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ABSTRACT

Context. The diffuse TeV gamma-ray emission detected in the inner ∼100 pc of the Galactic center suggests the existence of a
central cosmic-ray accelerator reaching ∼PeV energies. It is interesting to associate this so-called “PeVatron” with the point source
HESS J1745−290, whose position is consistent with that of the central supermassive black hole Sgr A*. However, the point source
shows a spectral break at a few TeV that is not shown by the diffuse emission, challenging this association.
Aims. We seek to build an emission model for the point source that is consistent with both emissions being produced by the same
population of relativistic protons continuously injected with a power-law spectrum up to ∼PeV energies near Sgr A*.
Methods. In our model, we assume that the point source is produced by hadronic collisions between the cosmic rays and the gas in
the accretion flow of Sgr A*. The cosmic-ray density is calculated taking into consideration cosmic-ray transport due to diffusion and
advection, while the properties of the gas are obtained from previous numerical simulations of the accretion flow.
Results. Our model succeeds in explaining both the point source and the diffuse emission with the same cosmic rays injected in the
vicinity of Sgr A*, as long as the coherence length of the magnetic turbulence in the accretion flow is lc ∼ (1 − 3) × 1014 cm. The
spectral break of the point source appears naturally due to an energy-dependent transition in the way the cosmic rays diffuse within
the inner ∼0.1 pc of the accretion flow (where most of the emission is produced).
Conclusions. Our model supports the idea that Sgr A* can be a PeVatron, whose accelerated cosmic rays give rise to both the point
source and the diffuse emission. Future TeV telescopes such as CTAO will be able to test this model.
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1. Introduction

The very-high energy (VHE) gamma-ray source
HESS J1745−290, located at the Galactic center, has been
observed by several imaging atmospheric Cherenkov tele-
scopes (IACTs), such as CANGAROO, VERITAS, H.E.S.S.,
and MAGIC (Tsuchiya et al. 2004; Kosack et al. 2004;
Aharonian et al. 2004; Albert et al. 2006; HESS Collaboration
2016, 2018; MAGIC Collaboration 2020; Adams et al. 2021).
This source is usually characterized by a hard power-law
spectrum with a photon index of ∼2.1 and an exponential cutoff
at ∼10 TeV. However, its spectral shape is also compatible
with a broken power law with the break energy at a few TeV
(Aharonian et al. 2009; Adams et al. 2021)1.

Although several models have been proposed to explain
this source, HESS J1745−290 has not yet been associated with
a particular astrophysical object. This is mainly because of
the limited ∼3′ angular resolution of current IACTs, which
translates to ∼10 pc in projected distance from the Galac-
tic center (Funk & Hinton 2008). However, some processes
have been proposed: (1) dark matter annihilation in a den-
sity cusp at the Galactic center (Hooper et al. 2004; Profumo
2005; Aharonian et al. 2006; Cembranos et al. 2012), (2) inverse
Compton emission by relativistic electrons in the pulsar wind

? Corresponding author; cmuena@ing.uchile.cl
1 We confirm this point in Appendix A, using up-to-date H.E.S.S. data
from HESS Collaboration (2016).

nebula G359.95-0.04 (Hinton & Aharonian 2007; Wang et al.
2006), and (3) the decay of neutral pions produced by hadronic
collisions of cosmic rays (CRs) accelerated by the central super-
massive black hole Sagittarius A* (Sgr A*) with background
protons in the interstellar gas (Aharonian & Neronov 2005;
Chernyakova et al. 2011; Rodríguez-Ramírez et al. 2019).

In the present work we focus on the last scenario. Although
Sgr A* is today a relatively quiescent black hole, it has most
likely gone through significantly more active phases in the past.
This is suggested by the presence of the Fermi bubbles, which
are plausibly caused by intense accretion activity some ∼106 −

107 years ago (Su et al. 2010). Also, the observations of X-ray
echoes coming from dense gas in the Galactic center region sug-
gest an intense flaring activity in the past few hundred years
(Clavel et al. 2013; Marin et al. 2023). Thus, assuming some
efficient accretion-driven CR acceleration mechanism, Sgr A*
may be powering HESS J1745−290 as its accelerated CRs prop-
agate away from the Galactic center and interact hadronically
with the surrounding gas.

The potentially important role of Sgr A* in producing the
TeV emission of HESS J1745−290 is also supported by the dif-
fuse VHE gamma-ray emission from the central molecular zone
(CMZ) located in the inner few hundred parsecs of the Galaxy
(HESS Collaboration 2016). This emission is correlated with the
density of molecular gas, suggesting hadronic emission due to
CR collisions with background protons. The CR density profile
inferred from this assumption is consistent with a 1/r depen-
dence (where r is the distance to the Galactic center), supporting
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the radial diffusion of CRs continuously injected from the inner
tens of parsecs around the Galactic center2. The gamma-ray
spectrum of this emission is characterized by a single power law
with an index of ∼2.3 up to tens of TeV, without a statistically
significant spectral cutoff, as shown by H.E.S.S. and VERITAS
(HESS Collaboration 2016; Adams et al. 2021), although some
controversy remains due to indications of a spectral turnover
around 20 TeV reported by MAGIC (MAGIC Collaboration
2020). The possible lack of a cutoff in the diffuse CMZ emis-
sion is interesting, because it allows the possibility of the exis-
tence of a PeV proton accelerator, or “PeVatron”, to be present
within the inner tens of parsecs of the Galaxy. These obser-
vations have thus been considered as strong indications that
Sgr A* is operating as a PeVatron (HESS Collaboration 2016),
although contributions from other possible CR acceleration sys-
tems have also been considered. One possible contribution
includes CRs accelerated in the shock fronts of the supernova
remnants Sgr A East (HESS Collaboration 2016; Scherer et al.
2022, 2023) and G0.9+01 (Dörner et al. 2024). Another possi-
bility is related to the multiple shocks formed by stellar winds in
the Nuclear, Arches, and Quintuplet clusters of young massive
stars (Aharonian et al. 2019; Scherer et al. 2022, 2023), with the
Arches and Quintuplet clusters being located at a projected dis-
tance of ∼25 pc from Sgr A*, while the dynamic center of the
Nuclear cluster coincides with it (Hosek et al. 2022).

Even though the scenario in which Sgr A* drives the emis-
sions of both HESS J1745−290 and the CMZ is appealing, one
of its main challenges is the clear presence of a spectral turnover
(either an exponential cutoff or a spectral break) at a few to ∼10
TeV in HESS J1745−290, which appears to be absent from the
CMZ emission. One possible way to alleviate this discrepancy
is by invoking the absorption of &10 TeV gamma rays from
HESS J1745−290 by e+e− pair production due to their inter-
action with the interstellar radiation field (ISRF). Although this
absorption is not expected to be important given the known ISRF
in the Galactic center (Zhang et al. 2006; Aharonian et al. 2009),
its effect may become significant due to clumpiness of the inter-
stellar medium (Guo et al. 2017). Another possibility is simply a
relatively recent decrease in the power of CR injection (Liu et al.
2016), which would mean that the diffuse emission is powered
by CRs with up to ∼ PeV energies accelerated by Sgr A* &104

years ago, and that HESS J1745−290 is associated with a less
efficient acceleration period over the last ∼10 − 100 years.

In this paper, we present an alternative scenario, in which the
spectral turnover of HESS J1745−290 is caused by an energy-
dependent transition in the diffusion regime of CRs injected
by Sgr A*. In our model, HESS J1745−290 is caused by CRs
experiencing hadronic collisions as they diffuse out through the
accretion flow of Sgr A* (r . 0.1 pc). Although the injected
CRs in our proposed scenario have an energy distribution given
by a single power law up to ∼ PeV energies, the transition in
their diffusion regime significantly reduces their number density
within the accretion flow for energies of &20 TeV. This density
reduction in turn imprints a break in the gamma-ray emission
spectrum at a few TeV.

Our proposed model requires three basic ingredients:
The first ingredient corresponds to the radial profiles for

the density, velocity, and magnetic field strength in the gas
at r . 1 pc. The gas has been proposed to mainly come

2 HESS Collaboration (2016) assumed isotropic diffusion. Alterna-
tive models with anisotropic diffusion have recently been explored by
Dörner et al. (2024).

from the wind of ∼ 30 Wolf-Rayet (WR) stars, which belong
to the Nuclear cluster and orbit around Sgr A* at a distance
of ∼0.1 − 1 pc (Cuadra et al. 2006, 2007). These profiles are
obtained from previously reported hydrodynamic (Ressler et al.
2018) and magnetohydrodynamic (MHD; Ressler et al. 2020a)
simulations of the Sgr A* accretion flow. Interestingly, despite
the relatively large magnetic fields used for the stellar winds
in the MHD studies, their obtained angle-averaged gas density,
temperature, and velocity are largely insensitive to the assumed
magnetic field strength and are essentially the same as those
found in the hydrodynamic simulations (Ressler et al. 2020a).
Because of this, below we refer to both hydrodynamic and MHD
results when describing the assumed gas behavior in our model.

A second ingredient is given by the diffusion and advec-
tion properties of the CRs within the MHD turbulence in the
r . 1 pc region. While the properties of the gas flow are
obtained from previous hydrodynamic and MHD simulations,
the CR diffusion properties are inferred from previous studies
of test-particle CRs propagating in synthetic turbulence, which
we assume to be strong (i.e., the mean large-scale magnetic
field is much weaker than the fluctuating field), isotropic, and
with a Kolmogorov spectrum (Subedi et al. 2017; Mertsch 2020;
Dundovic et al. 2020). One of the main assumptions made in this
work is that the mean field is much weaker than the turbulent
field, which allows us to neglect a possible anisotropy in the CR
diffusion, as has been found in test-particle simulations (see, e.g.,
Reichherzer et al. 2022a,b, 2023).

Finally, we assume a flux of centrally injected CRs whose
spectral distribution corresponds to a single power law whose
index, normalization, and maximum energy (reaching ∼PeV
energies) are consistent with estimates obtained from the diffu-
sive CMZ emission (HESS Collaboration 2016).

