
A&A, 687, A46 (2024)
https://doi.org/10.1051/0004-6361/202347502
c© The Authors 2024

Astronomy
&Astrophysics

The torsion of stellar streams and the overall shape of galactic
gravity’s source

Adriana Bariego-Quintana1 and Felipe J. Llanes-Estrada2

1 IFIC-Univ. Valencia, c/ Catedrático José Beltrán, 2, 46980 Paterna, Valencia, Spain
e-mail: adriana.bariego@gmail.com

2 Universidad Complutense de Madrid, IPARCOS & Dept. Física Teórica, Plaza de las Ciencias 1, 28040 Madrid, Spain
e-mail: fllanes@ucm.es

Received 19 July 2023 / Accepted 25 March 2024

ABSTRACT

Context. Flat rotation curves, v(r), are naturally explained by elongated (prolate) dark matter (DM) distributions, and we have provided
competitive fits to the SPARC database. To further probe the geometry of the halo, or the equivalent source of gravity in other
formulations, one needs observables outside the galactic plane. Stellar streams, poetically analogous to airplane contrails, but caused
by tidal dispersion of massive substructures such as satellite dwarf galaxies, would lie on their own plane (consistently with angular
momentum conservation) should the DM-halo gravitational field be spherically symmetric. Tracks resembling entire orbits are seldom
available because their periods are commensurable with Hubble time, with streams often presenting themselves as short segments.
Aims. Therefore, we aim to establish stellar stream torsion, a local observable that measures the deviation from planarity in differential
curve geometry, as a diagnostic providing sensitivity to aspherical DM distributions and ensuring the use of even relatively short
streams.
Methods. We performed small-scale simulations of tidally distorted star clusters to check that indeed a central force center produces
negligible torsion, while distorted halos can generate it. Turning to observational data, we identified among the known streams those
that are at the largest distance from the Galactic center, and that are likely not affected by the Magellanic clouds, as the most promising
for the study, and by means of polynomial fits we extracted their differential torsion.
Results. We find that the torsion of the few known streams that should be sensitive to most of the Milky Way’s DM halo is much
larger than expected for a central spherical bulb alone. This is consistent with the nonsphericity of the halo.
Conclusions. Future studies of stellar stream torsion with larger samples and further out of the galactic plane should be able to extract
the ellipticity of the halo to see whether it is just a slight distortion of a spherical shape or whether it rather resembles a more elongated
cigar.
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1. Introduction

The problem of galactic rotation is the empirical statement that
rotational velocity around the galactic center seems to flatten out
for a large fraction of the population of galaxies in which this
has been measured at long-enough distances (Rubin et al. 1978).
This creates a puzzle if the data is interpreted in terms of rotation
external to a spherical source around which orbital equilibrium
(Kepler’s third law written for the velocity, v) demands falling v
for stellar objects or clouds of gas,

v2

r
=

GM
r2 =⇒ v =

√
GM

r
· (1)

The most accepted explanation is the existence of additional
dark matter (DM) or a modification of the law of motion under
gravity.

Because typical velocities in spiral galaxies are on the
order of 200−300 km s−1, v/c ∼ 10−3, relativity is a correction
and Newtonian mechanics should get the bulk of the rotation
right. Therefore, either a modification of mechanics, such as
modified Newtonian dynamics (MOND; Milgrom 1983), or a
modification of the gravity source, typically in the form of
a spherical DM halo (Frenk et al. 1985), are invoked. MOND

however runs into problems at larger, cosmological scales
(Aguirre et al. 2001; Dodelson & Liguori 2006); and a spheri-
cal DM distribution has to be fine-tuned to have very nearly an
isothermal ρ(r) ∝ 1/r2 profile to explain the flatness of the rota-
tion curve.

If we inhabited a two-dimensional cosmos, however, the nat-
ural gravitational law would be |F| ∝ 1

r instead of ∝ 1
r2 and the

observed rotational law would be v2D ∝ constant, which is the
law that the experimental data demands. We do not; but a cylin-
drical matter source achieves the same dimensional reduction by
providing translational symmetry along the OZ symmetry axis
of the cylinder (Slovick 2010; Llanes-Estrada 2021). If the lin-
ear density of the cylindrical DM source is λ, we can write

v2

r
=

2Gλ
r

=⇒ v =
√

2Gλ. (2)

That is, the constant velocity function, v(r), is natural
for a filamentary source. Moreover, if the rotation curve is
only measured to a finite r, it is obviously the case that the
source does not need to be infinitely cylindrical: it suffices
that it be prolate (elongated) instead of spherical, as is shown
by detailed fits (Bariego-Quintana et al. 2023) to the SPARC
database (Lelli et al. 2016) and as is consistent with simulations
of DM halos (Allgood et al. 2006).
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Observables in the galactic plane alone, such as detailed rota-
tion curves, cannot distinguish between competing models such
as spherical halos with nearly ρDM(r) ∝ 1

r2 profiles or elongated
halos with arbitrary profile. To lift the degeneracy between shape
and profile one needs to find adequate, simple observables from
data outside the galactic plane.

For a while now, stellar streams (Ibata & Gibson 2007) in
the Milky Way (MW) Galaxy have been a promising new source
of information on the DM distribution (Nibauer et al. 2023), as
they will eventually be for other galaxies (Pearson et al. 2022),
or, more generically, for the effective gravitational potential
(Sanders 2014). Streams have been proposed (Erkal et al. 2016)
to detect DM clumps (for example, presumed subhalos) that may
collide with a stream and leave a gap imprinted therein.

