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ABSTRACT

Context. Making the conversion from the geometrical spatial scale to the optical depth spatial scale is useful in obtaining numerical
solutions for the radiative transfer equation. This is because it allows for the use of exponential integrators, while enforcing numerical
stability. Such a conversion involves the integration of the total opacity of the medium along the considered ray path. This is usually
approximated by applying a piecewise quadrature in each spatial cell of the discretized medium. However, a rigorous analysis of this
numerical step is lacking.
Aims. This work is aimed at clearly assessing the performance of different optical depth conversion schemes with respect to the
solution of the radiative transfer problem for polarized radiation, out of the local thermodynamic equilibrium.
Methods. We analyzed different optical depth conversion schemes and their combinations with common formal solvers, both in terms
of the rate of convergence as a function of the number of spatial points and the accuracy of the emergent Stokes profiles. The analysis
was performed in a 1D semi-empirical model of the solar atmosphere, both in the absence and in the presence of a magnetic field. We
solved the transfer problem of polarized radiation in different settings: the continuum, the photospheric Sr I line at 4607 Å modeled
under the assumption of complete frequency redistribution, and the chromospheric Ca I line at 4227 Å, taking the partial frequency
redistribution effects into account during the modeling.
Results. High-order conversion schemes generally outperform low-order methods when a sufficiently high number of spatial grid
points is considered. In the synthesis of the emergent Stokes profiles, the convergence rate, as a function of the number of spatial
points, is impacted by both the conversion scheme and formal solver. The use of low-order conversion schemes significantly reduces
the accuracy of high-order formal solvers.
Conclusions. In practical applications, the use of low-order optical depth conversion schemes introduces large numerical errors in the
formal solution. To fully exploit high-order formal solvers and obtain accurate synthetic emergent Stokes profiles, it is necessary to use
high-order optical depth conversion schemes.
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1. Introduction

The numerical integration of the radiative transfer (RT) equa-
tion, namely, the formal solution, is a key step in the solution of
the RT problem, both at the local thermodynamic equilibrium
(LTE), and in non-LTE conditions. From a numerical point of
view, the formal solution consists of applying a suitable numeri-
cal method (the formal solver). In the polarized case, the formal
solver provides an approximate solution of a linear system of
first-order coupled inhomogeneous ordinary differential equa-
tions (ODEs). Over the years, the effort of the community has
produced an extensive literature on the different formal solvers,
for both unpolarized (e.g., Auer 1976, 2003; Mihalas et al. 1978;
Olson & Kunasz 1987; Kunasz & Auer 1988; Auer & Paletou
1994) and polarized (e.g., Janett et al. 2017, 2018, and references
therein) radiation.

In most RT applications, it is common to express the spa-
tial dependency of the transfer equation in terms of the optical
depth. This allows for the use of exponential integrators, while
also enforcing the numerical stability of the formal solution

(e.g., Janett & Paganini 2018). Crucially, it is common to perform
this spatial scale conversion by means of numerical methods,
thus introducing numerical errors. While considerable efforts
have already been exercised in the search for the best-performing
formal solver, the numerical conversion to optical depth has
often been overlooked. Indeed, a rigorous and clear investiga-
tion into this critical numerical step is still lacking. The aim of
this work is to analyze the impact of different numerical schemes
for the conversion to optical depth, both individually and com-
bined with different common formal solvers. The final aim is to
quantify the impact of the numerical conversion to optical depth
on the accuracy of the solution of the non-LTE RT problem for
polarized radiation and to identify the relevant issues.

The article is organized as follows. Section 2 introduces the
non-LTE RT problem for polarized radiation, focusing on the
analytical and numerical conversion to optical depth. In Sect. 3,
we present our numerical convergence experiments, analyzing
the performances of different numerical conversions to optical
depth for different problem settings. Finally, Sect. 4 provides our
remarks and conclusions. A detailed description of the optical
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depth conversion schemes considered in this paper can be found
in Appendix A. Appendix B presents the synthetic emergent
Stokes profiles.

2. Transfer problem for polarized radiation

The intensity and polarization of a beam of radiation are fully
described by the four-component Stokes vector:

I = (I,Q,U,V) = (I1, I2, I3, I4) ∈ R+ × R3,

with the intensity I being positive and the polarization being
encoded in Q, U, and V . The propagation of a radiation beam
in a given medium (e.g., the plasma of a stellar atmosphere) is
described by the transfer equation for polarized radiation, which
consists of a system of four coupled first-order inhomogeneous
ODEs. The RT equation is inherently 1D, as it describes how the
radiation gets modified while propagating along a straight line,
and is decoupled in frequency and direction. In this work, we
thus consider the RT problem for the simplest case of a 1D plane-
parallel atmosphere, pointing out that the results and conclusions
also hold in a 3D setting.

In a plane-parallel atmosphere (see Fig. 1), all physical
quantities only depend on the height, z ∈ [zmin, zmax] ⊂ R, and
the transfer equation for a beam of radiation of frequency
ν ∈ [νmin, νmax] ⊂ R+ propagating along the direction specified
by the unit vector Ω = (θ, χ) ∈ [0, π] × [0, 2π) can be written as:

cos(θ)
d
dz

I(z,Ω, ν) = −K(z,Ω, ν) I(z,Ω, ν) + ε(z,Ω, ν). (1)

The propagation matrix K ∈ R4×4 describes how the medium
absorbs radiation, coupling the different Stokes parameters. The
emission vector ε = (ε1, ε2, ε3, ε4) ∈ R+ × R3 describes the
radiation emitted by the plasma in the four Stokes parameters.

In general, K and ε include contributions from both line and
continuum processes, respectively labeled with the superscripts
ℓ and c, which can simply be added together as:

K(z,Ω, ν) = Kℓ(z,Ω, ν) + Kc(z,Ω, ν),

ε(z,Ω, ν) = εℓ(z,Ω, ν) + εc(z,Ω, ν).

The continuum and line contributions to the emissivity contain
in general contributions from both thermal and scattering pro-
cesses. The values of Kℓ and εℓ depend on the state of the atom
giving rise to the considered spectral line. This state has to be
determined by solving the statistical equilibrium (SE) equations,
which describe the interaction of the atom with the radiation
field, other particles in the plasma, and the possible presence of
external fields.