Most parameters in our model are thus relatively well con-
strained by previously reported hydrodynamic and MHD sim-
ulations of the Sgr A* accretion flow, as well as by the spectral
properties of the CMZ emission. The only exception is the coher-
ence length lc of the MHD turbulence in the accretion flow,
which, despite playing a critical role in the diffusion properties
of the CRs, is a poorly known parameter of our model. Inter-
estingly, we find that by choosing lc ∼ (1 − 3) × 1014 cm,
our model is capable of matching the main spectral features
of HESS J1745−290 fairly well, including its spectral turnover,
while being consistent with the injected CR spectrum required
to reproduce the CMZ emission.

We note that, in our model, the CR injection occurs within
a radius of r . 10Rg, where Rg is the gravitational radius of the
black hole (or Schwarzschild radius, which in the case of Sgr A*
is Rg ≈ 1012 cm). This is justified by the fact that electron accel-
eration events in Sgr A* are routinely inferred in association
with near-infrared and X-ray flares (likely powered by reconnec-
tion events; Ponti et al. 2017; Subroweit et al. 2020; Scepi et al.
2022), whose emission regions have been located at a few Rg

from the central black hole (GRAVITY Collaboration 2018).
Although this injection region may itself be the source of signif-
icant gamma-ray emission (Rodríguez-Ramírez et al. 2019), our
work specifically focuses on the emission produced at r & 10Rg

(which, as we show, is dominated by r � 10Rg).
Our paper is organized as follows. In Sect. 2, we calculate the

CR density as a function of radius and energy within the accre-
tion flow of Sgr A*, considering the diffusion properties of CRs
in that region, as well as the velocity profile of the background
gas. In Sect. 3, we calculate the gamma-ray emission resulting
from the hadronic interaction of the CRs with the background
gas. In Sect. 4, we verify the consistency of the assumptions

A216, page 2 of 17



Muena, C., et al.: A&A, 689, A216 (2024)

made in our calculations. In Sect. 5, we provide a discussion
regarding CR diffusion timescales and how they could be used
to observationally test our model. Finally, our conclusions are
presented in Sect. 6.

2. Cosmic ray density model

In this work, we assume that CRs are ultrarelativistic protons
being steadily injected near the event horizon of Sgr A* and
propagate to larger radii r through its accretion flow. This accre-
tion flow originates mainly from the gas being injected by a clus-
ter of WR stars orbiting at ∼0.1−1 pc from Sgr A* (Cuadra et al.
2006, 2007). The CR transport equation can be written as (e.g.,
Strong et al. 2007)

∂

∂t

(
dnCR

dE
(E, r, t)

)
= S (E, r, t) + ∇ ·

{
D(E, r)∇

(
dnCR(E, r, t)

dE

)
(1)

− u(r, t)
dnCR(E, r, t)

dE

}
, (2)

where dnCR/dE(E, r, t) is the CR density per unit energy E as a
function of position r and time t. The term S (E, r, t) is the source
term that quantifies CR injection, D(E, r) is the CR diffusion
coefficient and u(r, t) is the gas velocity, which allows advection
to contribute to CR propagation. In Eq. 1 we neglect possible
CR energy gains (e.g., due to stochastic acceleration) and energy
losses (we verified that energy losses are indeed small by com-
paring the CR diffusion times found in Sect. 5 with the cooling
times due to hadronic CR interactions). For simplicity, and as a
first approach to this problem, in this work we solve Eq. 1 assum-
ing a stationary and spherically symmetric CR density model.
In what follows, we describe the parameters and assumptions
regarding CR injection and transport.

2.1. Cosmic-ray injection

In our model, we assume that the CR injection occurs only
within a radius of r < 10Rg, and solve for dnCR/dE(E, r) at
r > 10Rg. Thus, our calculations do not require the exact form
of the source term S (E, r) in Eq. 1, but only the total number
of injected CRs per unit energy E and per unit time t within the
injection region, which is given by

dN/dEdt(E) = 4π
∫ 10Rg

0
dr r2S (E, r). (3)

For this, we assume a power-law dependence of

dN
dEdt

(E) = 2.3 × 1036 f (q, Emax) Q̂
( E
1 TeV

)−q

erg−1s−1, (4)

for E smaller than a maximum energy Emax, and dN/(dEdt) = 0
otherwise. Here, q is the spectral index of the injected CR spec-
trum, Q̂ is a parameter that quantifies the injection power, and

f (q, Emax) =
2 − q(

Emax
1 TeV

)2−q
− 102−q

if q , 2, (5)

while, if q = 2,

f (q = 2, Emax) =

[
ln

( Emax

1 TeV

)
− ln(10)

]−1

, (6)

and so the CR injection power for E ≥ 10 TeV is

Q(E > 10 TeV) = 6 × 1036 Q̂ erg s−1. (7)

2.2. Cosmic-ray transport

As our model is stationary and assumes spherical symmetry,
integrating Eq. 1 over a spherical volume of radius r, and consid-
ering the definition of dN/dEdt(E) provided by Eq. 3, we obtain

dN
dEdt

(E) = 4πr2
(
vgas(r)

dnCR

dE
(E, r) − D(E, r)

∂

∂r

(
dnCR

dE
(E, r)

) )
,

(8)

where vgas(r) is the angle-averaged gas velocity in the radial
direction at a radius r. We see that both diffusion and advection
are expected to contribute to CR propagation. However, below
we show that, in our model, diffusion is the dominant process at
r . 0.07 pc for all energies of interest, while for r & 0.07 pc
advection dominates for CRs with sufficiently low energies.
Thus, as an approximation, in our calculations of dnCR/dE(E, r)
from Eq. (8) we impose that, at a given radius r and energy E,
CRs are transported entirely by one process, either diffusion or
advection (i.e., keeping only one of the two terms on the right-
hand side of Eq. (8)), depending on which one is more efficient.
This is done by comparing the radial gas velocity vgas to the dif-
fusion velocity,

vdiff(E, r) ≡
D(r, E)

r
, (9)

and neglecting the diffusion (advection) term on the right-hand
side of Eq. (8) if vgas (vdiff) is larger3. We note that CRs can
also be advected by the turbulent motions of the gas, giving
rise to turbulent diffusion. We show below that this effect can
be neglected for the cases of interest (see Sect. 4), and so CR
transport in our model is determined by the properties of D(E, r)
and vgas(r).

2.2.1. Diffusion model

In order to model D(E, r), we use results from previous test parti-
cle simulations of CRs propagating in synthetic MHD turbulence
(i.e., magnetostatic turbulence with a prespecified spectrum),
which we assume to be strong in the sense that the rms mag-
netic field magnitude is much larger than any large-scale mean
field, is isotropic, and has a Kolmogorov spectrum (Subedi et al.
2017; Mertsch 2020; Dundovic et al. 2020). This turbulence is
characterized by a coherence length lc, which is the spatial scale
within which most of the turbulent magnetic energy is contained
(Fleishman & Toptygin 2013). These simulations identify two
main diffusion regimes, which are also consistent with theoret-
ical diffusion models (Aloisio & Berezinsky 2004; Subedi et al.
2017). The “high-energy diffusion”(HED) regime occurs when
the energy of the CRs is such that their Larmor radii RL sat-
isfy RL � lc (RL = E/eB, where e is the proton electric charge
and B is the magnitude of the magnetic field), while the “low-
energy diffusion”(LED) regime occurs when RL � lc. We obtain
expressions for the effective mean free path λmfp of CRs in these
two diffusion regimes from Subedi et al. (2017) (where a bro-
ken power-law shape is assumed for the turbulence spectrum).
Figure 1 of Subedi et al. (2017) shows that, for RL � lc (LED),
λmfp is given by

λmfp ≈ 0.4 l2/3c R1/3
L , (10)

3 Comparing vgas and vdiff is equivalent to comparing the corresponding
advective and diffusive escape times of CRs from a region of size r,
which are given by τadv = r/vgas and τdiff = r/vdiff , respectively.

A216, page 3 of 17



Muena, C., et al.: A&A, 689, A216 (2024)

while for RL � lc (HED),

λmfp ≈ 2 l−1
c R2

L, (11)

with a smooth transition for RL ∼ lc. (In Appendix B we give
heuristic derivations for the dependence on lc and RL in these two
limiting regimes.) We note that, as Eqs. 10 and 11 are approx-
imate expressions obtained from Fig. 1 of Subedi et al. (2017),
their normalizations should only be considered to have an accu-
racy at the ∼10% level. Another approximation is that, in our
calculations, the transition in the λmfp behavior at RL ∼ lc is sat-
isfied by assuming

λmfp =

{
0.4 l2/3c R1/3

L for RL ≤ 0.38 lc,
2 l−1

c R2
L for RL > 0.38 lc.

(12)

Thus, in order to obtain D(E, r) = λmfp(E, r)c/3 (where c is the
speed of light), we need an expression for the rms magnitude of
the magnetic field B as a function of r. Based on the MHD simu-
lations of the Sgr A* accretion flow of Ressler et al. (2020a), we
assume it to have a power-law profile,

B(r) = 10 B̂
(

r
10Rg

)−n

G, (13)

where n ≈ 1, while B̂ is a factor of order unity, and is relatively
independent of the conditions assumed for the wind of the WR
stars. From this, we obtain a space- and energy-dependent Lar-
mor radius of

RL ≈ 3.3 × 108 B̂−1 E
TeV

(
r

10Rg

)n

cm. (14)

In contrast, the value of the coherence length lc in the accretion
flow is highly uncertain. In order to model the possible radial
dependence of this parameter, we also assume a power-law shape
for it, with

lc(r) = 1014 l̂c

(
r

0.07 pc

)m

cm, (15)

where l̂c and m are free parameters of our model.
Thus, the diffusion coefficient in the LED regime, RL � lc,

is

DLED(E, r) = 6 × 1021 (2.1 × 104)−2m/3 l̂2/3c B̂−1/3

×

( E
1TeV

)1/3 (
r

10Rg

) 1
3 (n+2m)

cm2s−1,
(16)

while in the HED regime, RL � lc,

DHED(E, r) = 2 × 1013 (2.1 × 104)m l̂−1
c B̂−2

×

( E
1TeV

)2 (
r

10Rg

)2n−m

cm2s−1.
(17)

2.2.2. Advection model

In order to model vgas(r), we need to characterize the gas dynam-
ics within the Sgr A* accretion flow. For this, we use the hydro-
dynamic simulations presented by Ressler et al. (2018), which
assume that the gas is mainly provided by the wind of a cluster
of WR stars orbiting at 0.1 − 1 pc from Sgr A*. Interestingly,
these simulations show no significant differences with the MHD
simulations of (Ressler et al. 2020a) when angle-averaged quan-
tities are considered. For simplicity, we assume that this gas is

a plasma composed of electrons and protons of equal number
density ne(r) = np(r) = ngas(r). The profile of the gas density
ngas is obtained from Fig. 11 of Ressler et al. (2018), which pro-
vides quantities averaged over angle and time (over the 100 years
previous to the present day). This density profile can be approx-
imated by4

ngas(r) =

25
(

r
0.4 pc

)−1
cm−3 if r ≤ 0.4 pc,

25
(

r
0.4 pc

)−2
cm−3 if r > 0.4 pc.