In the rest of this article, we develop what we think is a key
observable to be measured on those streams that has a bearing on
the question of the overall shape of the presumed halo. Section 2
is dedicated to reviewing the definition of torsion in differential
curve geometry, because it is the parameter which locally quanti-
fies the aplanarity of a curve in three dimensions, and to showing
that, around a spherical halo, orbits as well as streams are tor-
sionless. (The distinction is that streams can be thought of as a
bundle of nearby orbits, one for each constituent body. If a whole
stream is taken as a perfect orbit, biases in the full reconstruc-
tion of the gravitational potential can creep in Sanders & Binney
2013.)

Section 3 then shows how we expect tidal streams around
elongated gravitational sources to show torsion if there is a com-
ponent of the velocity parallel to the axis of elongation of the
source. Section 4 makes a reasonable selection among the known
stellar streams in our MW Galaxy and we plot the torsion calcu-
lated along each of them, showing that there seems to be a signal
here. Section 5 then discusses how further studies can improve
the conclusion.

2. Orbits and streams around central potentials are
torsionless

2.1. Torsion quantifies separation from orbital planarity

Before explaining why we wish to propose torsion as a useful
observable to probe the DM halo – to fix notation – let us recall
a few concepts of differential geometry (do Carmo 2017).

In brief, the torsion of a curve measures how sharply it twists
out of its osculating plane, instantaneously defined by the tan-
gent and normal vectors (equivalently, by the velocity and nor-
mal acceleration).

To a curve, r(t), in three-dimensional space parameterized
by an arbitrary variable, t, we can associate an arclength, s(t) =∫ t
|r(t′)|dt′, and the tangent vector, T = dr/ds. If at a certain

point, P, the curvature is nonzero, then the normal vector at P
is defined by N = dT/ds (its inverse modulus giving the radius
of the circumference best approximating the curve at P), and the
binormal vector (that completes the Frenet-Serret trihedron) by
the vector product of both,

B = T × N. (3)

If the curve is perfectly planar, the tangent and normal vec-
tors will always lie in the same plane, and in such a case the
binormal vector stays parallel to itself along the curve. Any nat-
ural definition of torsion will then yield zero.

But if the curve twists out of its osculating plane (like a uni-
formly advancing helix, which corresponds to constant torsion),

the binormal vector will acquire a rotation. Torsion will then
measure the speed of that rotation of the binormal – which is
a locally defined vector at each point, P, along the curve, r(t) –
as the scalar product of the intrinsic derivative of B and the nor-
mal vector (this discounts the change of the modulus of B and
rather measures its twisting),

τ = −
dB
ds
· N. (4)

If the arc length is not to hand and the arbitrary parameter, t,
needs to be used, then a convenient formula (with the prime
denoting d/dt) is

τ =
(r′ × r′′) · r′′′

|r′ × r′′|2
· (5)

Since up to three derivatives of the position along the curve need
to be computed, several adjacent points of a discretized curve are
needed to extract the torsion: but it is still quite a local observable
that does not need long trajectory stretches.

We are going to demonstrate the use of this observable τ
for stellar streams, particularly around the MW, to determine the
shape of the gravitational potential of its DM Halo.

2.2. Movement around a Newtonian spherical source

Newtonian gravity predicts, for motion around a spherical
body,

r′′ =
F
m

= −GM
r
|r|3

, (6)

with M the mass inside the sphere of radius |r|. The necessary
third derivative can be computed in a straightforward manner,
taking into account that |r|′ = r̂ · r′ is the modulus of the projec-
tion of the velocity along the visual from the origin,

r′′′ =
−GM
|r|2

(
r̂′ −

2
|r|

(r̂ · r′)r̂
)
, (7)

in terms of components along the velocity and along the position.
Because of Eq. (6),

(r′ × r′′) ∝ (r′ × r), (8)

and therefore, observing that both terms of Eq. (7) are propor-
tional to either r′ or r, we see that (r′ × r′′) ⊥ r′′′. Therefore,
the scalar product in the numerator of Eq. (5) vanishes, and thus
τ = 0 for motion around a spherical body.

The planarity of the orbit around a central potential is, of
course, a textbook consequence (Goldstein et al. 2001) of the
conservation of the direction of the angular momentum vector,
L̂, which in this language is parallel to the binormal vector. And,
additionally, the Newtonian gravity law is not strictly necessary:
any central potential will yield the same result. This observation
is of particular interest for the MOND explanation of the galactic
rotation curves in Eq. (1) since, while the intensity of the acceler-
ation induced by matter is different from Newtonian mechanics,
the central direction of the force is respected: MOND likewise
predicts no torsion.
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Fig. 1. Motion of a star ensemble around around a spherical source. Top row: simulated movement of a 200-star cluster around a spherical
gravitational source with parameters akin to those of the MW, in the three planar projections, extracted at times t = 0 Myr, t = 200 Myr, t =
400 Myr, t = 600 Myr, and t = 800 Myr. Lower left: three-dimensional view with the containing plane. The initial cluster has a radius of 2 kpc
and is at a distance of 30 kpc from the galactic origin of coordinates. Member stars have slightly different velocities, v∗ = 220 kpc ± ∆v, due to the
additional random ∆v. (All axes are in kpc). Lower right: extracted torsion as a function of time, from an analytical helicoidal fit to the resulting
stream with χ2/Ngdl = 0.86, which yields a value of τ ' 3.5 × 10−4 kpc−1 (a one-star orbit would return exactly zero torsion).

2.3. Simulation of an N-point stellar stream around a
spherical gravitational source

The discussion presented in Sect. 2.2 refers to the torsion of one
test body under a central field. If the body lost dust grains, form-
ing a kind of contrail, its shape through space would be a pla-
nar curve. But stellar streams are not quite of this nature, and
rather the result of the tidal stretching of a globular cluster or
dwarf galaxy (Noreña et al. 2019). Since each object in the clus-
ter starts off at a different height, z, with respect to the galactic
plane, its orbit around the center of force lies on a slightly differ-
ent plane, the effect being that the cluster, in addition to stretch-
ing, contorts, with the upper particles passing under the center of
mass (cm) to become the lower ones with each half orbit.

