation time and even the definition of a halo itself; see Mansfield & Kravtsov 2020 for details). In general, it is more prominent for low-mass halos, while less so at the massive end such as galaxy clusters. In our earlier attempt to detect AB in halos of a mass comparable to that of the Milky Way (\(\sim 10^{12} M_\odot \)), we did not find convincing evidence for AB (Lin et al. 2016). It is likely because our proxy for the halo formation time, namely the mean stellar age of central galaxies derived from spectra provided by the Sloan Digital Sky Survey (SDSS; York et al. 2000), is not of sufficient accuracy.

Using a large sample of SDSS redMaPPer clusters (Rykoff et al. 2014), Miyatake et al. (2016, hereafter M16) claimed a strong detection of AB, which unfortunately turned out to be mainly due to the projection effect; in brief, the formation time proxy used by M16, namely the spatial concentration of photometrically selected potential cluster member galaxies, is contaminated by large-scale correlated structures along the line of sight, which mimics the AB signal (More et al. 2016; Zu et al. 2017; Sunayama & Mok 2019). It is thus clear that, in the pursuit of detection of the AB signal, one of the main challenges is to have a robust proxy for the halo formation time (while ensuring similar halo masses between early- and late-forming samples is another challenging aspect).

* ytl@asiaa.sinica.edu.tw
Here we present a novel approach for the estimation of the halo formation time, which makes heavy use of the forward-modeling-based numerical simulation Elucid (Wang et al. 2016). Elucid is designed to reproduce the structures larger than ~2 Mpc observed by the SDSS main galaxy sample (Strauss et al. 2002) out to a redshift \(z = 0.12 \). As such, by matching a galaxy cluster sample drawn from the cluster and group catalog of Yang et al. (2007) hereafter Y07, we can find a one-to-one correspondence between the observed clusters and the simulated halos, whereby the cluster formation time is derived from the halo mass growth history. This method then allows us to split the cluster sample into early- and late-forming subsamples; based on mass measurements from weak gravitational lensing (WL) and the large-scale bias derived from cluster-galaxy cross correlation, we show that, within the LCDM framework, a pair of early- and late-forming cluster samples exhibits the signature of AB at the \(\geq 3\sigma \) level, which will facilitate the study of halo AB at the high-mass end (see also Zu et al. 2021).

This paper is structured as follows: in Section 2, we describe the key elements of our analysis. We construct a pair of early- and late-forming cluster samples that exhibits the AB signal, and examine the properties of cluster galaxy population of the samples in Section 3. We discuss the validity of our approach in Section 4 and implications and prospects of the method developed in this paper in Section 5. Throughout this paper we adopt a WMAP5 (Komatsu et al. 2009) LCDM model, where \(\Omega_m = 0.258, \Omega_{\Lambda} = 0.742, H_0 = 100h \) km s\(^{-1}\) Mpc\(^{-1}\) with \(h = 0.71, \sigma_8 = 0.8 \), which is employed by Elucid (Wang et al. 2014, 2016). All optical magnitudes are in the AB photometry system (Oke & Gunn 1983) which should not be confused with assembly bias).

2. Methodology

Here we provide an overview of the main elements of our analysis. The basis of this work, the constrained simulation Elucid, is presented in Section 2.1. Our cluster sample, and the way we matched it to the simulated halos from Elucid, are described in Section 2.2. We then turn to our key observables, clustering and WL measurements, in Sections 2.3 and 2.4. We describe our method for measuring the cluster galaxy surface density profiles in Section 2.5.

2.1. Constrained simulation Elucid

The goal of producing the Elucid simulation is to reproduce the large-scale structures as observed by SDSS, which would then allow us to “visualize” the distribution of dark matter, and better understand how galaxies populate dark matter halos. The methodology behind Elucid can be found in Wang et al. (2014). Basically, a nonlinear density field is provided to a Hamiltonian Markov Chain Monte Carlo (HMC) algorithm combined with particle-mesh (PM) dynamics, which is able to reconstruct the initial linear density field. That density field is then evolved to the present-day with high resolution \(N \)-body simulations.

For the specific simulation used in this work, the nonlinear density field was constructed based on the group catalog of Y07, which itself was based on SDSS data release 7 (DR7; Abazajian et al. 2009). Given that the galactic systems in the Y07 catalog are complete down to a mass limit of \(\approx 10^{12}h^{-1}M_\odot \) at \(z \sim 0.12 \), the nonlinear density field was estimated using only halos above that mass limit and in the redshift range \(0.01 \sim 0.12 \), lying within the northern Galactic cap region of the DR7 footprint. The reconstructed initial density field was then evolved with 3072\(^3\) particles in a 500h\(^{-1}\) Mpc box, using a modified version of GADGET-2 (Springel et al. 2005; Wang et al. 2016). Tests based on detailed mock galaxy samples showed that the typical scatter between the true (nonlinear) density field and the reconstructed one is 0.23 dex when smoothed over a scale of 2h\(^{-1}\) Mpc (Wang et al. 2016), which is about the typical size of a massive cluster, and is thus a good match for our purpose.

2.2. Galaxy cluster sample selection

To match real clusters to the simulated halos in Elucid, we used the model C version of the Y07 catalog. As shown in Wang et al. (2016), only part of the SDSS DR7 footprint is covered in the reconstructed volume, and we ended up with 644 clusters with mass \(M_{200m} \geq 10^{14}h^{-1}M_\odot \). Here the mass is defined within a radius \(r_{200m} \), within which the mean density is 200 times the mean density of the universe at the redshift of the cluster. We note that the mass estimates of galactic systems in Y07 is based on a method similar in spirit to subhalo abundance matching (e.g., Conroy et al. 2006; Wechsler & Tinker 2018), that is, given the dark matter halo mass function, one assumes the total stellar mass (or luminosity) content of a galactic system is directly proportional to the halo mass, and thus one can “assign” a halo mass to observed groups and clusters to halos of the same spatial density.