The whole non-LTE RT problem consists in finding a self-
consistent solution of the RT equation for the radiation field, I,
and of the SE equations for the atomic system. The solution of
Eq. (1), given knowledge of the initial conditions and the spatial,
angular, and frequency dependence of the propagation matrix,
as well as the emission vector at a discrete set of points, is the
so-called formal solution (Mihalas 1978; Auer 2003; Janett et al.
2017).

2.1. Conversion to optical depth

Formally, the optical depth scale takes the form of the map:

τ : [zmin, zmax]→ [0, τmax(Ω, ν)] ⊂ R+,

top

bottom

z Ω

τ

θ

zmax

zmin

τ = 0

τmax

Fig. 1. 1D plane-parallel atmospheric model. The spatial dependency
of atmospheric physical quantities is limited to the vertical spatial coor-
dinate z. For simplicity, the τ dependence on the inclination, θ, and the
frequency, ν, is not indicated.

defined as the solution of the initial value problem:

dτ(z,Ω, ν) = −
η(z,Ω, ν)

cos(θ)
dz with1 τ(zmax,Ω, ν) = 0, (2)

where η is the total absorption coefficient for intensity, which
corresponds to the diagonal element of the propagation matrix
K, and θ ∈ [0, π/2) ∪ (π/2, π]. In the definition of Eq. (2), we
followed the usual convention that the optical depth is measured
along the considered line of sight, inwardly in the solar atmo-
sphere (i.e., from the point of view of an observer). Since η > 0,
the function τ is strictly monotone decreasing and, thus, there
is a differentiable bijection from [zmin, zmax] to [0, τmax(Ω, ν)],
with τmax(Ω, ν) = τ(zmin,Ω, ν) > 0. By applying the conversion
to optical depth defined by Eq. (2), Eq. (1) takes the equivalent
form (e.g., Janett & Paganini 2018) as:

d
dτ

I(τ,Ω, ν) =
K(τ,Ω, ν)
η(τ,Ω, ν)

I(τ,Ω, ν) −
ε(τ,Ω, ν)
η(τ,Ω, ν)

, (3)

where, for notational simplicity, the dependence of τ on the
direction, Ω, and frequency, ν, has not been explicitly indi-
cated. Analyzing the transfer equations for polarized radiation
in Eqs. (1) and (3), Janett & Paganini (2018) showed that the
conversion from the geometrical spatial scale to the optical
depth spatial scale mitigates the variation of the propagation
matrix elements along the integration path, providing signifi-
cant stability enhancements in the formal solution2. Moreover,
the conversion to optical depth is a key step for applying the
Diagonal Element Lambda Operator (DELO) methods, a fam-
ily of well performing formal solvers belonging to the class of
exponential integrators (Guderley & Hsu 1972; Rees et al. 1989;

1 Strictly speaking, τ(zmax,Ω, ν) is only zero if zmax lies at the
observer’s location. Indeed, one should consider that the atmosphere
extents beyond the top of the model. In general, this can be taken into
account by setting a very small value of τ(zmax,Ω, ν), whose impact is,
however, negligible for the calculations presented in this paper.
2 When considering the unpolarized radiative transfer equation, the
conversion to optical depth cancels the variation of the unique eigen-
value along the ray path. In this case, the use of exponential integrators
guarantees L-stability in the formal solution (Janett & Paganini 2018).
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Trujillo Bueno 2003; de la Cruz Rodríguez & Piskunov 2013;
Štěpán & Trujillo Bueno 2013).

Crucially, to apply a formal solver to Eq. (3), it is necessary
to have a certain knowledge of the bijection, τ. The solution of
the initial value problem given by Eq. (2) is expressed as:

τ(z,Ω, ν) = −
1

cos(θ)

∫ z

zmax

η(z′,Ω, ν) dz′. (4)

In 1D radiative transfer applications, we are mainly interested in
the absolute value of the difference of optical depth between two
generic height points z and z0 (assuming z > z0) for a given direc-
tion, Ω. This information is provided by the integral in Eq. (4)
evaluated in the interval [z0, z], namely,

∆τ(Ω, ν) = τ(z0,Ω, ν) − τ(z,Ω, ν) =
1

cos(θ)

∫ z

z0

η(z′,Ω, ν)dz′ ≥ 0.

(5)

2.2. Numerical conversion to optical depth

Discretizing the atmosphere with Nz spatial points along the
vertical, and providing the corresponding total absorption coef-
ficients

{zk}
Nz
k=1, {ηk(Ω, ν)}Nz

k=1,

with ηk(Ω, ν) B η(zk,Ω, ν) and zk < zk+1, it is common to
employ piecewise quadratures to compute the integral Eq. (5),
where increments can be computed on each cell [zk, zk+1] with a
numerical quadrature. Defining τk(Ω, ν) B τ(zk,Ω, ν), the opti-
cal depth between the points zk and zk+1 for a direction Ω is thus
given by

∆τk(Ω, ν) = τk(Ω, ν)− τk+1(Ω, ν) =
1

cos(θ)

∫ zk+1

zk

η(z,Ω, ν)dz ≥ 0.

(6)

Moreover, defining the variable

u =
z − zk

zk+1 − zk
, for z ∈ [zk, zk+1], (7)

the integral Eq. (6) over the k-th cell [zk, zk+1] can be equivalently
written as an integral in the unit interval [0, 1]

∆τk(Ω, ν) =
zk+1 − zk

cos(θ)

∫ 1

0
η̃(u,Ω, ν)du, (8)

where the function η̃ encodes the behavior of the function η,
namely η̃(u,Ω, ν) = η(z,Ω, ν) for u and z satisfying the terms
of Eq. (7).

The total optical depth measured from the top boundary
(where we set τ(zmax,Ω, ν) = 0) until the spatial point zk for an
inclination θ is then given by:

τk(Ω, ν) =
Nz−1∑
j=k

∆τ j(Ω, ν). (9)

Numerical approximations of ∆τk (for k = 1, ...,Nz − 1) can
be obtained by replacing the integrals in Eqs. (6) or (8) with
a numerical quadrature. Crucially, this numerical approxima-
tion must be strictly monotone increasing, because one needs to

access the values of the inverse τ−1. The approximation of the
integral Eq. (6) in the k-th cell [zk, zk+1] at a given inclination θ
and frequency ν can thus be expressed as

∆τk(Ω, ν) =
∑
j ∈ S q

p

ω j(θ) η j(Ω, ν), (10)

whereω j are the quadrature weights. The general p-point stencil

S q
p = {k − p + q, ..., k + q − 1}, (11)

with p ≥ 2 and 2 ≤ q ≤ p, indicates the spatial grid points
considered for a particular quadrature. This particular stencil
always includes the indices k and k + 1. As the notation suggests,
the quadrature on the k-th cell could (in principle) require the
knowledge of points lying outside the considered cell. Typically,
such points are the immediate neighbors. As a paradigmatic
example, we present the very common and simple trapezoidal
quadrature. Omitting, for notational simplicity, the dependency
on the direction Ω and the frequency, ν, the linear interpolant
approximating η̃ for u ∈ [0, 1] can be expressed as

η̃trap(u) = ηk(1 − u) + ηk+1u.