We here show that this effect is negligible and the torsion of a
stream around a central potential can safely be neglected, as the
cm of the stream follows one of the trajectories of Sect. 2.2, with
τ = 0. Rather than entangling the discussion in detailed theory,
a couple of simple simulations will illustrate the point.

We simulated a globular cluster of N (specifically 100, 200,
500, 700, and 1000 particles) point-like stars, randomly dis-
tributed at t = 0 over a sphere of radius R0 (on the order of

one or a few kpc, typically; in the following simulation, 2 kpc)
at a distance, |r|, from the galactic center (of order 30 kpc in the
following example), with a certain mass, m∗i , and common ini-
tial velocity, u∗ ∼ 220 kpc. An additional random velocity kick,
∆v0 = Gmcluster/2r0, in a random direction was given. We then
let it evolve under the gravitational force of the central source
with mass M ∈ (109, 1012) M�, standing for a galactic bulb or a
spherical DM halo, and we allowed for a correction due to the
inner binding forces of the cluster. This was small because the
random masses were taken in the interval m∗ ∈ (0, 20) M�, and
thus their mutual interactions were orders of magnitude smaller
than those with the galactic center. The constant, GM, of the cen-
tral source can conveniently be eliminated in terms of the typical
velocity of circular orbits around the galactic center, from the
orbital equilibrium, v2

rot/r = GM/r2. For the MW, this is typi-
cally 220 km s−1.

We show the simulation in Fig. 1. The concentrated orange
points in the stream visualization plots (three-dimensional views
as well as Cartesian projections, as is marked on the axes) mark
the initial cluster at t = 0. The evolved cluster at later times, the
clouds of cyan, blue, and purple dots, is seen to stretch under
tidal tensions.
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The stream remains near the (slightly tilted) plane contain-
ing the initial velocity, without developing motion outside that
plane, and thus with negligible torsion for each individual orbit.
Nevertheless, a measurable τ ∼ O(10−4) is visible on the lower
right plot, due to the need to fit a curve to the dispersed, criss-
crossing points.

3. Orbits around elongated potentials and τ , 0
3.1. Movement around a Newtonian cylindrical source

We now move on to quickly show how torsion is expected to
look for an orbit around a perfectly cylindrical source of gravity,
in a discussion paralleling that of Sect. 2.2. We naturally employ
cylindrical coordinates (ρ, ϕ, z), so that, denoting the time deriva-
tive by a ′ sign as in Eq. (4),

r = ρρ̂ + z ẑ (9)
r′ = ρ′ρ̂ + ρϕ′ϕ̂ + z′ ẑ (10)

r′′ = (ρ′′ − ρϕ′2)ρ̂ + (2ρ′ϕ′ + ρϕ′′)ϕ̂ + z′′ ẑ, (11)

where in the acceleration we recognize, from left to right, the
radial, centrifugal, Coriolis, azimuthal, and vertical accelera-
tions, respectively. The force law is the same as that for a line
of charge in electromagnetism, except of course with the con-
stant replaced, so that in terms of the linear mass density, λ,

r′′ =
F
m

=
−2Gλ
ρ

ρ̂ + 0 · ϕ̂ + 0 · ẑ. (12)

Comparing this with the general form in Eq. (11), we recover
z′′ = 0 =⇒ z′ = constant (reflecting translational invariance
along the OZ axis) and ρ2ϕ′ = constant so that the third com-
ponent, Lz/m, of angular momentum per unit mass is conserved,
just as in the central force problem. However, now the direction
of L is not conserved, so that the binormal vector changes and
one expects a torsion. To obtain it, we started from Eq. (12) and
took a further derivative to obtain

r′′′ =
−2Gλ
ρ

(
−
ρ′

ρ
ρ̂ + ϕ′ϕ̂

)
(13)

(valid for the Newtonian force with cylindrical symmetry only).
Calculating the cross product of Eqs. (10) and (12), while using
the righthandedness of the trihedron (ρ̂, ϕ̂, ẑ) to evaluate each
basis vector product, yields

r′ × r′′ = (−2Gλ)
[
−ϕ′ ẑ +

z′

ρ
ϕ̂

]
. (14)

Next, we took the scalar product with r′′′ and evaluated Eq. (5)
to obtain the torsion, yielding

τ =
z′ϕ′

(ρϕ′)2 + z′2
=

1
ρ

vzvϕ

v2
ϕ + v2

z
, (15)

which we have cast in an easier-to-remember form in the sec-
ond expression. Clearly, for there to be a torsion we need
both azimuthal and vertical velocities (so that stellar streams
in the galactic plane are not sensitive, as expected). Addition-
ally, because |vzvϕ| ≤ v2

z + v2
ϕ, torsion belongs to the interval

τ ∈ [−ρ−1, ρ−1], so its maximum magnitude is controlled by the
distance from the stellar stream segment to the galactic axis.

Fig. 2. Spread of a 100-body stellar cluster after t = 0, 125, 250, 375,
and 500 Myr. The resulting stream, with an initial vertical speed of vz =
50 km s−1, at different times clearly shows an upwardly advancing helix
moving around the z axis.

3.2. Simulation of an N-point stellar stream around a
cylindrical source

Next, we proceeded to repeat the exercise of Sect. 2.3 with the
same starting data, but replacing the central spherical Newto-
nian source with a cylindrical source. The force, relegated to
Eq. (B.4), now distinguishes the vertical acceleration from its
two components parallel to the galactic plane.