The matching between the Y07 clusters and the Elucid halos was done in the following fashion: for a given cluster with mass \(M_1 \), we searched all simulated halos with a distance to the position of the cluster in the simulation less than 4h\(^{-1}\) Mpc, which is the length scale adopted in Wang et al. (2016) for the density field reconstruction. We have properly taken into account the redshift space distortion effect of clusters, by moving dark matter halos to redshift space using their peculiar velocities along the line of sight. Let us denote the mass of halos that lie within the sphere as \(M_2 \). For all halos with mass satisfying \(|\log(M_1/M_2)| < 0.5 \), we selected the one with the smallest \(|\log(M_1/M_2)| \) as the matched halo. As demonstrated by Wang et al. (2016), such criteria of matching enable > 95% of clusters more massive than \(10^{14}h^{-1}M_\odot \) to be associated with a halo in Elucid. If no halo satisfied the above condition, then the cluster was discarded from the sample. Out of 644 clusters, we found 634 matches this way\(^1\).

For the clusters with a counterpart halo, we extracted the mass growth history of the main subhalo (that is, simply following the main trunk of the merger tree), and derived several formation time indicators, such as \(z_{200c}, z_{200t}, \) and \(z_{\text{mah}} \). While the first three correspond to the redshifts when a halo first reaches 80%, 50% and 20% of its final (\(z = 0 \)) mass, the last quantity was obtained by first fitting the mass growth history by the form

\[
M(z) \propto \exp(-\alpha z),
\]

with the Levenberg-Marquardt algorithm for minimization of the least squares, and then setting \(z_{\text{mah}} \equiv 2/\alpha - 1 \) (Wechsler 2006).

Finally, we note that the cluster center defined by the Y07 cluster finding algorithm is a luminosity weighted position based on the distribution of member galaxies, and the brightest cluster galaxy (BCG) is not necessarily located at the very center.

\(^1\) Choosing a smaller matching radius (e.g., 3h\(^{-1}\) Mpc) and more strict mass ratio constraint (e.g., \(|\log(M_1/M_2)| < 0.3 \)) would result in 540 matches. For our main cluster samples (to be presented in Section 3.2), the reduction of sample size is around 80%, with very similar halo mass distributions, and thus will not change our conclusions.
2.3. Cluster-galaxy cross correlation function

With only ~ 600 clusters, inferring the large-scale bias b via auto-correlation function is challenging and the result will be noisy. We naturally opted for cluster-galaxy cross correlation w_{pgc}, by comparing the w_{pgc} of early- and late-forming clusters at scales $10 - 30h^{-1}\text{Mpc}$, we can then infer the relative bias of the two populations of clusters.

Following Guo et al. (2017), we measured the cross-correlation function $w(r_p)$ between our cluster samples and a volume-limited galaxy sample drawn from SDSS DR7 main spectroscopic sample with the r-band absolute magnitude $M_r \leq -20.5$ and $0.02 \leq z \leq 0.132$. The $w(r_p)$ measurement were calculated using the Landy & Szalay (1993), estimator, with r_p being the projected separation of the cluster-galaxy pairs. We chose logarithmic r_p bins with a width $\Delta \log r_p = 0.2$ from 0.1 to 63.1$h^{-1}\text{Mpc}$. The maximum line-of-sight integration length π_{max} was set to 60$h^{-1}\text{Mpc}$. Setting π_{max} to larger values does not change our results. The uncertainties in the w_p measurements were obtained by running 400 jackknife resamplings.

2.4. Weak gravitational lensing measurements

We measured weak gravitational lensing signals as the average excess surface mass density $\Delta \Sigma$ by stacking ~ 600 clusters in the same manner as M16, which followed the procedure described in (Mandelbaum et al. 2013). We used the shape catalog based on the photometric galaxy catalog from SDSS DR8 (Reyes et al. 2012). The shapes of source galaxies were measured by the re-Gaussianization technique (Hirata & Seljak 2003). Systematic uncertainties in the shape measurements were investigated as done in (Mandelbaum et al. 2005) and calibrations were performed using image simulations from (Mandelbaum et al. 2012). Their photometric redshifts (photo-z) were estimated using the publicly available code ZEBRA (Feldmann et al. 2006) and Nakajima et al. 2012. We chose logarithmic bins r_p with a width $\Delta \log r_p = 0.14$ from 0.025 to 50$h^{-1}\text{Mpc}$. We applied the photo-z correction, boost factor correction, and random signal correction following Mandelbaum et al. (2005) and Nakajima et al. 2012. We estimated the covariance matrix using the jackknife technique as described in M16.

To infer the cluster mass, we fit a halo model that is similar to what is described in M16. We fit the signal within the range of $0.3 < r_p/(h^{-1}\text{Mpc}) < 3$, since this scale is not affected by 2-halo term. We used a truncated (Navarro et al. 1997 hereafter NFW) profile, described in Takada & Jain (2003a,b), and assumed that there are some fraction of off-centered clusters with respect to their true center. There are four fitting parameters in total: cluster mass M_{200m}, concentration parameter c_{200m}, fraction of centered clusters q_{cen} and typical off-centering scale with respect to r_{200m}, α_{cen}. For the q_{cen}, we employed a Gaussian prior $N(0,8,0.1)$. The cluster mass constraints were insensitive to the choice of the prior; when adopting a prior $N(0,8,0,2)$, the change in cluster mass was typical only a few percent.

2.5. Cluster galaxy surface density measurements

To probe the properties of member galaxies of the clusters, we cross-correlated the clusters with photometric galaxies detected in SDSS. This cross-correlation technique makes use of the fact that members associated with the clusters will introduce a galaxy overdensity along the line of sight. By measuring the average number density of interlopers via random sightlines and subtracting such a component from the average number density of galaxies around the clusters, one can probe the number density of member galaxies and their observed properties statistically (see e.g., Lin et al. 2004; Wang & White 2012; Lan et al. 2016; Tinker et al. 2021).