(18)

We note that, according to Fig. 11 of Ressler et al. 2018,
the ngas(r) profile at 0.07 pc . r . 0.4 pc is steeper than
ngas(r) ∝ r−1. However, we show in Sect. 3.1 that the gamma-
ray emission from this region is expected to be .20−30% of the
total emission at all energies. Therefore, as a reasonable approx-
imation, we use Eq. 18 to describe ngas(r) at all radii smaller than
0.4 pc.

Regarding the gas velocity, Ressler et al. (2018) identify four
regions within the accretion flow:
Region I: This is the outflow-dominated region defined by r >
0.4 pc. Here, the gas moves away from the Galactic center and
vgas(r) is essentially given by the speed of the WR star winds.
Region II: Located at 0.07 pc < r < 0.4 pc, this region corre-
sponds to the “feeding” region, where most of the gas injection
from the WR star winds occurs, and in which the gas motion
predominantly points away from the Galactic center.
Region III: Corresponds to a “stagnation” region at 0.01pc < r <
0.07 pc, which is characterized by inflows and outflows of gas,
with the net mass-accretion rate nearly vanishing.
Region IV: Corresponds to an inflow-dominated region at r <
0.01 pc, where the mass-accretion rate Ṁ is roughly constant.

In region IV, we consider a constant mass-accretion rate Ṁ ≈
10−8M�/yr (Ressler et al. 2020b; Dexter et al. 2020), with which
we find that

vgas(r) = −
Ṁ

4πr2ngas(r)mp

≈ −3 × 104
(

r
0.01pc

)−1

cm/s, (19)

where mp is the proton mass.
In region III, the average radial velocity of the gas tends to

cancel out, and therefore CR transport should not be significantly
affected by advection. In what follows, we neglect the effect of
vgas(r) for regions III and IV, for which we assume that CR trans-
port is dominated by diffusion. The validity of this assumption is
verified in Sect. 4.

In regions I and II (r > 0.07 pc), we can estimate vgas from
Fig. 18 in Ressler et al. (2018), which can be approximated by

vgas(r) ≈
{

700(r/0.4pc) km/s for 0.07 pc < r < 0.4 pc
700 km/s for r > 0.4 pc.

(20)

In this case, vgas dominates CR transport for sufficiently low
energies, while diffusion dominates for higher-energy particles.
Thus, for 0.07 pc < r < 0.4 pc, we consider diffusive trans-
port at energies for which vdiff > vgas, and advective transport
in the opposite case. For simplicity, at r > 0.4 pc, we assume the
same transport mechanism that dominates at r = 0.4 pc, which,
depending on E, could either be HED or advection. As discussed
in Sect. 4.2, this should not affect our main results.
4 The first of these relations is nearly identical to that inferred
by Eatough et al. (2013) from the X-ray observations reported by
Muno et al. (2004).
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2.3. Previous constraints on parameters

As our purpose is to build a model for the point source
HESS J1745−290 that is compatible with the diffuse emis-
sion from the CMZ, the injection parameters q, Q̂, and Emax
have to obey restrictions related to the CMZ emission. This
emission has been found to be consistent with a CR proton
spectral index of Γp ≈ 2.3 (HESS Collaboration 2016). This,
however, does not correspond to the index q of the injected
CRs, as the CR spectrum in the CMZ is also affected by the
energy-dependent residence time of the CRs in this region,
which is inversely proportional to the CR diffusion coefficient
in the CMZ, which itself is assumed to have a power-law
shape of DCMZ(E) ∝ Eδ. This implies that Γp = q + δ, with
the value of δ likely between δ ≈ 1/3 and 1/2, as expected
for Kolmogorov and Kraichnan types of magnetic turbulence,
respectively (Aharonian 2004). Thus, a reasonable expecta-
tion for q is ≈2. Also, making different assumptions regard-
ing the magnitude of DCMZ(E), HESS Collaboration (2016) and
Scherer et al. (2022) found the CR injection power for E > 10
TeV to be Q(E > 10 TeV) ≈ 8 × 1037erg s−1 and 3 × 1036erg s−1,
implying Q̂ ≈ 13 and 0.5, respectively. Additionally, the spec-
trum of the diffuse emission restricts the maximum CR energy to
Emax & 1 PeV (HESS Collaboration 2016; Adams et al. 2021).

Further parameter restrictions can be obtained from previous
MHD simulations of the Sgr A* accretion flow. For instance,
Ressler et al. (2018) show that assuming a beta parameter in the
winds of the WR stars βW = 104, the magnetic field near Sgr A*
reaches the value B(r = 10Rg) ≈ 10 G (B̂ ≈ 1), and the param-
eter n (defined in Eq. (13)) is approximately n ≈ 1. In the case
of βW = 102, these latter authors obtain almost the same B̂ ≈ 1,
while B(r = 0.1 pc) is approximately a factor 4 larger than in the
βW = 104 case. For our assumed power-law dependence B ∝ r−n

(Eq. (13)), the latter implies n ≈ 0.9.
Given these considerations, below we restrict our analysis to

cases with B̂ = 1 and q = 2, and consider two possible val-
ues for n, namely n = 1 and 0.9. We show below that, with
these choices, our model can reproduce the main features of the
emission from HESS J1745−290 relatively well if Q̂ ≈ 6 − 13
and Emax & 1 PeV, which respects the restrictions related to the
diffuse CMZ emission provided by HESS Collaboration (2016).
Regarding the more uncertain parameters l̂c and m, we show that
fitting the data of HESS J1745−290 is strongly dependent on l̂c
being in the range of l̂c ≈ 1 − 3 (for n = 1 and 0.9, respectively),
while m must be small (m . 0.3). In other words, the coherence
length lc must depend only weakly on r.

2.4. Cosmic-ray density profiles

Considering our assumptions regarding CR injection and trans-
port described in Sect. 2.1 and Sect. 2.2, we solve Eq. (8) assum-
ing continuity in dnCR/dE at the transition between regions dom-
inated by diffusion and by advection5. Figure 1 shows examples
of the CR density profile for two combinations of parameters
(Cases 2 and 4b in Table 1), where we can identify the three
main transport regimes mentioned above:

(i) Low-energy diffusive (LED) regime: In this region, CR
transport is dominated by diffusion, with λmfp in the RL < 0.38 lc

5 The existence of discontinuities in dnCR/dE as a function of r would
be inconsistent with the presence of diffusion, which is present in all
regions, even in those where advection dominates.

Fig. 1. Cosmic-ray density per unit energy dnCR/dE as a function of
the radial coordinate r (horizontal axis) and the CR energy E (verti-
cal axis) for cases 2 (panel a) and 4b (panel b) specified in Table 1.
The color scale gives log10(E7/3rξdnCR/dE) in cgs units (with ξ = 4/3
in panel a and ξ = 1.3 in panel b), and the dashed lines mark the
boundaries between the three CR transport regimes discussed in the text,
namely the low-energy diffusion (LED), high-energy diffusion (HED),
and advection-dominated (AD) regimes.

regime of Eq. (12). Solving Eq. (8) in that regime, we obtain:

dnCR

dE
(E, r) = 3 (2.1 × 104)2m/3 Q̂ l̂−2/3

c B̂
1
3

f (q, Emax)
1 + 1

3 (n + 2m)

×

( E
1TeV

)−q− 1
3
(

r
10Rg

)−(1+ 1
3 (n+2m))

erg−1cm−3.

(21)

For simplicity, Eq. (21) does not include the terms that ensure
continuity of dnCR/dE at the boundaries between regions dom-
inated by different transport regimes, which are subdominant.
These continuity terms are, however, included in the calculation
shown in Fig. 1 as well as in the gamma-ray emission calcu-
lations shown in Sect. 3. In Appendix C, we provide the full
expression for dnCR/dE in the LED regime, including the bound-
ary terms.

(ii) High-energy diffusive (HED) regime: In this case, CR
transport is also dominated by diffusion, but with λmfp in the
RL > 0.38 lc regime of Eq. (12). In this case, the CR density
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Table 1. Different model parameter combinations considered in this
work. In all cases, B̂ = 1 and q = 2.

Parameters: n m Q̂ l̂c Emax/PeV

Case 1 1 0 7.4 1 3
Case 2 1 0 12.6 3 3
Case 3 1 0 20.2 10 3
Case 4 0.9 0 5.8 1 3
Case 4b 0.9 0 6.2 1.2 3
Case 5 0.9 0 10.4 3 3
Case 6 0.9 0 18.3 10 3
Case 7 1 0.2 11 3 3
Case 8 1 0.4 9 3 3
Case 9 0.9 0.2 5.4 1.2 3
Case 10 0.9 0.4 4.3 1.2 3
Case 11 1 0 10.2 3 1
Case 12 1 0 15.2 3 10

is given by

dnCR

dE
(E, r) = 109 (2.1 × 104)−m Q̂ l̂c B̂2 f (q, Emax)

1 + 2n − m

×

( E
1TeV

)−q−2 (
r

10Rg

)−(1+2n−m)

erg−1cm−3,

(22)

dropping off much faster with increasing r (or increasing E),
as seen in the upper right corner of Fig. 1. (Here, we are also
excluding subdominant terms that ensure continuity of dnCR/dE,
but we provide the full expression in Appendix C.)

(iii) Advection-dominated (AD) regime: In this regime, CR
propagation is dominated by advection, and their density is given
by

dnCR

dE
(E, r) = 3 × 106 Q̂ f (q, Emax)

( E
1TeV

)−q

×

(
r

10Rg

)−3

erg−1cm−3
(23)

for 0.07 pc ≤ r ≤ 0.4 pc, and

dnCR

dE
(E, r) = 21 Q̂ f (q, Emax)

( E
1TeV

)−q

×

(
r

10Rg

)−2

erg−1cm−3
(24)

for r > 0.4 pc, where again in both cases the CR density drops
off much faster with increasing r than in the LED regime, as
seen in the lower right corner of Fig. 1. (No boundary terms are
neglected in Eqs. (23) and (24).)