Its first term is the acceleration caused by the cylindrical
gravitational source (that along the OZ axis being zero by trans-
lational symmetry). Its linear mass density, λ = M/L, was
obtained from the typical rotation curve around a galaxy, vrot =
√

2Gλ (Llanes-Estrada 2021). The second term of Eq. (B.4) is,
again, the correction due to the tiny binding of the stellar streams
stars among themselves, together with Eq. (B.4).

We show two typical computations in Figs. 2, a three-
dimensional view, and 3, a more detailed analysis of a run.

If the starting velocity profile were perfectly set in the XY
plane perpendicular to the cylinder, the torsion would still be
zero, as per Eq. (15). We gave it a slight tilt and then the orbit
started behaving as a helix. This can be appreciated by studying
the originally compact cluster of stars at different times up to
1 Gyr, seeing it spread and ascend in a spiral, showing a torsion,
which is a factor 30 times larger than that for the stream around
a purely spherical source.

The value of the torsion extracted from the numerical simu-
lation is τ ' 1.08 × 10−2 kpc−1. This is in excellent agreement
with the analytical estimate that we now present. To obtain it,
we first note that Eq. (15) for the torsion, with the parameteriza-
tion of the stream track given in Eq. (A.2) and an almost circular
planar projection (semiaxes satisfying a ' b), is

τ|helix '
cω

a2ω2 + c2 · (16)

Here, c is the vertical “velocity”, vz, in terms of the arbitrary
curve parameter, t, and ω = vϕ/ρ is the rotational “angular
velocity”, with ρ = a the radius of the orbit in the XY plane.
With the setup data for the simulation in Fig. 3, namely c ∼
80 kpc Gyr−1, a ∼ 30 kpc (we note that the curvature scale is
then a−1 ∼ 0.03 kpc−1) and ω ∼ 7 rad Gyr−1, Eq. (16) yields
τ|helix ' 0.011 kpc−1, in agreement with the numerical value,
0.0108, extracted from the simulation. The slight oscillation seen
in Fig. 3 is due to the ellipticity of the helix (with the oscillation
period of about half a Gyr corresponding to half of the actual
period of the trajectory because of the reflection symmetry of an
ellipse).
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Fig. 3. Motion of a star ensemble around around a perfectly cylindrical toy-model source. The initial velocity is vz = 90 km s−1, with the same
conventions as in Fig. 1. Upper plots: a stream forms along a spiral trajectory. From a helicoidal fit to the cloud of points, as needs to be done on
real data, with χ2/Ngdl = 1.16 we find a value for the torsion of τ ' 1.1× 10−2 kpc−1 (lower plot). This is in agreement with the analytical estimate
in the main text below Eq. (16).

Unfortunately for observing this in a physical setup, at a
fixed observation time the stream appears quite planar, and it
is only in a computer in which we can simulate several time
intervals at the same time that we see the helix. This is because
of the translation symmetry along the cylinder, which does not
allow for a vertical tidal stretching of the stream. On the upside,
this makes the extracted torsion very insensitive to the number
of bodies in the simulation, from 102 to 103, since the additional
bodies maintain reasonably close orbits in the z−vz vertical phase
space. Providing an initially larger speed dispersion along the
OZ axis increases the length of the stream but also blurs it, mak-
ing its reconstruction more difficult. Thus, we move onto the next
case, in which both a sphere and a cylinder (a very idealized toy
model of a galaxy and a prolate DM halo) respectively cause the
vertical tidal stretching and the helicoidal motion.

3.3. Sphere and cylinder with an initial nonvanishing vz,0

To close this section, we combine both types of sources, a sphere
(akin to a visible-matter galactic bulb) and a cylinder (mimick-
ing an elongated DM halo). For the sphere, we took the typi-
cal mass of a galaxy, Ms ∈ (109, 1012) M� (Busha et al. 2011;
Binney & Tremaine 1987), and for the cylinder we used the
expression for the linear mass density that we obtained from the
asymptotic velocity at large r in the rotation curve, vrot, of the
MW, as was exposed in the previous Sect. 3.

The updated expression for the acceleration of the stars in
the stream was obtained by combining Eqs. (B.3) and (B.4); that
is,

z′′ = −
v2

0

|r|3
z (17)

r⊥′′ = −
|u|2

|r⊥|2
r⊥ −

v2
0

|r|3
r⊥, (18)

where v is taken from the galactic rotation velocity when it has
flattened out at large r, and v0 estimated from the visible mass.

We added a small but appreciable (5 km s−1) contribution
to the average initial velocity in the z direction, so that vi

∗ =
(220 + ∆vi

x,∆v
i
y, 5 + ∆vi

z) km s−1, to induce sufficient vertical
motion that would generate torsion as per Eq. (15). Additionally,
there is a dispersion, ∆vi, which depends on the particular star
and is randomized from a distribution between 1 and 1000 times
the quantity,

√
G

∑
j m∗ j/r0, in terms of the mass of the small

cluster and the characteristic length scale. There is no particular
physical meaning to this initial dispersion except to be able to
handle an ensemble of stars that are not all perfectly collinear to
test the fitting procedure.

In Fig. 4, we clearly observe traits of the motion around
cylinder+sphere sources described in Llanes-Estrada (2021).
Along the symmetry OZ axis, a star will describe harmonic oscil-
lations between the two hemispheres due to the Newtonian pull
of the spherical part of the distribution acting toward the center
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Fig. 4. Orbits around a source combining both a sphere and a cylinder. The first row represents the trajectory of a point mass with, alternatively,
initial vertical velocities vz = 1 and 2 km s−1. The second row extends this to simultaneously show the motion of five stars.