In practice, we first selected robustly detected photometric galaxies with z-band apparent magnitudes $m_r \leq 21$ and estimated the absolute magnitude of a galaxy around a cluster at the redshift of the cluster with a k-correction. We adopted the same method as Lan et al. (2016) to obtain the k-correction, by using the median k-correction of SDSS spectroscopic galaxies from Blanton et al. (2005) with similar observed $(u-r)$ and $(g-r)$ colors. We further separated galaxies into blue and red populations using the color-magnitude relation from Baldry et al. (2004) and only included galaxies with $M_r < -18$, which is the completeness limit for both types of galaxy populations. Finally, we counted the numbers of blue and red galaxies around the clusters as a function of projected distance and estimated the number density of interlopers with 10 random sightlines for each cluster. Unlike our w_p and WL measurements, here we used the BGC as the cluster center. The uncertainty was obtained by bootstrapping the samples 500 times.

3. Results

3.1. Cluster selection using z_{50} and z_{mah}

We start by splitting the clusters by either z_{50} or z_{mah}, using $z_{50,\text{div}} = 0.521$ and $z_{\text{mah,div}} = 0.469$ for separating early- and late-forming clusters, respectively. There are 323 and 311 early- and late-forming clusters when split by $z_{50,\text{div}} = 0.521$, while 316 and 318 clusters when split by $z_{\text{mah,div}} = 0.469$. WL masses for these samples are all very close, about $1.5 \times 10^{14}h^{-1}\text{M}_\odot$ (the curves in the left panels show the best-fit models). The green points in the lower right panel are the ratio of the early-to-late w_p measurements, which is equivalent to the large-scale bias ratio $b_{\text{early}}/b_{\text{late}}$. The signature of AB at cluster scales is manifested by $b_{\text{early}}/b_{\text{late}} < 1$, which is consistent with our measurements. The probability for these samples to be drawn from the same parent sample is $p = 0.0258$ (for the $z_{50,\text{div}}$-selected samples) and $p = 0.0295$ (for the $z_{\text{mah,div}}$-selected ones).
late-forming clusters; the division redshifts are chosen to make the numbers of clusters in the two samples as close as possible. The mean masses of the resulting z_{20}-selected 323 early-forming and 311 late-forming clusters, from stacked WL, are $M_{200m} = (1.54 \pm 0.22) \times 10^{14} h^{-1} M_\odot$ and $(1.51 \pm 0.22) \times 10^{14} h^{-1} M_\odot$, respectively. In Figure 1 (upper panels), we show the lensing signals (i.e., the surface mass density contrast) on the left side, while the projected cluster-galaxy cross-correlation function (PCCF) on the upper right panel. At cluster scales, it is expected that late- and early-forming halos would have higher clustering amplitude (i.e., larger large-scale bias) compared to AB, which is consistent with our measurements. The lower right panel shows the ratio of $w_{p, early}/w_{p, late} = b_{early}/b_{late}$. To quantify the difference between the $w_{p, early}$ and $w_{p, late}$ measurements (in terms of their ratio), we follow the methodology developed in Lin et al. (2018) (see Section 4.1.2 therein) and calculate

$$
\chi^2 = \sum_{ij} \left(\frac{w_{i}(r)/w_{l}(r) - \xi}{C_{ij}^{-1}} \left(\frac{w_{i}(r)/w_{l}(r) - \xi} \right) \right),
$$

where w_{i} and w_{l} are short-hands for $w_{p, early}$ and $w_{p, late}$, respectively, C is the covariance matrix built from the ratio between $w_{p, early}$ and $w_{p, late}$ and their associated jackknife samples, and constant $\xi = 1$. The errorbars of the w ratio shown in Figure 1 (as well as in Figures 2 and 3) are calculated based on the diagonal terms of the covariance matrix C. With $\chi^2 = 9.3$ from 3 degrees of freedom, over the scales from $12.9 h^{-1}$ Mpc to $32.5 h^{-1}$ Mpc (hereafter the “mid-range”), we find that the two samples have a probability $p = 0.0258$ to be drawn from the same parent population (i.e., having the same large-scale bias). Using the full scale as shown in the Figure ($8.2 h^{-1}$ Mpc to $51.5 h^{-1}$ Mpc), the probability changes to $p = 0.0393$.

A similar result using cluster samples defined by z_{max} is shown in the lower panels of Figure 1. The mean masses of 316 early-forming and 318 late-forming clusters are $M_{200m} = (1.52 \pm 0.23) \times 10^{14} h^{-1} M_\odot$ and $(1.46 \pm 0.21) \times 10^{14} h^{-1} M_\odot$, respectively. Using Eqn. 2, we find that the two samples have a probability $p = 0.0295 \pm 0.0152$ to be consistent using the measurements from the mid-range (full-scale).

We then further seek stronger signals by exploring the extremal of the age distribution. However, as pointed out by Chue et al. (2018), at the mass scale of our clusters (i.e., around $10^{14} h^{-1} M_\odot$), z_{20} may not be the best age indicator. Quantities such as z_{20} or z_{50} may better reflect the formation history.