As seen in Figure 1, high-energy CRs diffusing out from
the central source undergo a transition from the LED regime to
the HED regime at an energy-dependent critical radius rC deter-
mined by the condition RL = 0.38 lc, yielding

rC(E) = 0.07
[
1.3 × 105 l̂c B̂
(2.1 × 104)n

] 1
n−m ( E

TeV

)− 1
n−m

pc, (25)

which is marked by the diagonal dashed lines in the high-energy
part of Figs. 1a and 1b. At lower energies, instead, CRs transit
from the LED regime to the advective regime at a fixed radius
r = 0.07 pc. The energy separating these two types of transition,

EC , is determined by rC(EC) = 0.07 pc (corresponding to the
inner boundary of the feeding region), which yields

EC = 6.2 (2.1 × 104)1−n l̂c B̂ TeV. (26)

Figures 1a and 1b also show that, at energies of E > EC , advec-
tion continues to be dominant over HED for r > 0.07 pc until an
energy E∗ ∼ (2 − 3)Ec, after which HED dominates at r > 0.07
pc. We note that the maximum energy at which advection dom-
inates for r > 0.07 pc is constant in Case 2 (Fig. 1a), but has a
weak dependence on r in Case 4b (Fig. 1b). This is because, in
the range 0.07pc < r < 0.4pc, making vgas(r) equal to vdiff(E, r)
in the HED regime, we obtain

E
TeV

= 15.8 (2.1 × 104)−m/2 l̂1/2c B̂
(

r
10Rg

)1−n+m/2

. (27)

This implies that in Case 2 (n = 1, m = 0), the limit between
the AD and HED regimes is simply given by E = E∗, while
in Case 4b (n = 0.9, m = 0), this energy becomes E ∝ r0.1.
For r > 0.4 pc, we assume, for simplicity, that CR transport is
dominated by the same process that dominates at r = 0.4 pc
(which explains why in Figure 1b the energy that divides the
HED and AD regimes becomes constant at r > 0.4 pc). We show
in Sect. 4.2 that this approximation does not affect our results,
given that emission at r > 0.4 pc is negligible in our model.

3. Gamma-ray emission

Using the CR density determined in Sect. 2, in this section we
calculate the gamma-ray spectrum due to the decay of neutral
pions (π0) produced in collisions between the CRs and the back-
ground gas, both assumed to be composed of protons. Follow-
ing Aharonian (2004), the gamma-ray flux per unit gamma-ray
energy Eγ received at Earth is given by

Φγ(Eγ) =
2c

d2κπ

∫ ∞

Eπ,min

dEπ

σpp(E)√
E2
π − (mπc2)2

×

∫ ∞

rmin

dr r2ngas(r)
dnCR

dE
(E, r),

(28)

where Eπ,min = Eγ + m2
πc

4/4Eγ, E = mpc2 +
Eπ

κπ
, Eπ is the energy

of the neutral pion produced in the collisions, mp and mπ are
the proton and pion masses, κπ ≈ 0.17 is the mean fraction of
the CR kinetic energy transferred to neutral pions in the col-
lisions (Aharonian 2004), d ≈ 8 kpc is the distance between
Sgr A* and the Earth, and rmin is the minimum radius consid-
ered for the emissivity calculation. Unless stated otherwise, we
take rmin = 1013 cm ≈ 10 Rg in all our calculations. The cross-
section for π0 production through proton-proton collisions in a
proton reference frame is given by (Aharonian 2004)

σpp(E) ≈ 4 × 10−26
(
1 + 0.04 ln

E − mpc2

TeV

)
cm2. (29)

As we are interested in very-high-energy protons, with E &
1 TeV, we neglect the proton and pion masses in all calculations.

3.1. Behavior of the gamma-ray spectrum

Figure 2 shows the differential gamma-ray flux as a function
of r and Eγ for Case 2 of Table 1. This flux is clearly in corre-
spondence with the CR density shown in Fig. 1, considering the
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Fig. 2. Differential gamma-ray flux per logarithmic interval of r,
dΦγ/d log10(r), as a function of Eγ and r for Case 2 in Table 1.

Fig. 3. Full and approximate models for the gamma-ray spectrum of
HESS J1745−290 with the parameters of Case 2 of Table 1. The solid
blue line represents the total gamma-ray emission calculated from the
full model. The dashed blue line is the “LED model”, considering only
the emission from CRs in the LED regime. The dashed green line shows
our simplified model, given by Eqs. (30) and (31). The solid and dashed
purple lines represent the contributions from CRs at r > 0.4 pc and
0.07 pc < r < 0.4 pc, respectively. The red dots correspond to the
H.E.S.S. measurements (HESS Collaboration 2016).

approximate energy rescaling Eγ ≈ κπE. The fact that dnCR/dE
drops off more quickly as a function of r in the HED and AD
regimes than in the LED regime show that the gamma-ray flux
is dominated by the CRs in the LED regime for any value of Eγ,
with a maximum around the transition from the LED to the HED
or AD regimes. This means that, in our model, the emission is
dominated by r ∼ 0.07 pc for Eγ . 3 TeV, and by 3 × 10−4 pc
. r . 0.07 pc (equivalent to 103Rg . r . 2 × 105Rg) for 3
TeV . Eγ . 200 TeV. In other words, the gamma-ray emission
should only be significant in the range 103Rg < r < 0.07 pc.
This can be seen from Fig. 3, which shows the total emission
spectrum for Case 2 (blue line) and compares it with the con-
tributions from r > 0.4 pc (solid purple line) and from 0.07 pc
< r < 0.4 pc (dashed purple line). We see that the emissions from
these two ranges of radii only account for at most ∼20 − 30% of

Fig. 4. Gamma-ray spectra for Case 2 of Table 1 for different mini-
mum radii rmin from which the gamma-ray emission is integrated (see
Eq. (28)). The red dots correspond to the H.E.S.S. measurements of the
source HESS J1745−290 (HESS Collaboration 2016).

the total emission at all the energies considered. Furthermore,
one can also see from Fig. 4 that the resulting spectrum (up to
∼100 TeV) for Case 2 is quite insensitive to the choice of rmin as
long as this parameter is in the range ∼(10− 103) Rg, confirming
that most of the emission comes from r & 103Rg.

From Fig. 2 we also see that, for CR energies E > EC , the
LED region is constrained to progressively smaller radii rC(E)
as E increases, thus progressively decreasing the effective emit-
ting volume. This causes a break in the gamma-ray spectrum
(obtained by integrating the flux over the whole volume out to
r → ∞ and shown as the solid blue line in Fig. 3) at Eγ,b ∼ κπEC ,
beyond which it decreases more steeply, as in the observed spec-
trum of HESS J1745−290.

The hypothesis that the gamma-ray spectrum is essentially
determined by the shape of the LED region in Fig. 1 is con-
firmed by recalculating Φ(Eγ) considering only the gamma-ray
emission from CRs in this regime (i.e., setting dnCR/dE = 0
in the HED and AD regimes). This calculation is shown by the
dashed blue line in Fig. 3, which shows a similar broken power-
law behavior as in the full calculation represented by the solid
blue line. Thus, the predicted emission in our model is indeed
determined by the CRs in the LED regime, and its broken power-
law behavior is a consequence of the energy-dependent transi-
tion in the CR diffusion regime at rC(E) for E > EC .

3.2. Simplified model

In order to understand how the main features of the
HESS J1745−290 spectrum restrict our model parameters, it is
useful to provide approximate analytical expressions for our cal-
culated gamma-ray emission. As this emission is dominated by
CRs in the LED regime, it can be approximated by considering
only the contribution from that regime. For further simplicity,
we approximate the CR density in the LED regime by Eq. (21)
(neglecting subdominant terms that ensure continuity with the
other regimes), ignore the (weak) energy-dependence of σpp
by fixing E = 1 TeV in Eq. (29), and integrate Eq. (28) from
Eπ = Eπ,min = Eγ to Eπ,max = +∞ and from r = 0 to r = 0.07 pc
for Eγ < Eγ,b and to r = rC(E) for Eγ > Eγ,b. (We note that
the integral is dominated by the largest radii and the smallest
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Fig. 5. Gamma-ray spectrum for different choices of the parameters n
and l̂c. Panel a: Cases 1 to 3 of Table 1, all with n = 1. Panel b: Cases 4
to 6 (excluding Case 4b), with n = 0.9. The three curves on each panel
correspond to different values of l̂c, with Q̂ chosen so as to produce the
same flux at Eγ = 1 TeV for all cases. The red dots are obtained from
HESS Collaboration (2016).

energies over which it integrates.) This way, we obtain relatively
simple expressions for Φγ(Eγ), which preserve the main features
of our model, while showing the effect of the model parameters
on the emitted spectrum. For Eγ . Eγ,b,

Φγ(Eγ) ≈ 1.3 × 10−9(2.1 × 104)−
n
3

f (q, Emax) Q̂ l̂
− 2

3
c B̂

1
3

1 − 1
9 (n + 2m)2

×
κ

q− 2
3

π

q + 1
3

(
Eγ

TeV

)−q− 1
3

TeV−1 cm−2 s−1,

(30)

while, for Eγ & Eγ,b,

Φγ(Eγ) ≈ 1.5 × 10−10 6.2−
m

n−m (2.1 × 104)−
m(2−n)

n−m
f (q, Emax) Q̂

1 − 1
9 (n + 2m)2

×
κ

q+ 1−n
n−m

π

q + 1−m
n−m

l̂
1−n
n−m
c B̂

1−m
n−m

(
Eγ

TeV

)−q− 1−m
n−m

TeV−1 cm−2 s−1,

(31)

both of which are represented by the dashed green line in Fig. 3.
In order to reproduce the observations of HESS J1745−290,

the broken power law predicted by our model needs to reproduce
the values for its low- and high-energy indices, αLE and αHE

Fig. 6. Gamma-ray spectrum for different maximum energies Emax = 1,
3, and 10 PeV (Cases 11, 2, and 12, respectively), all with the same
parameter values n = 1, m = 0, q = 2, B̂ = 1, l̂c = 3, and slightly
different values of Q̂, chosen so that the three spectra visually fit the
H.E.S.S. data.