(unless it is provided with escape velocity, in which case it will
approach an asymptotic trajectory, a helix around the OZ axis).
The orbit on the XY plane is not closed due to the additional 1/r
force from the elongated DM halo. The net effect in three dimen-
sions can be seen as a precession of the orbital plane around
the OZ axis, with the trajectory creating complicated helicoidal
patterns.

The N-body simulation in Fig. 5 reflects this and clearly
shows the appearance of nonvanishing torsion in the stellar
stream. From a piecewise helicoidal fit with Eq. (A.2) to the
stream at different times, t = 200 Myr, t = 400 Myr, t = 600 Myr,
and t = 800 Myr, we obtained different values for the torsion
above the value of τ > 10−4 kpc−1 that we found on streams
around a purely spherical source (basically, our irreducible back-
ground). The actual value happens to be apparently smaller than
that of the purely cylindrical geometry presented in the previ-
ous section, but this is a contingent effect due to the initial con-
ditions of the stream, and bears no significance. (The χ2/Ngdl
values for each of the visible stream segments, one at each suc-
cessive time, are 0.35, 0.32, 0.23, and 1.88, respectively). The
three-dimensional rendering in the bottom left plot clearly shows
the torsion causing a non-osculating plane movement.

3.4. Torsion in a galaxy with a spherical halo and a galactic
plane

We wish to have a reference for a minimum torsion that we
would consider “normal” in order of magnitude, so that if exten-
sive studies of stellar streams show that their torsion exceeds that
level, one could reject the hypothesis of a spherical halo. For this
purpose, we propose here a toy model in which the halo is taken
to be spherical, but we added a disk component. This adds a ver-
tical (not radial) velocity outside of the galactic plane that points
toward it.

The simplest (and coarsest) such model takes the galactic
disk as being uniform and infinite. This is a reasonable approx-
imation only for streams that do not elevate too much along the
OZ axis; otherwise, it provides an upper bound to a more realistic
torsion (since such additional vertical force will always be larger

than that of a finite disk, whose effect will fall off with z). In
that case, observed torsions above this bound would still entail
an incompatibility with a spherical halo that should be studied
further.

Therefore, in this minimum-torsion model we take the accel-
eration caused by the external force to be

ai = 1, 2 = −GM
xi

(x2 + y2 + z2)3/2

a3 = −GM
z

(x2 + y2 + z2)3/2 − 2πGσsign(z). (19)

In this equation, σ is a surface mass density of the disk,
in the range of 50−100 M� parsec−2, which is a usual estimate
(Kuijken & Gilmore 1989, 1991) at 8 kpc from the galactic cen-
ter.

Figure 6 shows the characteristic wobbling of movement
near the galactic plane caused by the planar disk, which is qual-
itatively consistent with Cordoni et al. (2021).

We can provide an analytical estimate of the torsion follow-
ing the now-familiar reasoning. Since an instantaneous velocity
that is parallel to any of the three coordinate vectors of the cylin-
drical base, {ρ̂, ϕ̂, ẑ}, will display zero torsion, we took a trajec-
tory combining two of them,
r′ = vϕϕ̂ + vz ẑ. (20)
Multiplying by the acceleration in Eq. (19) we obtained

r′ × r′′ =
GMρ

r3 (vϕ ẑ − vzϕ̂) −Gvϕ
( M

r3 z + (2π)σsign(z)
)
ρ̂. (21)

To construct the determinant ((r′ × r′′) · r′′′) necessary for
the torsion, we evaluated the third derivative outside the galactic
plane (over which it is undefined),

r′′′ = −
GM
r2

(
r̂′ −

2
r

(r̂ · r′)r̂
)
, (22)

which is in the plane given by position and velocity, employing

r̂′ =
1
r

(u − (r̂ · u)r̂)

=
1
r

(
vϕϕ̂ + vz ẑ −

zvz

r2 (ρρ̂ + z ẑ)
)
. (23)
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Fig. 5. Stellar streams around a combined spherical+cylindrical source. This is a toy model representing the galaxy plus an elongated DM halo.
Top row: formation of a stellar stream from an initial orbiting cluster, as in Fig. 4, with positions given at the times indicated in the legend. Lower
left: three-dimensional view of the stream compared with a plane containing the origin and the initial stream’s position and velocity, showing that
at subsequent times, the stream leaves that plane. Lower right: piecewise helicoidal fit. A nonvanishing torsion can be extracted for each of the
short segments at different times, yielding a mean value of τ = 0.22 × 10−3 kpc−1.

A slightly tedious but straightforward calculation then yielded

τ =
−6π (Mσ) (|z|ρ) (vzvϕ)

v2
ϕ(M2r + 4πσM|z|r2 + 4π2σ2r5) + v2

z M2ρ2/r
· (24)

The numerator has the mechanical dimensions of a squared
momentum, and the denominator of squared momentum times
length, yielding the correct 1/L dimensionality of the torsion.
Moreover, the structure of the numerator shows that in the pres-
ence of a spherical source (M) alone, or a galactic plane (σ)
alone, the torsion vanishes as it should. Likewise, both compo-
nents of the velocity have to be nonvanishing, as in Eq. (15) for
the cylindrical source; and the torsion is null both on the galactic
plane (z = 0) and on its perpendicular axis through the center of
the sphere (ρ = 0). We can then numerically evaluate Eq. (24)
to obtain the floor value of the torsion that we should expect to
be able to use in the galaxy. Taking into account that the galactic
plane is not infinite, so that the elevation z will yield a dimin-
ishing multipolar field, it may be that galactic torsions from a
spherical halo plus disk are even smaller; what we mean by this
estimate is that those streams that may be found with larger val-
ues need to be further investigated as they may be teaching us
something about the DM halo or about DM inhomogeneities.