In this case, the conversion to the optical depth via Eq. (8) is
given by

∆τ
trap
k =

zk+1 − zk

cos(θ)
ηk + ηk+1

2
. (12)

This is commonly known as the trapezoidal quadrature. In terms
of the notation introduced by Eqs. (10) and (11), we have p = 2
and q = 2, that is S 2

2 = {k, k + 1}, with the weights as follows:

ωk = ωk+1 =
zk+1 − zk

2 cos(θ)
.

We note that this quadrature is monotone and second-order
accurate and does not make use of information from outside the
considered k-th cell.

Janett et al. (2018) showed that high-order formal solvers
require a corresponding high-order numerical approximation
of Eq. (4) to maintain their high-degree of accuracy. High-order
monotone quadrature schemes can be obtained by replacing lin-
ear interpolation with higher order monotone interpolants. In
Appendix A, we present some concrete examples of high-order
interpolatory quadratures suitable to approximate the integral
Eq. (4), such as parabolic, Hermite, and Bezier quadratures.
We finally note that for an exponentially stratified atmospheric
model, Mihalas (1978) suggested to approximate η in Eq. (4)
with an exponential function. Unfortunately, the accuracy of this
exponential quadrature strongly depends on the assumption of
exponential stratification of the atmosphere, which is not always
suitable (see Janett & Paganini 2018).

3. Numerical experiments

This work is aimed at clearly assessing the performances of
different numerical optical depth conversion schemes in the syn-
thesis of emergent Stokes profiles. In particular, we first study the
convergence rates of different quadrature schemes for the opti-
cal depth conversion as a function of the number of spatial grid
points (Sect. 3.3). We then analyze the convergence rates (as a
function of the number of spatial grid points) of the conversion
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schemes combined with different formal solvers in the synthe-
sis of the emergent Stokes profiles (Sect. 3.4). In particular, we
analyze the trapezoidal, (backward) parabolic, spline, and cubic
Hermite conversion schemes3 presented in Appendix A, com-
bined with the DELO-linear, DELOPAR, and DELO-parabolic
formal solvers (e.g., Rees et al. 1989; Trujillo Bueno 2003; Janett
et al. 2017).

3.1. Physical setting

We solved the non-LTE RT problem for polarized radiation
accounting for both line and continuum processes in a 1D plane-
parallel atmospheric model. The continuum processes have been
modeled following Landi Degl’Innocenti & Landolfi (2004),
assuming frequency coherence in the comoving frame for the
scattering contribution to the emissivity. The line processes were
modeled by considering the simplest case of a two-level atom
with an unpolarized and infinitely sharp lower level, applying
the theoretical framework of Bommier (1997). We recall that this
framework allows for the partial frequency redistribution (PRD)
effects to be considered; namely, the correlations between the
frequencies of the incoming and outgoing photons in the scatter-
ing processes. In particular, we applied the redistribution matrix
formalism, through which the scattering contribution (label “sc”)
to the line emissivity is given by:

εℓ,sc(z,Ω, ν) = kL(z)
∫

dν′
∮

dΩ′

4π
R(z,Ω,Ω′, ν, ν′)I(z,Ω′, ν′),

(13)

where R ∈ R4×4 is the redistribution matrix (which contains an
analytic solution of the SE equations), I is the radiation field that
locally irradiates the atom, and kL is the frequency integrated
absorption coefficient. The complete explicit expressions of the
elements of Kℓ and εℓ for the considered atomic model, as well as
those of Kc and εc can be found in Alsina Ballester et al. (2017).

To clearly assess the impact of the different optical depth
conversion schemes, we analyzed three different settings of
increasing complexity. First, we modeled the continuum only.
Then we considered the weak photospheric Sr I 4607 Å line,
which we modeled in the limit of complete frequency redistri-
bution (CRD), that is, by neglecting any frequency correlations
between incoming and outgoing photons in the scattering pro-
cesses. The CRD limit is obtained by suitably modifying the
redistribution matrix of Bommier (1997). Finally, we considered
the stronger chromospheric Ca I 4227 Å line, which we modeled,
also taking into account the PRD effects, under the angle-average
approximation (e.g., Rees & Saliba 1982; Belluzzi & Trujillo
Bueno 2014; Alsina Ballester et al. 2017).

For the sake of simplicity, the impact of bulk velocity fields
was neglected. Moreover, when present, we only considered a
vertical magnetic field. Under such assumptions, it can be easily
verified that the absorption coefficient, η, is essentially isotropic
and the whole 1D problem is characterized by axial symmetry
around the vertical. Because of this symmetry, both the optical
depth and the radiation field only depend on the inclination θ

3 In this work, the implemented cubic Hermite conversion scheme
is the Shape-Preserving Piecewise Cubic Hermite Interpolation (see
Appendix A). Additionally, the quadratic Bezier conversion scheme
(see Appendix A) was also analyzed. Its results are however omitted,
since the quadratic Bezier and the cubic Hermite schemes give identical
results when the atmospheric model does not present discontinuities,
which is the case in all considered settings.

(and not on the azimuth χ). Moreover, taking the reference direc-
tion for positive Stokes Q parallel to the atmosphere, it can be
shown that in the absence of magnetic fields, the only non-zero
Stokes parameters are I and Q.

3.2. Numerical setting

After a suitable discretization of the spatial, angular, and fre-
quency domains, the problem can be solved by applying a
two-step approach. In the first step, the full nonlinear non-LTE
RT problem is solved neglecting polarization, using the RH code
of Uitenbroek (2001). In the second step, the problem is solved
including polarization phenomena, keeping the population of the
lower level calculated at step 1 fixed. By so doing, the problem
of step 2 is linear with respect to I, and it is solved by applying
a matrix-free GMRES iterative method equipped with a physics-
based preconditioner (see Benedusi et al. 2022). More details on
this solution strategy can be found in Janett et al. (2021, 2024),
Benedusi et al. (2021).