(defined as α ≡ −d log Φγ/d log Eγ in the respective regimes), as
well as the energy of the spectral break, Eγ,b.

Assuming q ≈ 2, as suggested by the spectrum in the CMZ
(see Sect. 2.3), our model yields αLE = q + 1/3 ≈ 2.3, in good
agreement with the observations (HESS Collaboration 2016), as
can be seen from Fig. 3. At high energies, assuming also n ≈ 1,
as suggested by the previous MHD simulations, our model yields
αHE = q + (1 − m)/(n − m) ≈ 3, which is relatively independent
of the value of m. This result also appears to be consistent with
the H.E.S.S. data (as seen in Fig. 3), although this part of the
spectrum is less well constrained by the observations.

If Eγ,b ≈ 3 TeV, as suggested by the observed spectrum, the
critical energy EC = Eγ,b/κπ ≈ 20 TeV. Comparing to Eq. (26)
with B̂ ≈ 1 and n ≈ 0.9 − 1, as inferred from the MHD sim-
ulations of the Sgr A* accretion flow, this strongly constrains
l̂c ≈ 1 − 3.

3.3. Constraints from our full model

In this section, we use our full model to show how our
parameters are further constrained by the main features of the
HESS J1745−290 spectrum.

The restrictions on l̂c can be seen in Figure 5, which confirms
that, for n = 1 and n = 0.9, the data favor the values l̂c = 3
and l̂c = 1, respectively. As expected, the effect of increasing l̂c
is to proportionally increase EC and therefore the energy of the
spectral break, Eγ,b, as seen from Equation (26). This equation
implies that cases with different l̂c can produce the same Eγ,b ≈ 3
TeV, as long as B̂ and n are adjusted accordingly. However, as
argued above, the fact that the MHD simulations favor B̂ = 1
and n = 0.9 − 1 strongly constrains l̂c to the rather small range
of l̂c ≈ 1 − 3.

The effect of the cutoff energy of the CR injection spectrum,
Emax, is shown in Fig. 6. As expected, it causes the gamma-ray
spectrum to cut off around Eγ ∼ κπEmax.

In Sect. 3.2, we use approximate expressions for Φγ(Eγ)
(Eqs. 30 and 31) to argue that the exponent m of the radial pro-
file of the coherence length lc should not significantly affect the
spectral index of the gamma-ray spectrum at low or high ener-
gies (αLE and αHE , respectively) or the gamma-ray energy that
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Fig. 7. Dependence of the gamma-ray spectrum on the exponent m of
the coherence length profile. Panel a: n = 1, l̂c = 3, m = 0, 0.2, 0.4
(Cases 2, 7 and 8 in Table 1). Panel b: n = 0.9, l̂c ≈ 1, m = 0, 0.2, 0.4
(Cases 4, 9 and 10).

separates these two power-law regimes (Eγ ∼ 3 TeV). This is
largely confirmed by Fig. 7a, which compares spectra for differ-
ent values of m in the case n = 1. However, Eq. (31) implies
that, in the case where n = 0.9, increasing the parameter m
can weakly increase the index αHE of the high-energy emission,
making this part of the spectrum steeper. This is indeed what is
seen in Fig. 7b, where only the case where m = 0.4 shows a
noticeably steeper spectrum. However, we show in Sect. 4 that
the self-consistency of our model requires m to be small (. 0.3),
and so we do not expect any significant effect of the parameter
m as long as this restriction is met.

Our findings therefore shows that models with B̂ = 1, q = 2,
and Emax & 1 PeV can accurately reproduce the main features
of the spectrum of HESS J1745−290, including its break at
Eγ,b ≈ 3 TeV. This happens for a narrow range of parameters
spanned by the cases with n ≈ 1, l̂c ≈ 3, and Q̂ ≈ 13 on the one
hand, and n ≈ 0.9, l̂c ≈ 1, and Q̂ ≈ 6 on the other. Remark-
ably, these values of q, Q̂, and Emax are in good agreement
with the estimates from the diffuse CMZ emission, in particular
those obtained by HESS Collaboration (2016). Regarding m, its
effect on the spectrum is relatively weak, and it only appears
at Eγ & Eγ,b. These results, however, establish a strong restric-
tion on the largely unknown parameter l̂c, which needs to be
in the range l̂c ≈ 1 − 3 (equivalent to a coherence length of
lc ≈ (1 − 3) × 1014 cm).

4. Consistency

In this section we check the consistency of several simplifying
assumptions made in the calculation of the gamma-ray emission.

4.1. Gas-density profile ngas(r) for 0.07 pc < r < 0.4 pc.

According to Fig. 11 of Ressler et al. 2018, the ngas(r) profile
at 0.07pc . r . 0.4pc is steeper than the ngas(r) ∝ r−1 profile
assumed in our calculations (Eq. 18). This means that our cal-
culated gamma-ray emission is somewhat larger than what we
would obtain if a more accurate profile were assumed.

Here we show that using Eq. 18 to model ngas(r) in the range
0.07pc < r < 0.4pc only leads to a ∼20 − 30% overestimate
in the emission and therefore does not affect significantly our
results. This is shown in Fig. 3, where the purple dashed line
represents the emission from 0.07pc < r < 0.4pc in our Case
2. We see that this emission is . 20 − 30% of the total emis-
sion at all the energies of interest. Thus, assuming ngas(r) ∝ r−1

at all radii r < 0.4 pc should not significantly affect our main
results.

4.2. Cosmic-ray transport for radii r > 0.4 pc

Even though CR transport at radii r > 0.4 pc is expected to
be a combination of advection and diffusion, in our calcula-
tions we simply assume that transport at r > 0.4 pc is the
same as at r = 0.4 pc. This should lead to an overestimate of
the CR density in this region (as the assumed transport pro-
cess may not be the most efficient one) and therefore provides
an upper limit to its corresponding emission from r > 0.4
pc. In Fig. 3, the purple line represents this upper limit to the
gamma-ray emission from r > 0.4 pc. We see that this emis-
sion is . 3% of the total emission for all the energies of inter-
est, and so this overestimate should not affect the accuracy of
our results.

4.3. Validity of diffusion at r < 0.07 pc

In our calculations, we assume that diffusion is the dominant
process for CR transport between r = rmin ∼ 10 Rg (where we
expect the CRs to be injected) and r = 0.07 pc. In particular, at
r ∼ 10 Rg, diffusion in the LED regime is assumed for CRs of all
energies (as seen in the two cases (Case 2 and Case 4b) shown
in Fig. 1). However, diffusive transport is a valid approximation
for CR propagation only when r � rλ, where rλ is defined as
the radius where the CRs’ mean free path is equal to the radius
itself, that is,

rλ = λmfp(rλ). (32)

From Eq. (16), we can obtain the expression for the mean free
path of the CRs in the LED regime and show that rλ satisfies

(
rλ

10Rg

)1− 1
3 (n+2m)

= 6 × 10−2 (2.1 × 104)−2m/3 l̂2/3
c B̂−1/3

( E
1TeV

)1/3

. (33)

As the right hand side of Eq. (33) is a growing function of E,
its upper limit is obtained by evaluating it at the maximum CR
energy considered in this work, E = 10 PeV. This way we see
that rλ/(10 Rg) is always . 2.7, implying that assuming diffusion
in the LED regime is a valid approximation for r larger than
∼30Rg, which is just outside the region where CRs are injected
in our model.
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We note, however, that applying Eq. (33) to values of rλ of
as small as r ∼ 10 Rg may not be entirely consistent with the fact
that Eq. (15) predicts the existence of a radius req defined by

req = lc(req), (34)

such that, at r . req, Eq. (15) is no longer a valid description
of lc(r) (because lc(r) cannot be larger than r). Also, at r < req,
the diffusion process should behave more as a 1D process, in the
sense that the propagation occurs along a nearly homogeneous
background magnetic field. Therefore, in obtaining Eq. (33), we
are implicitly making the simplifying assumption that the depen-
dence of the CR mean free path on r at r < req is the same as for
r > req. Given that this simplification only applies to r between
∼10Rg (∼1013 cm) and req (. 1014 cm for l̂c ∼ 1), whereas most
of the emission comes from large radii, we believe that it should
not significantly affect the accuracy of our results.

4.4. Neglecting advection for r < 0.07 pc

In addition to influencing diffusion, advection can also contribute
to CR transport because of the average radial gas velocity vgas at
r < 0.07 pc. Ressler et al. (2018) show that for 0.01 pc . r .
0.07 pc, there is a stagnation region where the mass-accretion rate
averaged over the whole solid angle approaches Ṁ ≈ 0, indicating
that vgas should have a small effect on the CR transport in that
region. In addition, for r . 0.01 pc there is an inflow-dominated
region where Ṁ is nearly constant. Taking Ṁ ≈ 10−8M�/year near
the black hole (Dexter et al. 2020), we obtain the expression for
vgas given by Eq. (19). In order to neglect the effect of vgas on the
transport of the CRs, its magnitude has to be smaller than vdiff for
the lowest-energy CRs, which diffuse in the LED regime for all
radii r < 0.07 pc (as seen in Fig. 1). Considering the definition of
vdiff from Eq. (9), we obtain:

vdiff ≈ 3 × 106 0.522m 14.4n−1 l̂2/3c B̂−1/3

×

( E
TeV

)1/3 (
r

0.01pc

) 1
3 (n+2m)−1

cm/s,
(35)

from which we obtain that the ratio vdiff/|vgas| is

vdiff

|vgas|
≈ 90 · 0.522m 14.4n−1 l̂2/3c B̂−1/3

( E
TeV

)1/3

×

(
r

0.01pc

) 1
3 (n+2m)

.

(36)

As we are focusing on emission with Eγ & 0.2 TeV, the low-
est CR energy that we consider is E ∼ 0.2/κπ TeV ≈ 1 TeV.
Therefore, since the ratio vdiff/|vgas| is an increasing function of
r, neglecting advection requires vdiff/|vgas| & 1 for E = 1 TeV
and r = 10Rg.

Figure 8a shows vdiff/|vgas| as a function of m for E = 1 TeV
and r = 10Rg, for the two favored cases in this work: n = 1,
l̂c = 3, and n = 0.9, l̂c = 1, shown in blue and red, respectively.
We see that for n = 1, l̂c = 3, neglecting advection requires
m . 0.4, while for n = 0.9, l̂c = 1, it requires m . 0.3. This
result shows that the consistency of our calculations demands a
weak dependence of lc on r, as assumed throughout this work.