Employing z ∼ 1 kpc, ρ ∼ r ∼ 10 kpc, vz ∼ vϕ ∼ 220 km s−1

(to take the most conservative floor to the torsion), M ∼ 1012 M�,
and σ ∼ 108 M� kpc2 as was already discussed, the denominator
of Eq. (24) is dominated by the M2 terms, with theσr2 correcting
M only at the percent level. With these numbers we then find
τ ∼ −9 × 10−4 kpc−1.

We then conclude that torsions of stellar streams below
10−3 kpc−1 in our MW Galaxy can be explained without resort
to deformed DM halos or exotic phenomena. Of the few streams
presently known at large radial distances, some present torsions
below this level and are thus of no further interest to this appli-
cation of the shape of the halos. It is those that reach τ at the per-
cent level that deserve further scrutiny to bear on the halo shape,
among the ones known and in future searches for streams.

4. Stellar streams in the Milky Way and their torsion

In this section we finally turn to some of the known stellar
streams in the MW. We selected as relevant those found at dis-
tances d > 30 kpc from the galactic center, so that the internal
structure of the galaxy, such as the disk and spiral arms, produces
the minimum possible alteration in the stream. These streams

A46, page 7 of 12



Bariego-Quintana, A., and Llanes-Estrada, F. J.: A&A, 687, A46 (2024)

Fig. 6. Simulation of a small tidal stream in the presence of a typical
nonspherical galactic source. This is here taken as the galactic plane
model of Eq. (19). From top to bottom: three-dimensional view, XZ,
and YZ sections.

(see Figs. 7 and 8) were extracted from Mateu (2023). The inten-
tion in this section is to extract the value of the torsion of the
parameterized stream curves with Eq. (5) and check whether or
not they vanished.

We took two of the streams out of further consideration;
namely, those at Orphan-Chenab and Styx. The reason is that
they may be influenced by gravity sources outside the MW. Due
to the proximity of the Large Magellanic Cloud (LMC) to our
Galaxy, the streams in its periphery in the angular direction of
that cloud could suffer alterations due to this additional source
of gravity (Conroy et al. 2021; Lilleengen et al. 2022). More-
over, time-dependent perturbations such as those caused by the
Magellanic Cloud (Erkal et al. 2019; Vasiliev et al. 2021) make
it difficult to interpret the stream track as that of an orbit, sowing
further uncertainty (though they can be used in reverse to con-
strain the time-dependent potential of the perturbing body). This
means that even those streams not removed from the analysis
could be affected by time-dependent perturbations that we do,
at present, not capture. Sometimes the effect can be very pro-
nounced, such as a visible kink in the stream; at other times it
can be more subtly manifested by, for example, a misalignment
between the stream track and the velocity vectors (Vasiliev et al.
2021).

Fig. 7. Trajectories in galactocentric coordinates for some of the MW
outer streams, extracted from Mateu (2023).

To obtain the torsion of the curves following the stream
we employed both a smooth polynomial parameterization and
a (piecewise) elliptical-helicoidal parameterization that we here
report. Therefore, we first fit each of the galactocentric Carte-
sian coordinates tracking the individual streams in the data com-
pilation of Mateu (2023) to order-four polynomial or elliptical-
helicoidal parameteric curves. The parameter that describes each
curve takes values in the interval t ∈ [0, 1]. The generic parame-
terizations are relegated to the appendix (see Eq. (A.1) and fol-
lowing). The parameters k or t therein are arbitrary coordinates
that can be converted to arc length, which has a clearer geometric
significance, by means of

s =

∫ √√√ 3∑
i=1

(
dxi

dt

)2

dt; (25)

the derivatives in Eq. (5) are to be taken with respect to the
parameter, t, in general, or s, if a change in variables is effected
(the outcome is the same, of course) to obtain the torsion.

To work with the streams in the database1, we used the gal-
stream library, and to perform the fits we used a least-squares
method with a standard Python installation.

A word about the uncertainty in this extraction is warranted.
The data points (x, y, z) of the extracted stream trajectories are
quoted without (∆x,∆y,∆z) uncertainties in the original refer-
ence (Mateu 2023). Possible large systematic errors, particularly
due to distance tracks, which are difficult to pinpoint with accu-
racy, can at present not be estimated. Thus, the understood uncer-
tainty of our parameteric reconstruction stems in its entirety from
our own fit interpreting the stream tracks in terms of Eq. (A.2).
Until uncertainties in the track data on which we lean are com-
piled, the systematics will remain unclear. The reconstructed tor-
sion will only become accurate when higher-precision estimates
of the distance gradient along a stream with estimated uncertain-
ties are provided.

After the reconstruction of the parameteric curves, we can
obtain the expression for the torsion of each curve, r = (x, y, z),

1 https://github.com/cmateu/galstreams
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Fig. 8. Trajectories for some of the MW outer streams in Mollweide projection, extracted from Mateu (2023).

using once more Eq. (5) τ =
Det(r′,r′′,r′′′)
||r′×r′′ ||2 , where the deriva-

tive is taken respect to the t parameter, ′ = d/dt. We analyti-
cally express the derivatives in terms of the polynomial-elliptical
parameterizations and then evaluate them as function of the t
parameter that we used for the fit, taking values from 0 to 1.
Because the torsion is parameterization-independent, the torsion
can also be given as function of the arclength, τ(s), calculating
the derivatives respect to either t or s.

The local torsion along many of the streams in Fig. 9 takes
significant values, above the expected O(10−4) “noise” that we
found in the simulations when the streams evolved around spher-
ical sources, as well as the O(10−3) or less from simulations that
included a galactic plane. Higher values for the torsion have been
found for streams such as Cetus, Willka-Yaku, Cetus-Palca, and
Sagittarius.