3.2. Age extremum selection of clusters

After testing with various age indicators mentioned above, it is found that, by selecting 138 oldest clusters with $z_{20} > 1.35$, paired with 121 youngest clusters with $z_{20} < 0.85$, both limited in the redshift range $z = 0.06 - 0.12$ and mass range $M_{200m}/(h^{-1} M_\odot) = 14 - 14.5$ (as estimated by Y07), an AB-like signal can be seen. The mean masses based on WL are measured to be $M_{200m, early} = 1.26_{-0.29}^{+0.35} \times 10^{14} h^{-1} M_\odot$ and $M_{200m, late} = 0.95_{-0.22}^{+0.26} \times 10^{14} h^{-1} M_\odot$, consistent within 1σ (Figures 2 & 3). While the dividing redshifts are chosen so that we have at least 120 clusters in each sample, the redshift and halo mass ranges are selected to facilitate consistent cluster mass estimates. We shall refer to this pair of cluster samples as the $z_{20, x}$ set. We note in passing that the mean masses based on Y07 are $(1.51 \pm 0.50) \times 10^{14} h^{-1} M_\odot$ and $(1.66 \pm 0.55) \times 10^{14} h^{-1} M_\odot$ for the early- and late-forming samples, respectively. In Tables 1 & 2 we provide some basic information of the early- and late-forming cluster samples, respectively, which include cluster ID, cluster mass based on Y07, cluster center taken from the Y07 catalog, redshift, and z_{20}. Given the mass difference between the early- and late-forming clusters, we should compare the measured b_{early}/b_{late} to the theoretically expected bias ratio.
In order to evaluate the probability that the two samples have the same large-scale bias, we thus set \(\xi = r_{b,0} \) in Eq. 2 and find the probabilities to be \(p = 1.02 \times 10^{-10} \) and \(1.16 \times 10^{-11} \) using the data from the mid-range and full scale, respectively.

We note that the mean masses of the Elucid halos that correspond to the early- and late-forming clusters are \((1.36 \pm 0.69) \times 10^{14} h^{-1} M_\odot \) and \((1.62 \pm 0.77) \times 10^{14} h^{-1} M_\odot \), respectively. We shall refer to these halos as the counterpart halos. While the WL mass of the early-forming cluster sample is close to the mean mass of the counterpart halos, the situation is different for the late-forming clusters and their associated halos. Not only do the masses differ (at 1.5 - 2 \(\sigma \) level), the sign is also changed between the observed and simulated samples (in the \(z_{200,\text{Mz}} \) set, the late-forming cluster sample has a lower mean mass than the early-forming ones, opposite to the simulated halos). We show the ratio of PCCFs of early-to-late-forming halos as open pentagons in the lower right panel of Fig. 2. Although the ratios are similar to that of the \(z_{200,\text{Mz}} \) set, we note that the actual amplitude of clustering (i.e., the absolute values of bias) of the counterpart halos differ somewhat from the real clusters at scales larger than 30\(h^{-1} \) Mpc (see the open pentagons in the upper right panel). The PCCFs of the counterpart halos are obtained by cross correlating these halos with low mass halos in the mass range \(\log M_{200,\text{m}}/(h^{-1} M_\odot) = 11.5 - 12.5 \). To make an accurate comparison of the resulting \(w_{\text{early,co}} \) and \(w_{\text{late,co}} \) of the counterpart halos with those of the \(z_{200,\text{Mz}} \) set, we also cross correlate the observed clusters with the same set of low mass halos in Elucid, and multiply \(w_{\text{early,co}} \) and \(w_{\text{late,co}} \) with a factor \(\xi \) that makes the amplitudes of the \(z_{200,\text{Mz}} \) cluster–halo PCCF and the \(z_{200,\text{Mz}} \) cluster–SDSS galaxy PCCF at 8.2\(h^{-1} \) Mpc identical.

The relative large uncertainties in the WL mass measurements of the \(z_{200,\text{Mz}} \) set, we have to test their effects on the AB signal exhibited by our cluster samples, by considering an extreme case where the differences in the large-scale clustering are maximally due to the cluster mass difference. To do so, we consider two cases: (1) assuming that the mean mass of the early-forming cluster sample is biased high by 1\(\sigma \), while that of the late-forming one is biased low by 1\(\sigma \), and (2) assuming that the mean mass of the late-forming sample is biased low by at least 2\(\sigma \). While there is a 2.6\% probability for the first case to occur, the likelihood for the second case is 2.3\%. For the first case, we set \(\xi = r_{b,0} \), to 0.92, the value corresponding to the bias ratio of halos of masses \(M_{200,\text{m,early,min}} = 0.97 \times 10^{14} h^{-1} M_\odot \) (i.e., 1\(\sigma \) lower than the mean mass of the early-forming clusters) and \(M_{200,\text{m,late,max}} = 1.21 \times 10^{14} h^{-1} M_\odot \) (1\(\sigma \) higher than the mean mass of the late-forming clusters) in Eq. 2. Using the mid-range (full scale) clustering measurements, we find that the probability for the pair of cluster samples to have the same bias becomes \(p = 7.49 \times 10^{-5} \) (5.40 \(\times 10^{-5} \)). As for the second case, we keep the mass of the early-forming sample at the measured value, while increase the mean mass of the late-forming one to \(1.47 \times 10^{14} h^{-1} M_\odot \). The expected bias ratio is \(r_{b,0} = 0.94 \), which is high compared to our measurements. The probabilities are \(p = 2.44 \times 10^{-5} \) and \(1.35 \times 10^{-5} \) using the mid-range and full scale data, respectively.

However, if we take into account the potential uncertainties of in the theoretical predictions of the bias ratio from Tinker et al.\(^2\), with coordinates of all halos transformed from the \((x, y, z)\) space of Elucid to (RA, Dec., redshift) space first.

\(^2\) With coordinates of all halos transformed from the \((x, y, z)\) space of Elucid to (RA, Dec., redshift) space first.

Fig. 3. Corner plot showing 1\(\sigma \) and 2\(\sigma \) (darker and lighter colored, respectively) confidence levels of our measurements and the nuisance parameters \(\Delta z_c \) and \(\alpha_c \); see Section 2.4 for the \(z_{20,\text{Mz}} \) set. While we can confidently constrain the cluster masses (e.g., top left panel), the constraining power on the total mass concentration is unfortunately weak (top panel in the second column from the left).