In all the calculations, the considered spectral interval
[νmin, νmax] is discretized with a Nν-nodes grid, which is finer
in the line core, where the nodes are equally spaced, and coarser
in the wings, where the nodes distance increases logarithmically.
The angular discretization, needed to evaluate the scattering inte-
gral of Eq. (13), is provided by a tensor product quadrature: we
considered two six-node Gauss-Legendre grids for the inclina-
tion µ = cos(θ) ∈ [−1, 0) ∪ (0, 1]; whereas, we considered a grid
with 8 equidistant nodes for the azimuth χ ∈ (0, 2π]4.

To study the convergence properties of the optical depth con-
version schemes as a function of the number of spatial grid
points, we need a sequence of discrete spatial grids with an
increasingly large number of points. The original spatial grid
(with corresponding atmospheric quantities) is provided by the
1D semi-empirical plane-parallel solar atmospheric model C
of Fontenla et al. (1993), hereafter FAL-C. This atmospheric
model discretizes the height interval [−100 km, 2219 km] with
Nz = 70 unevenly distributed spatial nodes. Depending on the
application, we extracted a particular subdomain from the orig-
inal FAL-C grid, that is, [zmin, zmax] ⊂ [−100 km, 2219 km].
Then, the logarithm of the atmospheric quantities in this new
domain is fitted with a polynomial of a degree of 10, and the
sequence of atmospheric models with an increasing number of
uniformly distributed grid-points was generated. The number of
cells of the j-th refinement is given by

N j
cells := 2 j · N0

cells with j ∈ {1, ..., 8}, (14)

and, accordingly,

N j
z = N j

cells + 1.

Throughout this work, we always use N0
cells = 10.

To properly study the accuracy of a particular optical depth
conversion scheme, we evaluated its impact on all the N0

cells = 10
“macrocells” of the initial grid. The approximation of the total
optical depth of the κ-th macrocell (with κ = 1, ...,N0

cells) for the
j-th refinement is then given by

Tκ, j(µ, ν) :=
2 jκ∑

ℓ=2 j(κ−1)+1

∆τℓ(µ, ν).

4 We note that in the considered 1D setting with axial symmetry and
considering PRD effects under the angle-average approximation, the
integral over the azimuth could, in principle, be performed analytically.
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The relative error is defined by

eτ(µ, ν; κ, j) :=

∣∣∣∣∣∣Tκ, j − Tκ,ref

Tκ,ref

∣∣∣∣∣∣ , (15)

where Tκ,ref is the reference solution, obtained with the cubic
Hermite optical depth conversion and using the most refined
spatial grid with N8

cells = 2560. The convergence rate, kτ, of
an optical depth conversion scheme is then provided through a
linear regression model, which fits the quantity

log
(
max
κ∈Iκ ,ν

eτ(µ, ν; κ, j)
)
,

as a function of log
(
N j

z

)
, using the nonlinear least squares

approach. By defining

Iκ := {2, . . . ,N0
cells − 1}, (16)

we intentionally exclude the first (κ = 1) and last (κ = N0
cells)

macrocells from the maxκ, because many higher order schemes
cannot be fully implemented in those macrocells, and their inclu-
sion would strongly alter the numerical analysis, especially the
value of the convergence rate, kτ.

Besides the convergence properties of the individual opti-
cal depth conversion schemes, it is also important to investigate
how these schemes combine with formal solvers for the synthe-
sis of emergent Stokes profiles. The relative error of the emergent
profiles using the j-th refined spatial grid is defined by:

eX(µ, ν; j) :=
X j(µ, ν) − Xref(µ, ν)

Xref(µ, ν) + sgn(Xref(µ, ν)) · δX
, (17)

where X = I,Q,V is the considered Stokes parameter, sgn is the
sign function, and δX ≥ 0 is an offset used to prevent Eq. (17)
from diverging in the case of Xref → 0. The considered values
for δX are given along with the results. The reference profile
Xref is obtained with the cubic Hermite optical depth conver-
sion, combined with DELO-parabolic formal solver, in the most
refined spatial grid. The convergence rate, kX , of a formal solver
combined with an optical depth conversion scheme is provided
through a linear regression model, fitting the quantity of

log
(
max
µ,ν

eX(µ, ν; j)
)
,

as a function of log
(
N j

z

)
, using the nonlinear least squares

approach. We note that the emergent Stokes profiles are
computed from the converged radiation field by performing
a single formal solution on the set of lines-of-sight with
µ ∈ {0.1, 0.15, 0.2, 0.25, 0.33, 0.41, 0.5, 0.58, 0.66, 0.75, 0.9}.

For the first application, where we modeled the contin-
uum only, we considered a single wavelength at λ = 4605.8 Å,
and the spatial domain [zmin, zmax] = [−100 km, 1378 km],
extracted from FAL-C and discretized according to Eq. (14).
In a second application, we modeled the Sr I 4607 Å line,
while also accounting for continuum contributions. We consid-
ered the wavelength interval [λmin, λmax] = [4605.8 Å, 4611.5 Å]
discretized with Nν = 71 frequency nodes, and the spatial
domain [zmin, zmax] = [−100 km, 2062 km]. Finally, to model
the Ca I 4227 Å line, while also accounting for contin-
uum contributions, we considered the wavelength interval
[λmin, λmax] = [4220.2 Å, 4235.7 Å], discretized with Nν = 101
frequency nodes, and the spatial domain [zmin, zmax] =
[−100 km, 2168 km].

Table 1. Convergence rates of optical depth conversion schemes.

Conversion scheme Continuum Sr I 4607 Ca I 4227

Trapezoidal 2.04 ± 0.01 2.04 ± 0.01 2.04 ± 0.01
Parabolic 3.12 ± 0.02 3.11 ± 0.02 3.10 ± 0.02
Spline 3.80 ± 0.07 3.98 ± 0.01 3.98 ± 0.01
Cubic Hermite 4.01 ± 0.01 4.01 ± 0.01 3.87 ± 0.08

Notes. Convergence rate, kτ, with uncertainties of the trapezoidal,
parabolic, spline, and cubic Hermite optical depth conversion schemes,
considering the continuum, Sr I 4607, and Ca I 4227 settings.