In fact, the two streams with the largest central value of the
torsion (Willka-Yaku and Cetus) do not appear, when eyeballing
the actual stream, to have such an important helicity. In the case
of Cetus, the large fit uncertainty makes it irrelevant, and the case
of Willka-Yaku, whose torsion is still near the distribution of the
other streams, deserves being revisited in the future because its
shape is very different from our fit functions.

In Table 1 we quantify the torsion in the stream sample:
we quote the mean and median values of the torsion among the
parameterized pieces of the stream, and also the standard devi-
ation and the interquartile range of the torsion distribution. The
high values, τ ∼ O(10−2), found for the torsion in several cases
are compatible with a nonspherical gravitational source, and also
perhaps with the interaction with other gravitational sources dif-
ferent from the overall galactic field, so the observable appears
to merit future study.

Because torsion (as curvature) has dimensions of inverse
length, we would expect stellar streams to perhaps show an
inverse relation with respect to their distance from the galactic
center, as is defined in Eq. (5). Irrespectively, in a galaxy such as
the MW, the torsion of galactic streams should have a character-
istic scale of (10 kpc)−1. As per the discussion around Eq. (15),
where we established τ ∈

[
− 1
ρ
, 1
ρ

]
, our selection of streams at

30 kpc or more means that we would consider torsion values of
order 0.01 in units of inverse kiloparsecs to be sizeable and very
different from zero, and Table 1 shows several such. Also, as per
the discussion below Eq. (24), those with τ above 0.001 kpc−1

could perhaps carry interesting information about the DM distri-
bution.

Turning to the data, the torsions that we seem to observe
in the MW streams show mean values above 0.001 that could
give an insight into the DM distribution, but also information
about the interaction of the MW with other gravitational sources.
Several streams show a significant value for the torsion: only
Eridanus and Jet seem to have torsions compatible with being
seeded by the galactic plane, as small as τ ∼ O(10−3).

From the information we obtained from the streams in the
database, we cannot explore specific details about the shape of
the gravitational source, beyond establishing its probable non-
sphericity.

5. Conclusions and outlook

The problem of galactic rotation curves suggests that galaxies
are surrounded by significant amounts of DM, and the overall
shape of these sources is yet to be ascertained. Whereas spher-
ical DM distributions around galaxies have to be fine-tuned to
explain the flatness of rotation curves, a cylindrical (or, gen-
erally, prolate) DM source can naturally explain that flatten-
ing. This avoids the fine-tuning of spherical DM halos to pre-
cisely follow the 1/r2 fall-off for a large swath of r values.
Observables inside the galactic plane cannot however distinguish
between spherical (though fine-tuned) and cylindrical or elon-
gated gravitational sources, but out-of-galactic-plane informa-
tion could provide new strong discriminants.

The stellar streams around the MW have been extensively
investigated for a while now, and are still nowadays a relevant
subject of research. The track left by a stream, once extracted,
can be used as the best proxy we have for a long-range tra-
jectory of size commensurate to a galaxy, with all the attend-
ing dynamical uncertainties that this identification causes (Bovy
2014), and thus a tool to infer the geometry of the impacting
gravitational sources. Stream tracks can be characterized by their
torsion according to Eq. (5); around a central potential, orbits
move in a plane and are expected to be torsionless (see Fig. 1).
In addition, test masses around cylindrical sources are expected
to follow helical orbits in which the torsion is nonzero (see
Fig. 3) if given a vertical velocity. Another approach is to con-
sider an ellipsoid-shaped halo, which is not perfectly cylindri-
cal but rather elongated. The expected orbit of the stream com-
ponents would arise from the combination of the orbits around
central potentials and the helical orbits around cylinders, as is
seen in Fig. 4. Torsion is then an observable directly tailored to
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Fig. 9. Local torsion, |τ|, of the MW streams considered in this work, calculated using Eq. (5). The green and red lines and bands of the same shade
represent the median value with the interquartile range and the mean value plus or minus one standard deviation, respectively. Stellar streams
such as Eridanus and Jet show values of the torsion of the order τ ∼ O(10−3), so their torsion is to be taken as compatible with the influence of a
source of the intensity of the galactic plane. The fit to the Sagittarius data was performed dividing the stream into five slices due to its irregular
shape.

assess the prolateness of a DM halo, as opposed to a multipa-
rameter reconstruction that, though sensitive to the halo shape
(Koposov et al. 2023), is affected by a degeneracy with many
other features.

The streams of the MW have been a subject of research for
a considerable time span, and many of the objects that consti-
tute these streams have been catalogued. From the reconstruc-
tion of the stream tracks, we infer the torsion caused by the
gravitational source in Fig. 9. In this work we only consider
those streams that seem to be far enough away from the galac-
tic center to (1) avoid large effects from the baryonic component
of the galaxy and (2) have a bird’s eye view of the DM halo
from outside a large fraction thereof. From the extraction of the
torsion we see that it is non-negligible in some of the streams
considered.

From our evaluation of the torsion we do not dare favor one
or another interpretation of the DM halo shape in the view of
current data; this article should be seen as a proposal for a new
observable, τ, and a first exploratory study. We do find streams
with significant torsion, which is encouraging and suggests that
further scrutiny could eventually inform us about the shape of
the halo. We have paid no attention to the sign of τ, since it
only distinguishes left- from right-handed tracks. That opens
another interesting study in itself as, with the predominant galac-

tic rotation determining a sign, the preference of a given hand-
edness would inform an asymmetry in the vertical motion. But
this would require many more statistics and take us far afield at
present.