Interestingly, the dependence of vdiff/|vgas| on E also implies
that, in our model, CRs of energies E � 1 TeV are significantly
affected by advection towards the black hole, in principle not
being able to propagate beyond r ∼ 10Rg. This implies that a
significant fraction of these particles should simply be accreted

Fig. 8. Panel a shows vdiff/|vgas| (Eq. (36)) as a function of m for E = 1
TeV and r = 10Rg. Panel b shows vdiff/vtd (Eq. (39)) as a function of m
for E = 1 TeV and r = 6req. In both panels, the blue line represents the
case n = 1, l̂c = 3, and the red line corresponds to n = 0.9, l̂c = 1, both
with B̂ = 1.

onto the black hole, with their gamma-ray emission for Eγ �

κπ × 1TeV ∼ 0.2 TeV not being captured by our model.
Cosmic rays could also be advected by the random motions

of the MHD turbulence in the accretion flow, which we neglect in
our model. If we estimate this turbulent velocity from the Alfvén
velocity of the gas, vA = B/

√
4πngasmp, and its length scale from

lc, the motion of the turbulence eddies should induce a CR dif-
fusion characterized by a turbulent diffusion coefficient Dt given
by

Dt ∼ lcvA/3, (37)

which allows us to estimate a turbulent diffusion velocity, vtd, as

vtd = Dt/r. (38)

Combining Eqs. (13), (15), (18), (35), (37), and (38), one can
show that

vdiff

vtd
≈ 120 (1.9)m(43200)n−1 l̂

− 1
3

c B̂−
4
3

( E
TeV

) 1
3

×

(
r

0.01 pc

) 4
3 n− 1

3 m− 1
2

,

(39)
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Fig. 9. Effect of using different minimum radii rmin on the gamma-ray
spectra. The solid and dashed lines represent analogous cases using
rmin = 10 Rg and rmin = 6 req, respectively. Panels a and b show the
cases where n = 1, l̂c = 3 and n = 0.9, l̂c = 3, respectively. In both
panels we consider m = 0 (blue lines) and m = 0.2 (green lines).

which, for the values of n and m of interest (n ≈ 1 and m � 1)
is a growing function of r. Figure 8b shows vdiff/vtd as a function
of m in the case where r = 6 req, where req is defined by Eq. (34),
and for the smallest relevant energy E = 1 TeV. We can see that,
in the cases of interest shown in the figure, vdiff/vtd & 1 as long
as m . 0.3, which also satisfies the conditions for neglecting the
effect of vgas. Thus, as vdiff/vtd is a growing function of r, vtd can
be safely neglected for r & 6 req. On the other hand, the effect of
turbulent diffusion should be valid only for r & req. This means
that there is a range of radii, req . r . 6 req, in which turbulent
diffusion can contribute significantly to CR transport, implying
that the CR density dnCR/dE in that region should be somewhat
smaller than what is obtained in our model. In order to find an
upper limit to this effect, Figure 9 compares gamma-ray spectra
calculated with rmin = 10 Rg and with rmin = 6 req, otherwise with
the same parameters. We see that there are only small differences
(at Eγ & 100 TeV) between the calculations with rmin = Rg and
rmin = 6 req, implying that neglecting turbulent diffusion should
not significantly affect the accuracy of our results.

This finding also reinforces the idea that gamma-ray emis-
sion is mainly produced at large radii, either close to 0.07 pc for
Eγ . 3 TeV or close to rC(Eγ/κπ) for Eγ & 3 TeV, as shown in
Fig 2.

Fig. 10. Cosmic-ray, gas and magnetic pressure comparison (PCR, Pgas
and PB, respectively). The values of the parameters considered corre-
spond to cases 2 (solid lines) and 4b (dashed lines) in Table 1.

4.5. Cosmic-ray, gas, and magnetic pressures

Our calculations assume that the gas properties in the accre-
tion flow are determined by the hydrodynamic evolution of the
wind of ∼30 WR stars that feed Sgr A*, as in the simulations
of Ressler et al. (2018, 2020a) on which our results are based.
However, the presence of CRs diffusing out from the central
black hole can be dynamically important in this evolution if the
CR pressure becomes comparable to the gas pressure. Figure 10
shows these two pressures as functions of r for the Cases 2 and
4b in Table 1 (corresponding to our fiducial cases with n = 1 and
n = 0.9 shown in Fig. 1). The CR pressure is calculated as

PCR(r) =
1
3

∫ Emax

Emin

dE E
dnCR(E, r)

dE
, (40)

where Emin = 1 TeV (as the CR density should be significantly
suppressed for E � 1 TeV, as shown in Sect. 4.4), and Emax = 3
PeV, while the gas pressure is calculated as

Pgas(r) = 2 ngas(r) kB Tgas(r), (41)

where kB is the Boltzmann constant, ngas(r) is the gas density
specified in Eq. (18), and Tgas(r) is the angle- and time-averaged
temperature of the gas obtained from Fig. 11 of Ressler et al.
(2018),6 as

Tgas(r) = 1.5 × 107
(

r
0.4pc

)−1

K. (42)

For completeness, we have also added the magnetic pressure
profile for Cases 2 and 4b. We see that the gas pressure is domi-
nant at almost all radii, with the CR pressure becoming relevant
at r ∼ 0.07 pc, around the inner boundary of the region where
the WR star winds feed the accretion flow (∼0.1 − 1 pc). The
fact that PCR and Pgas are comparable at r ∼ 0.07 pc may some-
what modify the evolution of the accreting gas near the feeding
region. However, regarding the hydrodynamic properties of the
gas, we use the fact that PCR should only change the gas pres-
sure by a factor ∼2 near r ∼ 0.07 pc, and thus assume that the gas
dynamics at those radii is fairly well described by hydrodynamic
considerations.
6 The time averages presented in Fig. 11 of Ressler et al. (2018) are
performed over the 100 years previous to the present day.
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5. Diffusion timescales

The timescale for diffusion from the central black hole to a cer-
tain radius r can be estimated as tdiff ∼ r2/D(r) (valid as long as
D(r) grows more slowly than r2). Above, we show that for CR
energies E < EC ∼ 20 TeV, most of the emission occurs close
to the radius r ≈ 0.07 pc where the transition from the LED to
the advection regime occurs. Therefore, the time for CRs to dif-
fuse out and produce the gamma-ray emission below the break
energy is

tdiff(E < EC) ∼
(0.07 pc)2

DLED(r = 0.07 pc)

≈ 104 (2.1 × 104)
1−n

3 l̂
− 2

3
c B̂

1
3

( E
TeV

)− 1
3

yr.

(43)

On the other hand, for E > EC , most of the emission occurs near
the transition radius rC(E) from the LED to the HED regime, for
which the diffusion time is found to be

tdiff(E > EC) ∼
(rC(E))2

DLED(rC(E))

≈ 1.7 × 105 (5.7)
2−2n+m

n−m (2.1 × 104)
(1−n)(1−m)

n−m l̂
2−n
n−m
c B̂

2−m
n−m

×

( E
TeV

)− 2−m
n−m

yr.

(44)

For any given gamma-ray energy Eγ, the emission currently
observed roughly averages over the injection rate of CRs of
energy E ∼ Eγ/κπ over the last tdiff(E). As expected, for all rele-
vant energies, these diffusion times are much shorter than those
corresponding to the CMZ, and therefore the gamma-ray emis-
sion of the point source is sensitive to much more recent activity
(or inactivity) of the central black hole than the diffuse emission.
Thus, the injection rate inferred from the point-source emission
must not necessarily be the same as that explaining the CMZ;
although we find them to be consistent with each other (with
sizeable error bars on both).

It can also be seen from Eq. 44 that, for E > EC , tdiff
is a quickly decreasing function of E, mostly because of the
decreasing critical radius rC(E) (Eq. 25), which in turn is due to
the rapidly increasing diffusion coefficient in the HED regime.
For parameter choices favored by our model (n = 1, m = 0,
l̂c = 3, B̂ = 1), we obtain tdiff ∼ 0.5 yr(E/PeV)−2. There-
fore, if the CR injection rate at PeV energies varies signifi-
cantly on a comparable timescale (i.e., of the order of a few
months), as suggested by the enhanced activity of Sgr A* in the
radio, near-infrared, and X-ray bands during 2019 (Weldon et al.
2023 and references therein), this should be reflected in a
significant variation of the gamma-ray emission at Eγ &
100 TeV. This variable gamma-ray emission might be detectable
in the near future by the Cherenkov Telescope Array Obser-
vatory (CTAO; Cherenkov Telescope Array Consortium 2019;
Viana et al. 2019).

6. Conclusions

The spatial distribution of the diffuse gamma-ray emission
detected in the CMZ (corresponding to the inner ∼100 pc of the
Milky Way), along with its extended spectrum reaching ∼100
TeV energies, suggests the presence in the Galactic center of a
“PeVatron”, that is, a CR accelerator capable of reaching PeV
energies, which has been associated to the supermassive black

hole Sgr A* (HESS Collaboration 2016). In addition, due to
the apparently coincident position of the point-like gamma-ray
source HESS J1745−290 with Sgr A*, a PeVatron could poten-
tially allow an explanation of both the diffuse CMZ emission
and the point source as being due to the same CRs accelerated in
the immediate vicinity of Sgr A* and diffusing outwards from it.
This scenario, however, is challenged by the fact that the spec-
trum of the point source shows a power-law behavior with a
spectral turnover at a few TeV, which is not shown by the diffuse
emission in the CMZ. Although this turnover is usually charac-
terized as an exponential cutoff, the spectrum of the point source
is also compatible with a broken power law (Aharonian et al.
2009; Adams et al. 2021), as we also show in Appendix A using
observations from HESS Collaboration (2016).

In order to reconcile the CMZ and point source spectra, we
propose a model for the point source in which the CRs are con-
tinuously injected near Sgr A* (within a radius r ∼ 10Rg) and
subsequently diffuse through its accretion flow (r . 0.1 pc).
This way, very high-energy gamma rays are emitted in the accre-
tion flow via inelastic hadronic collisions between the CR pro-
tons and the background protons. A key feature of this model is
the existence of two CR diffusion regimes within the accretion
flow of Sgr A*. These regimes, according to theoretical argu-
ments and test-particle simulations of CR propagation in syn-
thetic MHD turbulence (which we assume is strong and has a
Kolmogorov spectrum), depend on the ratio between the Lar-
mor radius, RL, of the CRs and the coherence length, lc, of the
turbulence. This way, the transition between these two regimes
gives rise to a significant depletion of the highest-energy CRs
(RL/lc � 1) within the emission region, which explains the exis-
tence of a break in the point-source spectrum.