In the upper (lower) right panel of Figure 2, we further show the theoretically expected PCCFs \((b_{\text{early}}/b_{\text{late}})\) ratio as the open triangles, as derived from Elucid, in which the effect of AB must be present. We first select dark matter halos with masses \(M_{200,\text{m}} = (0.7 - 1.9) \times 10^{14} h^{-1} M_\odot \), then separate them into early- and late-forming using the same redshift division as done for the \(z_{20,\text{Mz}} \) set. This pair of halos will be referred to as the equal mass halos. We then cross-correlate the resulting 98 early-forming and 82 late-forming halos, which have mean masses of \((1.24 \pm 0.31) \times 10^{14} h^{-1} M_\odot \) and \((1.26 \pm 0.36) \times 10^{14} h^{-1} M_\odot \), respectively, with low mass halos in the mass range \(\log M_{200,\text{m}}/(h^{-1} M_\odot) = 11.5 - 12.5 \), and derive the ratio between \(w_{\text{early,co}} \) and \(w_{\text{late,co}} \). The triangles appear to be consistent with our measurements (the solid points), indicating that the AB signal from the \(z_{20,\text{Mz}} \) set is similar in amplitude to that expected in LCDM. The probability for the early- and late-forming halos to have the same large-scale bias is \(p = 1.78 \times 10^{-4} \) using the mid-range clustering measurements. Similar to the PCCFs of the counterpart halos, the PCCFs of the equal mass halos (shown as open triangles in the upper right panel of Fig. 2) have been adjusted in amplitude by the same factor \(\xi \).

We conclude by noting that, while the mean masses and mass ranges of the counterpart halos and equal mass halos differ, both exhibit a similar degree of AB. Therefore, despite the WL mass uncertainties of the \(z_{20,\text{Mz}} \) set, if AB exists in the real Universe at the predicted amplitude, the signal should still be detectable.
We next examine various properties related to cluster galaxy clusters. Fitting the density profiles of red galaxies with surface density profiles of the early- and late-forming clusters, we find concentration values of $c_{\text{early}} = 5.6^{+0.6}_{-0.5}$, which are consistent with the expectation that early-forming clusters would have a more spatially concentrated galaxy population, a premise of the analysis of M16. Despite having a 33\% higher mean cluster mass, the early-forming clusters have 25\% fewer galaxies (of all colors) than the late-forming ones. Given the halo occupation number measured from a sample of nearby clusters, one expects the cluster galaxy populations evidence supporting the properties of cluster galaxy populations, which might be due to the combination of (1) small cluster sample size, (2) insufficient depth of SDSS photometry and spectra, and the theoretical expectation that cluster galaxies have formed most of their stars prior to becoming members of the clusters we observe (e.g., Guo et al. 2011) for old stellar populations, it is extremely difficult to detect any age differences using tools currently available).

Finally, we investigate the magnitude gap Δz of the z_{20exMz} set, which is the differences in the r-band absolute magnitudes between the BCG and the second most luminous galaxy (Tremaine & Richstone 1977). Additionally, we also examine Δz_{set}, the magnitude difference between the BCG and the fourth most luminous galaxy, as it has been suggested to be a more robust measure of the gap (Golden-Marx & Miller 2018). Using the cluster member catalog of Y07, we find that the median $\Delta z = 0.44 \pm 0.01$ (with a scatter of 0.05 for the early-forming clusters, while that of the late-forming clusters is $\Delta z = 0.38 \pm 0.01$) with a scatter of 0.05. These results are again consistent with the expectation that the gap increases as a cluster ages, more and more massive satellites are cannibalized by the BCG via dynamical friction (Ostriker & Tremaine 1975).

To summarize, for this pair of cluster samples, we find from the properties of cluster galaxy populations evidence supporting their age differences, including (1) higher concentration of spatial distribution of red galaxies, (2) significantly reduced total galaxy number, (3) smaller offset of BCGs from cluster center, and (4) larger magnitude gap, when comparing early-forming clusters with the late-forming ones.

3.4. Null tests

As a sanity check, we construct 14 pairs of control cluster samples that have similar distributions in halo mass and redshift as the z_{20exMz} set, but chosen from the parent cluster sample regardless of their z_0, to demonstrate the robustness of our method. These samples are generated in the following way (and will be referred to as the control samples hereafter). We first make grids in the $M-z$ space limited to that spanned by the z_{20exMz} set, that is, $\log M_{200m}/(h^{-1} M_{\odot}) = 14 - 14.5$ and $z = 0.06 - 0.12$. To generate a control sample analogous to the early-forming clusters of the z_{20exMz} set, we only select clusters from grids in which the number of clusters from the full sample (of 634 clusters) is

Table 1. Early-forming clusters of the z_{20exMz} set (the full table is available online via Strasbourg astronomical Data Center, CDS)

<table>
<thead>
<tr>
<th>ID</th>
<th>$\log M_{200\text{m}}$</th>
<th>R.A.</th>
<th>Dec.</th>
<th>z</th>
<th>z_20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>($h^{-1} M_{\odot}$)</td>
<td>(J2000)</td>
<td>(J2000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>14.494600</td>
<td>257.446899</td>
<td>34.438801</td>
<td>0.085400</td>
<td>1.383961</td>
</tr>
<tr>
<td>90</td>
<td>14.484900</td>
<td>132.532898</td>
<td>29.548309</td>
<td>0.104570</td>
<td>1.456453</td>
</tr>
<tr>
<td>99</td>
<td>14.464800</td>
<td>227.795395</td>
<td>5.274312</td>
<td>0.080080</td>
<td>1.531159</td>
</tr>
<tr>
<td>101</td>
<td>14.439500</td>
<td>179.268997</td>
<td>5.061248</td>
<td>0.074340</td>
<td>1.531159</td>
</tr>
<tr>
<td>103</td>
<td>14.456200</td>
<td>230.746965</td>
<td>30.984060</td>
<td>0.112770</td>
<td>1.608133</td>
</tr>
</tbody>
</table>