3.3. Optical depth calculations

In this section, we analyze the numerical conversion to opti-
cal depth. The magnetic fields are neglected, noting that their
impact on the absorption coefficient is negligible for the typical
strengths found in quiet or moderately active regions. In the first,
third, and fifth rows of Fig. 2, we show the optical depth Eq. (9)
as a function of height calculated with four different conversion
schemes (trapezoidal, parabolic, spline, and cubic Hermite) for
different values of Nz for the continuum, Sr I 4607, and Ca I
4227 settings, respectively. In the calculations, we considered the
line of sight µ = 0.17, and a single frequency, νc, which (for the
Sr I 4607 and Ca I 4227 settings) is the line-center frequency. In
the second, fourth, and sixth rows of Fig. 2, we also report the
corresponding relative error,

max
κ∈Iκ

eτ(µ, νc; κ, j),

as a function of N j
z , with eτ given by Eq. (15) and Iκ by Eq. (16)5.

We also provide the corresponding convergence rate, kτ.
In all settings, the trapezoidal conversion is second-order

accurate, the parabolic scheme is third-order accurate, whereas
the spline and cubic Hermite conversions are fourth-order accu-
rate, as summarized in Table 1. In general, the fourth-order
conversion schemes outperform lower order methods. Indeed,
the trapezoidal and parabolic conversions struggle in providing
highly accurate results even for Nz = 81. We also note that the
parabolic conversion completely fails in approximating the opti-
cal depth for Nz ≤ 21, even providing negative values of τ. The
spline scheme also shows a problematic pre-asymptotic behav-
ior, providing very inaccurate results for coarse spatial grids
(Nz = 11, 21). For all the considered settings, the cubic Her-
mite conversion is the best performing scheme, always showing
fourth-order accuracy and providing reliable results even for the
coarsest spatial grids.

3.4. Synthesis of emergent Stokes profiles

In Fig. 3, we show, for all combinations of the considered optical
depth conversions and formal solvers, the relative error:

max
µ,ν

eX(µ, ν; j),

as a function of N j
z , with eX given by Eq. (17) for X = I,Q. In par-

ticular, we show the results for the continuum (top two panels),
5 In the absence of magnetic and bulk velocity fields, the line absorp-
tion profile does not depend onΩ. Consequently, in a static and unmag-
netized plane-parallel atmosphere, the optical depth only depends on the
inclination θ through the factor 1/ cos(θ) (see Eq. (8)), which is elim-
inated in the relative error definition in Eq. (15). The relative errors
presented in Fig. 2 are thus independent of the considered directions.
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Fig. 2. Optical depth Eq. (9) as a function of height (first, third, and fifth rows) calculated with the trapezoidal (first column), parabolic (second
column), spline (third column), and cubic Hermite (fourth column) conversion schemes for a line of sight with µ = 0.17 and different Nz values (see
legends on first column), for the continuum (first row), Sr I 4607 (third row), and Ca I 4227 (fifth row) settings. The second, fourth, and sixth rows
show the corresponding relative error as a function of Nz, also reporting the convergence rate, kτ, obtained fitting the encircled data. The reference
solution is obtained with the cubic Hermite conversion scheme and using Nz = 2561. The relative error of the parabolic and spline conversions for
the coarsest spatial grid is out of the plot range.
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Fig. 3. Relative error in the emergent Stokes I (first, third, and fifth rows) and Stokes Q (second, fourth, and sixth rows) as a function of the number
of spatial grid points Nz, for the DELO-linear (left), DELOPAR (center), and DELO-parabolic (right) formal solvers combined with the trapezoidal,
parabolic, spline and cubic Hermite optical depth conversion schemes in the absence of magnetic fields. The corresponding convergence rates kX
are reported in Table 2. The considered settings are: continuum (first and second rows), Sr I 4607 (third and fourth rows), and Ca I 4227 (fifth
and sixth rows). The reference profiles are obtained with the cubic Hermite conversion scheme and DELO-parabolic, using Nz = 2561. The stars
represent the relative error Eq. (17) obtained using the original domain extracted from the FAL-C atmospheric model.
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Table 2. Convergence rates of formal solvers combined with optical depth conversion schemes.

Formal solver Conversion Continuum Sr I 4607 Ca I 4227

scheme kI kQ kI kQ kI kQ

DELO-linear Trapezoidal 2.00 ± 0.01 2.00 ± 0.01 1.99 ± 0.01 1.96 ± 0.01 1.44 ± 0.04 1.35 ± 0.03
DELO-linear Parabolic 1.40 ± 0.19 2.40 ± 0.06 2.36 ± 0.23 2.59 ± 0.11 1.42 ± 0.05 1.38 ± 0.03
DELO-linear Spline 2.00 ± 0.01 1.82 ± 0.03 1.99 ± 0.01 2.00 ± 0.01 1.43 ± 0.05 1.38 ± 0.03
DELO-linear Cubic Hermite 2.02 ± 0.01 1.75 ± 0.05 2.07 ± 0.02 1.98 ± 0.01 1.43 ± 0.05 1.38 ± 0.03

DELOPAR Trapezoidal 1.99 ± 0.01 2.05 ± 0.01 1.93 ± 0.02 2.12 ± 0.03 1.97 ± 0.01 2.07 ± 0.01
DELOPAR Parabolic 3.06 ± 0.01 3.06 ± 0.01 3.14 ± 0.03 3.18 ± 0.05 3.09 ± 0.02 3.06 ± 0.07
DELOPAR Spline 2.99 ± 0.01 3.12 ± 0.01 3.00 ± 0.01 3.14 ± 0.03 2.95 ± 0.05 3.06 ± 0.08
DELOPAR Cubic Hermite 2.84 ± 0.03 3.17 ± 0.03 2.77 ± 0.06 3.19 ± 0.03 2.94 ± 0.05 3.06 ± 0.08

DELO-parabolic Trapezoidal 2.02 ± 0.01 1.97 ± 0.01 2.03 ± 0.01 1.91 ± 0.01 2.02 ± 0.01 2.21 ± 0.04
DELO-parabolic Parabolic 3.08 ± 0.02 3.03 ± 0.01 3.23 ± 0.06 3.08 ± 0.03 3.13 ± 0.03 3.32 ± 0.09
DELO-parabolic Spline 3.02 ± 0.01 2.90 ± 0.03 2.97 ± 0.01 2.81 ± 0.05 3.13 ± 0.07 3.56 ± 0.08
DELO-parabolic Cubic Hermite 3.13 ± 0.02 2.79 ± 0.05 3.13 ± 0.01 2.62 ± 0.11 3.13 ± 0.01 3.57 ± 0.08

Notes. Convergence rates, kI and kQ, with uncertainties for the DELO-linear, DELOPAR, and DELO-parabolic formal solvers combined with the
trapezoidal, parabolic, spline, and cubic Hermite optical depth conversion schemes, considering the continuum, Sr I 4607, and Ca I 4227 settings.