The free parameters of our model characterize the spectrum of
the injected CRs, their propagation efficiency through the accre-
tion flow, and the properties of the background gas. Interestingly,
the values of these parameters, which are required to fit HESS
J1745-290, are all consistent with expectations from the obser-
vations of the diffuse emission from the CMZ and with previous
hydrodynamical and MHD simulations of the Sgr A* accretion
flow. The only exception is given by the (very uncertain) coher-
ence length of the magnetic turbulence, which needs to have an
approximately homogeneous value, lc ∼ (1 − 3) × 1014 cm ≈

(3 × 10−5 − 10−4) pc. Although disentangling the possible origin
of this rather small coherence length is beyond the scope of this
work, we speculate that its value might be affected by various pro-
cesses, such as hydrodynamic instabilities in the colliding winds
of the WR stars (Calderón et al. 2020) or even MHD instabilities
driven by the CRs themselves. Indeed, in Sect. 4.5 we show that
the CR pressure can be dynamically important within the feed-
ing region (0.07 pc . r . 0.4 pc), where gas injection from the
WR stars occurs. This region thus appears as an ideal environment
for the action of, for example, the nonresonant instability, which
is driven by the electric current of the CRs and has the potential
to produce highly nonlinear MHD turbulence (Bell 2004, 2005;
Riquelme & Spitkovsky 2009, 2010). We defer the study of these
possible sources of turbulence to future research.

Our results therefore support the hypothesis that Sgr A* is
capable of accelerating CRs up to a few PeV, contributing to
explaining the origin of Galactic CRs up to the “knee”. It is
worth emphasizing, however, that although we define our CR
acceleration region very close to Sgr A* (at r ∼ 10Rg), the
obtained emission spectra from our model are highly insensi-
tive to the precise location of the injection region, as long as this
region is anywhere in the range r ∼ (10−103) Rg (see discussion
in Sect. 3.1).
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Our model has the potential to be tested by future TeV tele-
scopes, such as CTAO (Cherenkov Telescope Array Consortium
2019). Given the small size of the emitting region (r . 0.1
pc, equivalent to .3 arcsec in angular size), our model pre-
dicts a gamma-ray source that cannot be resolved by any fore-
seeable TeV observatory. However, an interesting prediction of
our model is that the spectrum of the point source should be
a broken power law, with specific spectral indices αLE ≈ 2.3
for Eγ . 3 TeV and αHE ≈ 3 for Eγ & 3 TeV (see discussion
in Sect. 3.2). This is in contrast to a single power law with an
exponential cutoff, as has been suggested by other models (e.g.,
Guo et al. 2017). This means that, at gamma-ray energies of & 10
TeV, the gamma-ray spectrum obtained from our model becomes
notably different from other competing models. This is partic-
ularly interesting given that CTAO will be approximatelly ten
times more sensitive than H.E.S.S., thus allowing us, in princi-
ple, to discriminate between the different models. Further model
discrimination might be done using the possible time variability
of HESS J1745−290 at the highest energies. This is interesting
given the significant variability exhibited by Sgr A* at various
wavelengths. Although our model assumes a steady injection
of CRs, in Sect. 5 we estimate that, if CR injection were vari-
able, our model would predict potentially significant variabil-
ity at Eγ ∼ 100 TeV on timescales of as short as months. To
date, however, observations have failed to detect variability of
the HESS J1745−290 gamma-ray point source, possibly because
current observatories do not possess the required sensitivity to
detect such variability. In this respect, the upcoming observa-
tions with CTAO may, in principle, have sufficiently sensitivity
to detect the point-source variability. We defer the study of this
possibility to future research.
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Appendix A: Fitting HESS J1745-290 spectrum with
a broken power law

The central point source HESS J1745-290 is usually character-
ized by a hard power law spectrum with a photon index ∼ 2.1 and
an exponential cutoff at ∼ 10 TeV. When compared with a pure
power law, the power law with an exponential cutoff (ECPL) is
clearly preferred by the data (HESS Collaboration 2016).

Besides a power law with an exponential cutoff, the spectral
shape of HESS J1745-290 has also been shown to be compatible
with a broken power law with the break energy at a few TeV
(Aharonian et al. 2009; Adams et al. 2021). Here we use more
up-to-date H.E.S.S. observations of this source obtained from
HESS Collaboration (2016) to confirm this point.

Fig. A.1 shows two least-squares fits of the point source (for
which we used the Levenberg-Marquardt algorithm). The blue
line corresponds to a broken power-law (BPL) model for the
photon flux, Φγ(Eγ), given by

Φγ(Eγ) =
Φ0(Eγ/Ec)−Γ1

1 + (Eγ/Ec)Γ2−Γ1
, (A.1)

for which we obtain Φ0 = (2.44 ± 1.2) × 10−14 TeV−1 cm−2 s−1,
Ec = 8.22±1.4 TeV, Γ1 = 2.18±0.04, Γ2 = 3.89±0.52, a p-value
of p = 0.63, and χ2/DOF= 0.87.

The green line corresponds to a ECPL model given by

Φγ(Eγ) = Φ0(Eγ/Ec)−Γ1 e−Eγ/Ec , (A.2)

for which we find Φ0 = (1.83 ± 0.88) × 10−14 TeV−1 cm−2 s−1,
Ec = 10.13 ± 1.89 TeV, Γ1 = 2.13 ± 0.03, a p-value of
p = 0.62, and χ2/DOF= 0.88. The similar values of p and
χ2/DOF obtained from these two fits imply that the BPL and
ECPL models are both compatible with the current H.E.S.S. data
from HESS Collaboration (2016).

Fig. A.1. Least squares fits of the point source spectrum. The blue and
green lines correspond to a BPL model and a single ECPL model for
photon fluxes given by Eqs. A.1 and A.2, respectively. The red circles
correspond to H.E.S.S. data from HESS Collaboration (2016).

Appendix B: Heuristic derivation of the diffusion
coefficients

Here, we give simple, rough, physical derivations of the effective
mean free paths, λmfp, and therefore of the diffusion coefficients,
D = λmfpc/3, of relativistic, charged particles in a medium
with isotropic, magnetic Kolmogorov turbulence with coherence
length lc and Larmor radius RL. For the HED regime, RL � lc, a
similar derivation has been given by Subedi et al. (2017), and we
give it here for completeness. For the LED regime, RL � lc, we
are not aware of a similar derivation in the literature. For simplic-
ity and given the rough approximations involved, we generally
ignore numerical factors ∼ 2π and smaller.

B.1. High-energy diffusion (HED) regime

If RL � lc, as a particle crosses a coherence length lc, it deviates
only by a small angle, θ1 ∼ lc/RL. These deviations are random,
in different directions for successive steps of size lc. Therefore,
the direction of motion undergoes a random walk, accumulating
a typical deviation θN ∼

√
Nθ1 after N such steps. The direction

of motion will have changed significantly once θN ∼ 1, implying
N ∼ (RL/lc)2, which defines the mean free path λmfp ∼ Nlc ∼
R2

L/lc.

B.2. Low-energy diffusion (LED) regime

On scales � lc, the magnetic field can be approximated by
B = B0 + δB(r), where B0 = constant and |δB(r)| � B0. If
RL ≡ γmc2/(qB0) � lc, where γ, m, and q are the Lorentz fac-
tor, the mass, and the charge of the particles, respectively, the
latter will follow a roughly helical motion, typically with veloc-
ity components of similar magnitude (not much smaller than c)
along B0, v‖, and perpendicular to it, v⊥. Thus, the particles will
move a distance ∼ RL along B0 while completing an orbit of
radius ∼ RL in the perpendicular plane.

The equation of motion for the parallel velocity component
is

γm
dv‖
dt

=
q
c

v⊥ × δB. (B.1)

Since the direction of v⊥ completes a loop while the particle trav-
els a distance ∼ RL, v‖ will be mostly affected by field pertur-
bations on roughly the same scale, which we will call δB∗. Its
typical change while traveling this scale will be small, ∆v‖,1 ∼
cδB∗/B0, but these random changes can accumulate, yielding a
substantial change ∆v‖,N ∼

√
N∆v‖,1 ∼ c after N ∼ (c/∆v‖,1)2

steps, corresponding to a one-dimensional mean free path (along
B0) given by λmfp ∼ RL (B0/δB∗)2. For Kolmogorov turbulence,
B0/δB∗ ∼ (lc/RL)1/3, therefore the one-dimensional mean free
path is

λmfp ∼ R1/3
L l2/3c , (B.2)

with a corresponding diffusion coefficient D1D = λmfpc/3.
The time required to diffuse a distance lc along B0 is tc ∼

l2c/D1D. On each patch of size lc, the magnetic field has a ran-
dom orientation. Thus, on larger scales, the diffusion process
becomes three-dimensional, with steps of size lc traversed at a
typical speed vc ∼ lc/tc, so the large-scale, three-dimensional
diffusion coefficient is D ∼ lcvc/3 ∼ l2c/tc ∼ D1D, as in the one-
dimensional analysis above.
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Appendix C: Full expressions for dnCR/dE
In this appendix we describe the analytical treatment for the CR
density distribution per unit energy dnCR/dE of our full model
described in Sect. 2.

C.1. Continuity and boundary conditions

As explained in 2.1, in order to determine the CR density dis-
tribution on the Sgr A* accretion flow, we solve Eq. 8 neglect-
ing one of the two terms on the right hand side, depending on
whether diffusion of advection dominates. In the case dominated
by diffusion, we have

dN
dEdt

(E) = −4πr2D(E, r)
∂

∂r

(
dnCR

dE
(E, r)

)
, (C.1)

while is advection is the dominant transport mechanism of CRs,

dN
dEdt

(E) = 4πr2 vgas(r)
dnCR

dE
(E, r). (C.2)

The above equations for dnCR/dE are constrained by continuity
restrictions, which we characterize in Fig. C.1, noting that: rC(E)
represent the critical radius at which a CR of energy E will tran-
sit from the LED regime to HED regime (see Eq. 25), rC,ad(E)
represent the radius at which a CR of energy E transit from the
HED regime to the AD regime (see Eq. 27), given that the gas
velocity is determined by Eq. 20.