Table 2. Late-forming clusters of the z_{20exMz} set (the full table is available online via Strasbourg astronomical Data Center, CDS)

<table>
<thead>
<tr>
<th>ID</th>
<th>$\log M_{200\text{m}}$</th>
<th>R.A.</th>
<th>Dec.</th>
<th>z</th>
<th>z_20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>($h^{-1} M_{\odot}$)</td>
<td>(J2000)</td>
<td>(J2000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>14.496500</td>
<td>227.337402</td>
<td>7.651995</td>
<td>0.077560</td>
<td>0.614971</td>
</tr>
<tr>
<td>89</td>
<td>14.486800</td>
<td>187.102997</td>
<td>12.065190</td>
<td>0.089030</td>
<td>0.476161</td>
</tr>
<tr>
<td>93</td>
<td>14.479200</td>
<td>134.566299</td>
<td>38.548759</td>
<td>0.093160</td>
<td>0.766834</td>
</tr>
<tr>
<td>97</td>
<td>14.468300</td>
<td>208.025497</td>
<td>46.378010</td>
<td>0.062580</td>
<td>0.714689</td>
</tr>
<tr>
<td>102</td>
<td>14.457900</td>
<td>186.548996</td>
<td>31.200930</td>
<td>0.060480</td>
<td>0.766834</td>
</tr>
</tbody>
</table>
indicating that these pairs of cluster samples have galaxy properties that are consistent with unity, for galaxy number, e.g., Lin et al. 2004; Hennig et al. 2017), those from the literature (about 15% for concentration and 30% for number density). The 3 numbers shown in blue are the masses of the early-analogous and late-analogous clusters (in unit of $10^{14} h^{-1} M_{\odot}$), and the probability for the pair to be drawn from the same parent population.

In Figure 4, we show the ratio $w_{\text{early}}/w_{\text{late}} = b_{\text{early}}/b_{\text{late}}$ of the control samples. Each pair consists of 138 early-analog and 121 late-analog clusters, identical to that of the $z_{\text{20ex,Mr}}$ set. In the upper left part of each panel, we show the masses of the early-analogous and late-analogous clusters as measured via stacked WL (in unit of $10^{14} h^{-1} M_{\odot}$), and the probability for the pair to be drawn from the same parent population (using the clustering measurements within the mid-range). The red horizontal line denotes the bias ratio expected (in the absence of AB); the 3 numbers shown in blue are the masses of the early-analogous and late-analogous clusters (in unit of $10^{14} h^{-1} M_{\odot}$), and the probability for the pair to be drawn from the same parent population.

For these 14 pairs of cluster samples, we have fit an NFW density profile to the spatial distribution of member galaxies. For each pair, which by design have similar masses, we compute the ratio of the measured concentration parameters (early-analog over late-analog), as well as that of the total number of member galaxies. The mean ratio and standard deviation of concentration are found to be 1.19 ± 0.24, while those of the total galaxy number are $(0.90, 0.13)$; the scatters of these quantities are comparable to those from the literature (about 15% for concentration and 30% for galaxy number, e.g., Lin et al. 2004; Hennig et al. 2017), thus we can regard both quantities to be consistent with unity, indicating that these pairs of cluster samples have galaxy properties largely consistent with each other. Furthermore, we note that the mean separations between the BCG and cluster center are $(0.20 \pm 0.01)r_{200m}$ and $(0.22 \pm 0.01)r_{200m}$ for the early- and late-analog samples, respectively.

Finally, the median magnitude gaps are found to be $\Delta 2 = 0.42 \pm 0.01$ ($\Delta 2 = 0.99 \pm 0.01$) for the 14 early-forming analog cluster samples (with a scatter of 0.05), while those for the late-forming analog ones are $\Delta 2 = 0.42 \pm 0.01$ ($\Delta 2 = 0.97 \pm 0.01$), also with a scatter of 0.05. These smaller magnitude gaps, as compared to those of our $z_{\text{20ex,Mr}}$ set (e.g., the values reported in the penultimate paragraph of Section 3.3), provide further support that the formation time derived from Elucid is informative.

4. Discussion

As our $z_{\text{20ex,Mr}}$ set is constructed using the halo formation time from *Elucid*, some readers may wonder whether we are measuring the AB signal in *Elucid* or in the real Universe. A related concern is, would it be circular to use a CDM-based simulation (which must contain the AB signal) to infer the halo formation time, and in turn use it to construct the cluster samples.

In simplest terms, we can recast our study as a hypothesis test, with the ultimate goal of ruling out the null hypothesis that the real Universe has no AB. Thinking of this problem in a Bayesian way, we have

$$P(\text{AB} | \text{data}, \text{Elucid}) \propto P(\text{data} | \text{AB}, \text{Elucid})P(\text{AB}|\text{Elucid})$$

where "AB" stands for "AB exists in the Universe", "data" refers to properties of our $z_{\text{20ex,Mr}}$ set (including WL mass, clustering measurements, as well as cluster galaxy properties), and the prior $P(\text{AB}|\text{Elucid})$ should be taken to be uninformative, say 50% chance for $P(\text{AB}|\text{Elucid}) = 1$ or 0. As for the likelihood $P(\text{data}|\text{AB}, \text{Elucid})$, logically, we can consider four general cases that result from the combination of (1) whether there is AB in the real Universe (which is assumed to be described by the CDM model), and (2) whether there is AB in *Elucid*, and compare our observational findings (presented in Sections 3.3 & 3.4) with the predicted observational results to deduce in which of the four cases we are in.