Sr I 4607 (middle two panels), and Ca I 4227 (bottom two panels)
settings in the absence of magnetic fields. For the error expressed
in Eq. (17), we used the offset δX = 0 for both continuum and
Sr I 4607 cases, and the offsets δI = 0 and δQ = 10−12 for the
Ca I 4227 case; this is because, in this last case, the Q pro-
file shows a sign reversal for certain µ. In the figure, we also
report the corresponding convergence rates, that are summarized
in Table 2.

In the continuum and Sr I 4607 settings, DELO-linear shows
second-order accuracy and reasonable relative errors both in I
and Q for all the conversion schemes. By contrast, its order of
accuracy drops to less than 1.5 for the Ca I 4227 case, pro-
ducing very large relative errors both in I and Q. As shown in
Fig. B.1, the DELO-linear formal solver is very inaccurate in
the Ca I 4227 Å line core for both I and Q and this unsatis-
fying behavior is responsible for the very large errors and the
bad convergence rate. In all settings, both the DELOPAR and
DELO-parabolic formal solvers are third-order accurate in I and
Q for all the considered optical depth conversion schemes, except
for the trapezoidal scheme, which drops the convergence rate to
second-order. When equipped with a high-order optical depth
conversion scheme, these high-order formal solvers clearly out-
perform DELO-linear both in accuracy and rate of convergence.
We note that the third-order accuracy shown by DELOPAR is
in agreement with Janett et al. (2017). This study demonstrated
that in the absence of magnetic fields (i.e., for a vanishing off-
diagonal elements of K), the DELOPAR effectively performs as
a third-order numerical scheme. We additionally note that the use
of the parabolic conversion scheme leads to unacceptable errors
for Nz ≤ 21.

In Fig. 4, we repeat the same convergence error analysis for
the Sr I 4607 setting for the Stokes I, Q, and V , but in the
presence of a height-independent vertical magnetic field with
B = 100 G. The numerical analysis was carried out using the
offsets δI = 0 and δQ = δV = 10−12. Also, in this setting, the
whole 1D problem is characterized by axial symmetry around
the vertical. We note that the convergence behavior of the dif-
ferent numerical schemes for Stokes I corresponds to the one in
the absence of magnetic fields (see the third row of Fig. 3). This
confirms that in quiet or moderately active solar conditions, mag-
netic fields have a negligible impact on the emergent intensity

profiles. Both DELO-linear and DELOPAR show a second-order
accuracy in Stokes Q and V for all the conversion schemes.
We note that the second-order accuracy shown by DELOPAR
in the presence of magnetic fields is in agreement with Janett
et al. (2017). By contrast, DELO-parabolic is third-order accu-
rate for all the considered optical depth conversion schemes,
except for the trapezoidal one, which drops the convergence
rate to second-order. As shown in Fig. B.2, the trapezoidal and
parabolic conversion schemes yield relevant errors also for the
Stokes V .

In conclusion, in order to exploit high-order formal solvers,
it is necessary to avoid low-order conversion schemes and to
guarantee a sufficiently high number of spatial points.

4. Conclusions

In this paper, we analyze the impact of the numerical conver-
sion from the geometrical to the optical depth spatial scale in
the solution of the non-LTE RT problem for polarized radia-
tion. We provide a systematic investigation of this numerical
step, considering both the optical depth conversion scheme on its
own and how it performs when combined with different formal
solvers for the synthesis of emergent Stokes profiles. As a test
bench, we considered a 1D semi-empirical atmospheric model
in the absence of bulk velocity fields, along with three different
RT settings: the continuum, the Sr I 4607 Å line, modeled in
the CRD limit, and the Ca I 4227 Å line. In the latter setting,
angle-averaged PRD effects were taken into account during the
modeling.

For the optical depth conversion, in all cases, the trape-
zoidal scheme is second-order accurate, the parabolic scheme
is third-order accurate, whereas the spline and cubic Hermite
schemes show fourth-order accuracy. Notably, the trapezoidal
and parabolic conversions struggle to provide highly accurate
results, yielding relative errors on the order of 1−10% for the
common FAL-C spatial grid. Moreover, the parabolic and spline
schemes present an erratic pre-asymptotic behavior, leading to
very large errors for coarse spatial grids.

In the synthesis of the emergent Stokes profiles, the con-
vergence rate is impacted by the choice of both the conversion
scheme and formal solver. The use of low-order conversion
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Fig. 4. Same as Fig. 3, but for the emergent Stokes I, Q, and V for the Sr I 4607 setting, in the presence of a height-independent vertical magnetic
field with B = 100 G.

schemes reduces the convergence rate of high-order formal
solvers. In particular, high-order accuracy in both the optical
depth conversion and the formal solver is necessary to guar-
antee low relative errors (<10−2) in the synthetic emergent
Stokes profiles; however, this is valid provided that the num-
ber of spatial grid points is sufficiently large to adequately
sample the atmospheric structure. To obtain accurate results
in practical forward-modeling applications, we advise always
equipping high-order formal solvers with a high-order optical
depth conversion scheme, such as the cubic Hermite conversion.

Finally, we note that standard high-order quadratures rely
on smoothness assumptions on the functions to be integrated.
Standard quadratures may indeed poorly perform in the presence
of discontinuities, which may drastically increase local errors,
reducing the accuracy of the solution and thwarting high-order
convergence (e.g., Janett 2019). The performance of the numer-
ical conversion to optical depth in 3D atmospheric models from
MHD simulations, showing non-smooth variations of the physi-
cal quantities, will be the subject of a future investigation. This
future study will also include the analysis of non-oscillatory
interpolatory quadratures (see Appendix A).
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Appendix A: Optical depth conversion schemes

We present a series of numerical quadratures for evaluating the
optical depth scale obtained by replacing the discrete total opac-
ity η (i.e., the integrand in Eq. (4)) with different interpolants,
which are then integrated exactly. For notational simplicity,
the dependence of η on the direction and frequency is always
omitted.