Fig C.1, shows a schematic representation of the different
CR transport regimes used to calculate dnCR/dE, as a function
of radius r and CR energy E. We see that, besides EC (defined
by rC(E) = 0.07 pc), the limits between these regions are char-
acterized by the energies E∗ and E∗∗, corresponding to the ener-
gies where rC,ad(E) becomes equal to 0.07 pc and 0.4 pc, respec-
tively. Thus, the continuity conditions for the CR density can be
described within the four energy ranges shown in Fig C.1:
1. Energy range E ε [1TeV − EC]:

dnCR

dE
|LED(E, r = 0.07pc) =

dnCR

dE
|AD(E, r = 0.07pc). (C.3)

Fig. C.1. Schematic representation of the different CR transport regimes
used to calculate dnCR/dE, as a function of radius r and CR energy E.
These regimes correspond to low-energy diffusion (LED), high-energy
diffusion (HED) and advection-dominated (AD).

2. Energy range E ε [EC − E∗]:

dnCR

dE
|LED(E, r = rC(E)) =

dnCR

dE
|HED(E, r = rC(E)), and

(C.4)

dnCR

dE
|HED(E, r = 0.07pc) =

dnCR

dE
|AD(E, r = 0.07pc). (C.5)

3. Energy range E ε [E∗ − E∗∗]:

dnCR

dE
|LED(E, r = rC(E)) =

dnCR

dE
|HED(E, r = rC(E)), and

(C.6)

dnCR

dE
|HED(E, r = rC,ad(E)) =

dnCR

dE
|AD(E, r = rC,ad(E))

(C.7)

4. Energy range E ε [E∗∗ − Emax]:

dnCR

dE
|LED(E, r = rC(E)) =

dnCR

dE
|HED(E, r = rC(E)). (C.8)

In all cases, we impose dnCR/dE(E, r → ∞)→ 0.

C.2. Full model for the CR density distribution

Here we show the full expression for dnCR/dE obtained from
solving Eqs. C.1 and C.2 under the aforementioned restrictions,
for the four different energy ranges depicted in Fig. C.1 and for
the different radial ranges within them.
1. Energy range E ε [1TeV − EC]:

In the case of r ≤ 0.07 pc,

dnCR

dE
(E, r) = 3 (2.1 × 104)2m/3 Q̂ l̂−2/3

c B̂
1
3

f (q, Emax)
1 + 1

3 (n + 2m)

×

( E
1TeV

)−q− 1
3
(

r
10Rg

)−(1+ 1
3 (n+2m))

erg−1cm−3

+ 3 × 10−7Q̂ f (q, Emax)
( E
1TeV

)−q

erg−1cm−3

− 3 (2.1 × 104)−(1+n/3) Q̂ l̂−2/3
c B̂

1
3

f (q, Emax)
1 + 1

3 (n + 2m)

×

( E
1TeV

)−q− 1
3

erg−1cm−3,

(C.9)

where the first term on the right hand is the same as the right
hand side of Eq. 21, in which boundary condition terms were
neglected. In the cases 0.07 pc ≤ r ≤ 0.4 pc and r ≥ 0.4 pc,
the expressions for dnCR/dE are the same as Eqs. 23 and
24, respectively, since no boundary terms were neclected in
those cases.
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2. Energy range E ε [EC − E∗]:
If r ≤ rC(E),

dnCR

dE
(E, r) = 3 (2.1 × 104)2m/3 Q̂ l̂−2/3

c B̂
1
3

f (q, Emax)
1 + 1

3 (n + 2m)

×

( E
1TeV

)−q− 1
3
(

r
10Rg

)−(1+ 1
3 (n+2m))

erg−1cm−3

+ 109 (2.1 × 104)
m(1+n)

n−m Q̂ l̂
−(1+n)

n−m
c B̂

−(1+m)
n−m

×
f (q, Emax)

1 + 2n − m
(1.3 × 105)

−(1+2n−m)
n−m

×

( E
1TeV

) m+1
n−m−q

erg−1cm−3

− 3 (2.1 × 104)
m(1+n)

n−m Q̂ l̂
−(1+n)

n−m
c B̂

−(1+m)
n−m

×
f (q, Emax)

1 + 1
3 (n + 2m)

(1.3 × 105)
−(1+ 1

3 (n+2m))
n−m

×

( E
1TeV

) m+1
n−m−q

erg−1cm−3

+ 3 × 10−7Q̂ f (q, Emax)
( E
1TeV

)−q

erg−1cm−3

− 109 (2.1 × 104)−(1+2n) Q̂ l̂c B̂2

×
f (q, Emax)

1 + 2n − m

( E
1TeV

)−q−2

erg−1cm−3,

(C.10)

where, the first term on the right hand side is again equal to
the right hand side of the simpler Eq. 21.
If rC(E) ≤ r ≤ 0.07 pc,

dnCR

dE
(E, r) = 109 (2.1 × 104)−m Q̂ l̂c B̂2 f (q, Emax)

1 + 2n − m

×

( E
1TeV

)−q−2 (
r

10Rg

)−(1+2n−m)

erg−1cm−3

+ 3 × 10−7Q̂ f (q, Emax)
( E
1TeV

)−q

erg−1cm−3

− 109 (2.1 × 104)−(1+2n) Q̂ l̂c B̂2 f (q, Emax)
1 + 2n − m

×

( E
1TeV

)−q−2

erg−1cm−3,

(C.11)

where the first term on the right hand side is the same as the
right hand side of Eq. 22, which does not include boundary
terms. In the cases 0.07 pc ≤ r ≤ 0.4 pc and r ≥ 0.4 pc, the
expressions for dnCR/dE are the same as those provided by
Eqs. 23 and 24, since in those cases no boundary terms were
neglected.

3. Energy range E ε [E∗ − E∗∗]:

If r ≤ rC(E)

dnCR

dE
(E, r) = 3 (2.1 × 104)2m/3 l̂−2/3

c B̂
1
3

Q̂ f (q, Emax)
1 + 1

3 (n + 2m)

×

( E
1TeV

)−q− 1
3
(

r
10Rg

)−(1+ 1
3 (n+2m))

erg−1cm−3

+ 109 (2.1 × 104)
−m(1+n)

n−m l̂
−(1+n)

n−m
c B̂

−(1+m)
n−m

×
Q̂ f (q, Emax)
1 + 2n − m

(1.3 × 105)
−(1+2n−m)

n−m

×

( E
1TeV

) m+1
n−m −q

erg−1cm−3

− 3 (2.1 × 104)
−m(1+n)

n−m l̂
−(1+n)

n−m
c B̂

−(1+m)
n−m (1.3 × 105)

−(1+ 1
3 (n+2m))
n−m

×
Q̂ f (q, Emax)

1 + 1
3 (n + 2m)

( E
1TeV

) m+1
n−m −q

erg−1cm−3

+ 3 × 106 (2.1 × 104)
3m

2n−m−2 l̂
−3

2n−m−2
c B̂

−6
2n−m−2

× Q̂ f (q, Emax)(400)
−3

2n−m−2

( E
1TeV

) 6
2n−m−2 −q

erg−1cm−3

− 109 (2.1 × 104)
3m

2n−m−2 l̂
−3

2n−m−2
c B̂

−6
2n−m−2

×
Q̂ f (q, Emax)
1 + 2n − m

(400)
m−2n−1
2n−m−2

( E
1TeV

) 6
2n−m−2 −q

erg−1cm−3,

(C.12)

where the first term on the right hand side coincides with
the right hand side of Eq. 21.

If rC(E) ≤ r ≤ rC,ad(E),

dnCR

dE
(E, r) = 109 (2.1 × 104)−m Q̂ l̂c B̂2 f (q, Emax)

1 + 2n − m

×

( E
1TeV

)−q−2 (
r

10Rg

)−(1+2n−m)

erg−1cm−3

+ 3 × 106 (2.1 × 104)
3m

2n−m−2 l̂
−3

2n−m−2
c B̂

−6
2n−m−2

× Q̂ f (q, Emax)(400)
−3

2n−m−2

( E
1TeV

) 6
2n−m−2 −q

erg−1cm−3

− 109 (2.1 × 104)
3m

2n−m−2 l̂
−3

2n−m−2
c B̂

−6
2n−m−2

×
Q̂ f (q, Emax)
1 + 2n − m

(400)
m−2n−1
2n−m−2

( E
1TeV

) 6
2n−m−2 −q

erg−1cm−3,

(C.13)

where the first term on the right hand side coincides with
the right hand side of Eq. 22.

If rC,ad(E) ≤ r ≤ 0.4 pc and r ≥ 0.4 pc, once again,
the expressions for dnCR/dE are the same as those pro-
vided in the main text for the ADV regime (Eqs. 23 and 24,
respectively).
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4. Finally, the energy range E ε [E∗∗, Emax]:

If r ≤ rC(E),

dnCR

dE
(E, r) = 3 (2.1 × 104)2m/3 Q̂ l̂−2/3

c B̂
1
3

f (q, Emax)
1 + 1

3 (n + 2m)

×

( E
1TeV

)−q− 1
3
(

r
10Rg

)−(1+ 1
3 (n+2m))

erg−1cm−3

+ 109 (2.1 × 104)
−m(1+n)

n−m l̂
−(1+n)

n−m
c B̂

−(1+m)
n−m

×
Q̂ f (q, Emax)
1 + 2n − m

(1.3 × 105)
−(1+2n−m)

n−m

×

( E
1TeV

) m+1
n−m−q

erg−1cm−3

− 3 (2.1 × 104)
−m(1+n)

n−m l̂
−(1+n)

n−m
c B̂

−(1+m)
n−m

×
f (q, Emax)

1 + 1
3 (n + 2m)

(1.3 × 105)
−(1+ 1

3 (n+2m))
n−m

×

( E
1TeV

) m+1
n−m−q

erg−1cm−3,

(C.14)

where the first term on the right hand side is the same as the
right hand side of Eq. 21. In the radial range r ≥ rC(E),
the expression for dnCR/dE is the same as Eq. 22, since
in the energy range E ε [E∗∗, Emax], the CR density in the
HED regime simply needs to satisfy the boundary condi-
tion dnCR/dE(E, r → ∞) → 0, which is already satisfied
by Eq. 22.
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