First of all, we do see a strong signal of AB in *Elucid* (i.e., the open triangles in the lower right panel of Fig. 2), so we can rule out two of the four possible cases. Then the main issue is to determine whether our data also requires AB to be present in the real Universe. To answer this question, let us refer to Table 3 where in the first column we list four observables we have presented in Section 3.3 and in subsequent columns we list in turn the expected behavior when there is AB in the Universe, our observed trends, the behavior when we are seeing an AB-like signal simply because of any potential circularity in our methodology, and the behavior when such a signal is simply due to an incorrect cluster mass estimation (that is, for example, the mass of our late-forming cluster sample is underestimated by at least 2$,\sigma$, which has a 2.3% chance to occur; please see Section 3.2).

3 Given that AB is an important feature of CDM, this phenomenon should naturally exist in the Universe. One may then ask what the point is of carrying out the analysis presented in this paper. Firstly, having a measurement that is consistent with a theoretical prediction is an important step in scientific analyses. A prime example is the black hole shadow images obtained by the Even Horizon Telescope collaboration (Event Horizon Telescope Collaboration et al. 2019; Akkiyama et al. 2022), which spectacularly confirm the predictions of General Relativity. Secondly, to cite one of the most famous experiments in cosmology, to detect the baryon acoustic oscillation (BAO) signal, one needs to first assume the CDM framework is correct, then proceed to convert the BAO scale from an angular to a physical one (e.g., Eisenstein et al. 2005).
Table 3. Expected observational signatures of various possibilities of AB detection

<table>
<thead>
<tr>
<th>Observable</th>
<th>True AB</th>
<th>Observed Trend</th>
<th>Spurious AB due to Circularity</th>
<th>Spurious AB due to Incorrect Cluster Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration</td>
<td>$c_e > c_l$</td>
<td>$c_e > c_l$</td>
<td>$c_e \approx c_l$</td>
<td>$c_e \approx c_l$</td>
</tr>
<tr>
<td>Galaxy Number</td>
<td>$N_e < N_l$</td>
<td>$N_e \leq N_l$</td>
<td>$N_e \leq N_l$</td>
<td>$N_e \leq N_l$</td>
</tr>
<tr>
<td>BCG Offset</td>
<td>$d_e \leq d_l$</td>
<td>$d_e \leq d_l$</td>
<td>$d_e > d_l$</td>
<td>$d_e > d_l$</td>
</tr>
<tr>
<td>Magnitude Gap</td>
<td>$\Delta_e > \Delta_l$</td>
<td>$\Delta_e = \Delta_l$</td>
<td>$\Delta_e > \Delta_l$</td>
<td>$\Delta_e > \Delta_l$</td>
</tr>
</tbody>
</table>

In a Universe where there is AB, we expect that the early-forming clusters to have a higher mass concentration than their late-forming counterparts, when their masses are the same. Given that our WL measurements could not provide adequate constraints (Fig. 3), we have to resort to the spatial distribution of cluster galaxies. Assuming the red galaxy distribution follows that of the matter (e.g., Adhikari et al. 2021), we then expect to have $c_e > c_l$. As for the number of member galaxies N, it is expected that N in early-forming clusters should be smaller than that in the late-forming ones (see our argument at the end of the first paragraph in Section 3.3), resulting in $N_e < N_l$. Similarly, in older clusters, the BCGs are expected to be closer to the center (hence $d_e < d_l$), and have a larger magnitude gap (yielding $\Delta_e > \Delta_l$). These expectations are all consistent with what we have observed with the $z_{20ex,Mz}$ set, shown in the third column.

In the fourth column, we show the expectation for the case where we are simply measuring AB in Elucid, and that AB does not exist in the real Universe (let us for the moment allow for such an inconsistency with CDM). By “circularity”, we mean that, given the density field Elucid was tasked to reconstruct is based on the groups and clusters from the Y07 catalog, the Elucid halos are naturally expected to be located in large-scale environments (then indirectly, bias) similar to the real clusters used in our analysis. In such a case, the formation time indicator we use (z_{20}) is only meaningful for the Elucid halos and has nothing to do with the real clusters. For all four observables, they should therefore be similar (or identical) for the early- and late-forming clusters, since they have similar (or identical) masses. The different behavior of the observables from the expectation shown in the second column provides evidence against the notion that we are measuring AB in the simulation. It is important to note that our cross-correlation function measurements rely primarily on the spatial distribution of the SDSS main galaxy sample, which is far below the spatial resolution of Elucid, so our measurements are not purely based on Elucid. Another point worth noting is that the halo mass estimates from Y07 may not be accurate even in the cluster regime. This is not only reflected in the late-forming sample of the $z_{20ex,Mz}$ set, but also the wide range of halo masses of our control samples. This is to highlight that the halo mass distribution from the $z_{20ex,Mz}$ set is consistent with the expected halo mass distribution from the $z_{20ex,Mz}$ set. It is thus highly nontrivial that z_{20} from Elucid can be used to split the real clusters into early- and late-forming ones that exhibit an AB-like signature.

Finally, in the fifth column, we consider the case where an AB-like signal arises due to a significant underestimation of the mass of our late-forming cluster sample. Given the weak-to-no dependence on cluster mass of the observed total galaxy concentration (e.g., Lin et al. 2004; Hennig et al. 2017), we thus expect $c_e \approx c_l$ for the cluster mass range we consider (i.e., from ≈ 0.9 to $2 \times 10^{14} h^{-1} M_{\odot}$). For the galaxy number, given the observed trend that $N \propto M^{0.3}$ with a scatter of about 30% (Lin et al. 2004), it is expected that $N_e \leq N_l$, although it could easily be $N_e > N_l$ given the scatter in the N-M relation. We caution that the concentration and galaxy number derived from photometric galaxy data could suffer from projection effects (caused by large-scale structures along the line of sight; e.g., Zu et al. 2017; Sunayama & More 2019), and therefore one has to be careful in interpreting these results. We note that our cluster samples are based on spectroscopic redshifts, so the identification of clusters (and their member galaxies) is not affected by projection effects.