A.1. Lagrange interpolatory quadratures

The p-order Lagrange polynomial approximating η in the inter-
val z ∈ [zk, zk+1] reads

ηLagr,p,q(z) =
∑
i∈S q

p

ηiℓi(z), (A.1)

where S q
p = {k − p + q, ..., k + q − 1} is a p-point stencil with p ≥

2 and 2 ≤ q ≤ p, and li are the Lagrange basis polynomials,

ℓi(z) =
∏

m∈S q
p, m,i

z − zm

zi − zm
,

satisfying the relation ℓi(z j) = δi j. The interpolation (A.1) exactly
matches the data values ηi at positions zi inside the whole stencil
S q

p. The conversion to the optical depth (6) given by the Lagrange
interpolant (A.1) is then

∆τ
Lagr,p,q
k (zk−p+q, ..., zk+q+1, ηk−p+q, ..., ηk+q+1) =

∑
i∈S q

p

ηiLi, (A.2)

with

Li =

∫ zk+1

zk

ℓi(z)dz.

The right-hand side of (A.2) has the same form of (10), and the
Li play the role of the weights, hence the task of computing (6)
is reduced to choosing the stencil and computing the weights.

We note that by choosing p = 2 and q = 2, we recover the
trapezoidal conversion given by (12). In the following, we pro-
vide the explicit expressions for the weights of the backward and
forward parabolic quadratures, and of the cubic quadrature.

A.1.1. Backward parabolic quadrature

The backward parabolic interpolation is obtained by choosing
p = 3 and q = 2, and consists of determining the quadratic
Lagrange polynomial interpolating the data {ηk−1, ηk, ηk+1} at
{zk−1, zk, zk+1}. From (6) we have

∆τ
b-parab
k =

∫ zk+1

zk

ηLagr,3,2(z)dz,

and one finds

∆τ
b-parab
k = −ηk−1

h3
k

6hk−1(hk−1 + hk)
+ ηk

hk(3hk−1 + hk)
6hk−1

+ ηk+1
hk(3hk−1 + 2hk)

6(hk−1 + hk)
,

(A.3)

with hk = zk+1 − zk. We note that ∆τb-parab
1 is not defined by the

quadrature (A.3), and the quadrature on the first cell [z1, z2] can
be performed using, for instance, the trapezoidal quadrature (12).

A.1.2. Forward parabolic quadrature

The forward parabolic interpolation is obtained by choosing
p = 3 and q = 3, and consists of determining the quadratic
Lagrange polynomial interpolating the data {ηk, ηk+1, ηk+2} at
{zk, zk+1, zk+2}. From (6) we have

∆τ
f-parab
k =

∫ zk+1

zk

ηLagr,3,3(z)dz,

and we find:

∆τ
f-parab
k = ηk

hk(2hk + 3hk+1)
6(hk + hk+1)

+ ηk+1
hk(hk + 3hk+1)

6hk+1

− ηk+2
h3

k

6hk+1(hk + hk+1)
.

(A.4)

We note that ∆τf-parab
Nz

is not defined by the quadrature (A.4), and
the quadrature on the last cell [zNz−1, zNz ] can be performed using,
for instance, the trapezoidal quadrature (12).

A.1.3. Cubic quadrature

The cubic interpolation can be obtained by choosing p =
4 and q = 3, and consists of determining the cubic
Lagrange polynomial interpolating the data {ηk−1, ηk, ηk+1, ηk+2}

at {zk−1, zk, zk+1, zk+2}. From Eq. (6) we have

∆τcubic
k =

∫ zk+1

zk

ηLagr,4,3(z)dz,

and we find

∆τcubic
k = −ηk−1

h3
k(2hk+1 + hk)

12hk−1(hk−1 + hk)(hk−1 + hk + hk+1)

+ ηkhk
hk−1(4hk + 5hk+1) + hk(hk + hk+1) + hk+1(hk−1 + hk)

12hk−1(hk + hk+1)

+ ηk+1hk
hk−1(hk + hk+1) + hk(hk−1 + hk) + hk+1(5hk−1 + 4hk)

12hk+1(hk−1 + hk)

− ηk+2
h3

k(2hk−1 + hk)
12(hk−1 + hk + hk+1)(hk + hk+1)hk+1

.

(A.5)

We note that ∆τcubic
1 and ∆τcubic

Nz
are not defined by the quadra-

ture (A.5), and the quadrature on these cells can be performed
using, for instance, the trapezoidal quadrature in Eq. (12).

A.2. Cubic Hermite quadratures

The cubic Hermite interpolant approximating η̃ for u ∈ [0, 1]
makes use of both the values of η and its derivative η′, and it
is expressed as

η̃Herm(u) = ηk(1 − 3u2 + 2u3) + η′k(zk+1 − zk)(u − 2u2 + u3)

+ ηk+1(3u2 − 2u3) + η′k+1(zk+1 − zk)(−u2 + u3).
(A.6)

The conversion to the optical depth in Eq. (8) is given by

∆τHerm
k =

∫ 1

0
η̃Herm(u)du

= (ηk + ηk+1)
(zk+1 − zk)

2
+ (η′k − η

′
k+1)

(zk+1 − zk)2

12
.

(A.7)
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We note that a dataset can be interpolated by applying the above
procedure on each interval also without the explicit information
on the first derivatives η′k and η′k+1. One can indeed employ dis-
crete first derivatives to approximate η′k and η′k+1, and this choice
is not unique. For instance, approximating η′k and η′k+1 with the
first-order four-point (nodes zk−1, zk, zk+1 and zk+2) derivatives for
nonuniform grids (e.g., Singh & Bhadauria 2009; Janett et al.
2019),6 we can recover the Lagrange cubic quadrature using
Eq. (A.5).

Another example is given by the cubic spline method, which
constructs η by choosing the discrete approximation of η′k and
η′k+1, making even the second derivative η′′ continuous at those
nodes. This produces a smoother result, which is also more
accurate if the dataset consists of values of a smooth function,
but it can also introduce undesirable oscillations. In any case,
the quadrature (A.7) is fourth-order accurate provided that the
approximation η̃′ ≈ η′ is at least of third-order (e.g., Dougherty
et al. 1989; Janett 2019).