For the BCG offset, from our control sample that contains 28 cluster samples with WL mass measurements, we see a clear trend of a decreasing offset with increasing cluster mass, and thus $d_e > d_l$ is expected. Finally, the magnitude gap is found to decrease with cluster mass (e.g., Yang et al. 2008; Lin et al. 2010), so we have $\Delta_e > \Delta_l$. Comparing the expectations shown in this column with those shown in the second column, we see that the main distinction comes from the BCG offset. Given that the mean values of the observed d_e and d_l of the $z_{20ex,Mz}$ set differs at 3σ level, and are far smaller than those of the control samples, we believe this feature is robust; taking into account the observed behavior of the galaxy concentration and galaxy number, it is unlikely that what we have observed is due to incorrect mass estimation. It is worth noting that none of the 14 pairs of control samples passes these observational tests. Finally, we recall that even if the mean cluster mass of our late-forming sample is severely underestimated, the difference in the bias is still far from sufficient to explain the large difference in the large-scale biases of the early- and late-forming samples (Section 3.2), strongly hinting at the presence of some AB-like mechanisms at work.

In conclusion, although we construct the $z_{20ex,Mz}$ set using the simulation history from a constrained simulation, not directly observed halo properties, seeing both the AB-like large-scale bias ratio and the consistent trends of cluster galaxy properties requires AB to not only exist in Elucid but also in the real Universe.

5. Summary and prospects

Using a novel approach of combining a constrained simulation of the local universe Elucid with a sample of galaxy clusters from SDSS, we have constructed a pair of early- and late-forming cluster samples. The formation time indicator z_{20} of the clusters (sensible models of structure formation): the time continuity of the density field would be broken, and the spatial power spectrum and high-order statistics would be incorrect at any epochs other than $z = 0$.

Article number, page 8 of 10
is derived from their counterpart massive halos found in *Elucid*. While WL-based cluster mass estimates indicate the two samples are comparable (within 1σ), their large-scale biases differ significantly, indicates the presence of AB (with the correct sign that older clusters are less biased than the younger ones). Furthermore, the properties of the galaxy populations of the two samples are also consistent with the expectation of the age difference: the early-forming clusters have a more concentrated red galaxy surface density profile, much smaller number of member galaxies, smaller offset of BCGs from cluster center, and a larger magnitude gap, compared to the late-forming ones. The signal is found to be consistent with the theoretical prediction of ΛCDM, which is remarkable given that there is no guarantee that the formation time of halos from *Elucid* would match that of the real clusters. In the unlikely (∼ 2.5% chance) case where the differences in clustering measurements are largely due to the cluster mass difference, and take into account of possible uncertainties in the theoretical predictions of large-scale bias, our cluster samples still exhibit an AB-like signal at ∼ 3σ level.

Our analysis can also be regarded as a hypothesis test – based on the extensive discussion presented in Section 6 we can rule out the null hypothesis that the real Universe has no AB at 99.7% confidence level. Our 2ex0exMz set would be invaluable for future studies of aspects related to AB, such as the measurements of the splashback radius (e.g., More et al. 2016), pressure profile of the intracluster medium, the BCG-to-total stellar mass ratio, etc. Furthermore, the member galaxy properties of our cluster samples can serve as foundations for a natural extension of our pursuit toward a more empirical detection of AB, namely to use samples can serve as foundations for a natural extension of our pursuit toward a more empirical detection of AB, namely to use large

References
Contreras, S., Chaves-Montero, J., Zennaro, M., et al., 2021, MRAS, 507, 3412
Jasche, J., & Wandelt, B. D. 2013, MRAS, 432, 894
Mandelbaum, R., Hirata, C. M., Leauthaud, A., Massey, R. J., & Rhodes, J. 2012, MRAS, 420, 1518
Mandelbaum, R., Hirata, C. M., Seljak, U. et al., 2005, MRAS, 361, 1287
Mansfield, P., & Kravtsov, A. V. 2020, MRAS, 493, 4763
Mao, Y.-Y., Zentner, A. R., & Wechsler, R. H. 2018, MRAS, 474, 5143
Mansfield, P., & Kravtsov, A. V. 2020, MRAS, 493, 4763
Mao, Y.-Y., Zentner, A. R., & Wechsler, R. H. 2018, MRAS, 474, 5143
Hua Chu. YTL is supported by the National Science and Technology Council of Taiwan under grants MOST 111-2112-M-001-043, MOST 110-2112-M-001-004, and MOST 109-2112-M-001-005, and a Career Development Award from the National Science Foundation (AS-CDM-1069701). HM acknowledges support by the Korea Astronomy and Space Science Institute (KASI). The splashback radius (e.g., More et al. 2016), pressure profile of the intracluster medium, the BCG-to-total stellar mass ratio, etc. Furthermore, the member galaxy properties of our cluster samples can serve as foundations for a natural extension of our pursuit toward a more empirical detection of AB, namely to use large

Acknowledgements. We are grateful to Huiyuan Wang for providing data from the *Elucid* simulation, and Rachel Mandelbaum for sharing the SDSS shape catalog. We thank an anonymous referee for comments that have improved the clarity of the paper. We appreciate helpful comments from Ut-Li Pen, Zheng Zheng, Yao-Yuan Mao, Huiyuan Wang, Xiaohu Yang, Houjun Mo, Eiichiro Komatsu, Yun-Chi Chen, Benedikt Diemer, Andrey Kravtsov, Neal Dalal, and You-

https://gaz.sjtu.edu.cn/data/ELUCID.html 6

Article number, page 9 of 10