A.3. Non-oscillatory interpolatory quadratures

In 3D radiative transfer applications, the discrete data to be
interpolated could present at the same time complex smooth
structures and various types of discontinuities. It is well known
that standard high-order interpolations (e.g., Lagrange interpo-
latory quadratures) tend to misrepresent the nonsmooth behavior
of a function, introducing oscillations near discontinuities. It is
thus necessary to apply high-order well-behaved techniques that
are able to interpolate both smooth and discontinuous data.

Based on the cubic Hermite interpolant (A.7), the Shape-
Preserving Piecewise Cubic Interpolation (the one applied in
this paper) interpolates η, making the first derivative η′ con-
tinuous. Moreover, the slopes are chosen in such a way that
η preserves the shape of the data and respects monotonicity
(Fritsch & Carlson 1980). The fourth-order weighted essentially
non-oscillatory (WENO) interpolation technique (Janett et al.
2019) has been devised for use with both complex smooth struc-
tures and discontinuities. The fourth-order WENO scheme uses
the same four-point stencil as the cubic Lagrange and monotonic
cubic interpolations. Another example is given by the Bezier
interpolant. To obtain accurate results, de la Cruz Rodríguez
& Piskunov (2013) proposed using monotonic quadratic Bezier
splines to compute the quadrature in Eq. (6). In the follow-
ing, we present the quadrature based on the quadratic Bezier
interpolations.

A.3.1. Quadratic Bezier quadrature

The quadratic Bezier interpolant approximating η̃ for u ∈ [0, 1]
is expressed as:

η̃Bez(u) = ηk(1 − u)2 + ηk+1u2 +Ck2u(1 − u), (A.8)

with Ck as the so-called Bezier control point of the k-th cell. The
conversion to the optical depth for Eq. (8) defined through the
quadratic Bezier interpolant is given by

∆τBez
k =

∫ 1

0
η̃Bez(u)du = (ηk + ηk+1 +Ck)

zk+1 − zk

3
. (A.9)

The Bezier control point can be set as symmetric via

Ck =
C0

k +C1
k

2
, (A.10)

6 The formulae in Singh & Bhadauria (2009) contain some typos,
which have been corrected in Janett et al. (2019).

where

C0
k B ηk + η

′
k
zk+1 − zk

2
,

C1
k B ηk+1 − η

′
k+1

zk+1 − zk

2
, (A.11)

are discrete estimates of η in the middle of the k-th cell. To guar-
antee monotonicity, the derivative is numerically estimated as

η′k =


dk−1/2 · dk+1/2

αk · dk+1/2 + (1 − αk) · dk−1/2
, if dk−1/2 · dk+1/2 > 0

0, else
(A.12)

with

αk =
1
3

(
1 +

zk+1 − zk

zk+1 − zk−1

)
,

dk+1/2 =
ηk+1 − ηk

zk+1 − zk
,

dk−1/2 =
ηk − ηk−1

zk − zk−1
.

We note that C0
k and C1

k are not defined in the first and in the last
cell, respectively.

Appendix B: Emergent profiles

The top row of Fig. B.1 shows the emergent I and Q/I pro-
files as a function of wavelength at µ = 0.1 for the Sr I 4607 Å
and Ca I 4227 Å lines in the absence of magnetic fields, for
Nz = 41, which is a typical spatial grid size for semi-empirical
atmospheric models. In the bottom row, we also report the cor-
responding relative errors eI and eQ defined by (17). The relative
error eI shows that, independently of the formal solver, the use
of the trapezoidal and parabolic conversion schemes yields to
relevant errors (almost 10−1), that is one order of magnitude
worse than the results obtained with the high-order conversion
schemes. In particular, the use of the trapezoidal scheme usually
leads to an underestimation of the intensity, whereas the use of
the parabolic scheme leads to an overestimation. For the high-
order conversion schemes, the accuracy in the line core is clearly
determined by the formal solver. We finally note that, for the Ca I

4227 Å line, the DELO-linear formal solver is very inaccurate
in the line core for both I and Q. This unsatisfying behavior is
responsible for the very large errors and the bad convergence rate
already noticed in Sect. 3.4. We also note that the more satisfy-
ing results in the Q/I profiles are due to a sort of compensation
of the errors in I and Q. Indeed, these profiles are usually both
either under- or over-estimated. For this reason, fractional polar-
ization signals (i.e., Q/I, U/I, and V/I) are usually less sensitive
to the conversion scheme than the I, Q, U, and V signals.

To also analyze Zeeman polarization signals, in Fig. B.2 we
show the emergent I and V/I profiles at µ = 1 (solar disk-center)
for the Sr I 4607 Å line, in the presence of a height-independent
vertical magnetic field with B = 100 G. For this setting and this
line of sight, Q/I and U/I signals are zero and, therefore, they
are not shown. In the bottom row, we also report the correspond-
ing relative errors eI and eV defined by (17), with offsets δI = 0
and δV = 10−12. We note that the trapezoidal and parabolic con-
version schemes yield relevant errors also for the Stokes V , while
the more satisfying results in the V/I profiles are due to a sort of
compensation of the errors in I and V .
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Fig. B.1: Emergent I and Q/I profiles at µ = 0.1 as a function of wavelength (top row) for the Sr I 4607 Å (first and second columns) and Ca I 4227 Å
(third and fourth columns) lines (in the absence of magnetic fields), modeled considering Nz = 41 and all 12 combinations of 3 formal solvers,
namely DELO-linear (red), DELOPAR (green), and DELOPARABOLIC (blue), and 4 optical depth conversion schemes, namely trapezoidal (dot-
dashed), parabolic (dot-dot-dashed), spline (dotted), and cubic Hermite (dashed). The reference solution (black solid line) is obtained with the cubic
Hermite conversion, the DELO-parabolic formal solver, and Nz = 2561. The bottom row shows the corresponding relative errors as a function of
wavelength.
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Fig. B.2: Same as Fig. B.1, but for the emergent I and V/I profiles of the
Sr I 4607 Å line at µ = 1, in the presence of a height-independent verti-
cal magnetic field with B = 100 G. The grey vertical lines are meant as
guide to the eye and indicate the wavelength position of the two maxima
of |V/I|.
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