The most trustworthy streams should be those stemming
from kinematically cold globular clusters (low-velocity disper-
sion), as those present the best-defined tracks. In future observa-
tional work it might be interesting to actively seek streams that
show both vertical motion (along the axis perpendicular to the
MW plane) and also azimuthal motion around that axis, as those
with large vz and vϕ will be most sensitive to the torsion. Should
those streams show trajectories that are compatible with lying
on a plane (zero torsion), a spherical halo would be preferred.
Should they however appear helicoidal, with non-negligible tor-
sion, they would be pointing to an elongated DM halo.

Streams that may be detected in nearby galaxies carry the
same information about their respective halos.

However, for galactic-halo population studies with streams,
which will require a 10-MPc reach, three-dimensional recon-
struction of the streams appears more difficult; in that case, only
the projected curvature is measurable (Nibauer et al. 2023), but
not the torsion, and what can be learnt about the DM halo hangs
on statistical analysis to reduce the impact of degeneracies due
to the projection.
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Table 1. Extracted for selected sample of stellar streams.

Stream (τ̄ ± σ) × 10−2 (med(τ) ± IQR) × 10−2 χ2/Ngdl

Cetus-Palca 1.82± 0.95 1.82± 2.76 1.16
Cetus 6.37± 14.65 6.38± 23.18 2.13
Elqui 1.01± 0.00 1.01± 0.00 0.01
Eridanus 0.59± 0.00 0.59± 0.00 0.02
Jet 0.14± 0.00 0.14± 0.00 0.28
Pal15 1.46± 0.00 1.46± 0.00 0.85
Palca 1.40± 0.03 1.40± 0.07 0.27
Sagittarius 1.85± 0.96 1.85± 2.50 –
Willka-Yaku 2.32± 0.00 2.32± 0.00 0.06

Notes. From left to right: mean and standard deviation, median and
interquartile range of the absolute value of the torsion in kpc−1, and
finally the fit’s χ2 per number of degrees of freedom. It is worth recall-
ing, from Sect. 3.4, that we expected that values above 0.1× 10−2 kpc−1

may signal a nonspherical DM distribution, as the effect of the aspheri-
cal galactic plane is not strong enough.

Finally, other observables can bear on the overall shape of
the halo, and we are investigating the shape sensitivity of the
gravitational lensing of both electromagnetic and gravitational
radiation.
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Appendix A: Track fits

A simple parameterization (x(t), y(t), z(t)) that we employed is a
piecewise fourth-order polynomial fit reading:

xi(t) = ait4 + bit3 + cit2 + dit + ei for i = 1, 2, 3. (A.1)

It is futile trying to relate t to a Newtonian time since, not know-
ing a priori the dynamics of the system nor at which time a
star was at what position along its trajectory: only the stream’
s instantaneous (present) geometry is known with certainty, and
therefore an arbitrary parameter, t (or the arc length after com-
puting it), should suffice. Another simple yet useful parameteri-
zation is that of an elliptical helix,

x(t) = x0 + (a cos(ω t + φ), b sin(ω t + φ), ct)
x′(t) = (−aω sin(ω t + φ), bω cos(ω t + φ), c)

x′′(t) =
(
−aω2 cos(ω t + φ),−bω2 sin(ω t + φ), 0

)
x′′′(t) =

(
aω3 sin(ω t + φ),−bω3 cos(ω t + φ), 0

)
(A.2)

with (a, b, c, ω, φ, x0) the parameter set, such that for t = 0 the
curve cuts the XY plane with z = 0 with the initial phase, φ, in
the x − y rotation, c controlling the advance of the helix, and
a, b the elliptic projection on the XY plane. Should the rotation
axis also need to be chosen to be different from OZ, an addi-
tional orthogonal matrix, O(ϕ, θ, ξ), parameterized by three Euler
angles, should be introduced as x→ Ox. We do not spell this out
here for conciseness, and assume that OZ is an axis of symmetry
for the DM halo, coinciding with the galactic rotation axis.

We then need to distinguish among two fit classes. First,
when fitting simulated data, there is no obstacle to choose the
coordinate axes so that OX lies along the initial visual from
the galactic centre to the globular cluster that will become the
stream.

In that case, the offset, x0 in Eq. (A.2) is unnecessary. The
elliptical parameterization is then, eliminating time,

x(z) = A cos
(
ω

C
(z − z0) + φ

)
+ x0 (A.3)

y(z) = B sin
(
ω

C
(z − z0) + φ

)
+ y0. (A.4)

The length parameters, A and B, take values proportional to the
distance of the stream to the galactic center in kpc. C is a verti-
cal “velocity” and ω an “angular velocity” in the XY plane; but,
because of the arbitrariness of the parameter t, they are only rel-
evant in the combination, ω/C, that indicates the angle advanced
per unit height in the corkscrew motion characterizing torsion.

(If one insists on thinking of the orbit of a single star instead
of the track of a stream, then the angular velocity is of the order
of magnitude ω ∼ v⊥

r⊥
∼

220 km/s
104 Pc × 3.15 1016 s/Gyr × 1

3.1 1013km/Pc ,
resulting in ω ∼ 22 rad/Gyr).

The second type of fit involves real data. Then, the osculating
plane at the start of each piece of the orbit need not be aligned
with the galactic Cartesian axes on account of initial conditions
and precession in a noncentral field. We thus need a minimum of
one additional angle, Θ, for each fit, to orient that starting plane,

x′ = x · cos Θ − y · sin Θ (A.5)
y′ = x · sin Θ + y · cos Θ. (A.6)

Additionally, real streams may need an offset of x0 = (x0, y0, z0),
bringing the total number of fit parameters to nine.

Once the parameterization has been chosen, we need to
decide what is the optimal track through a cloud of them in a

simulation. One strategy is to employ a squared-distance min-
imization. The function to be minimized is the following sum
running over each of the stars in the cloud,

D2(a, b, c, t0, ω, ti) =

N∑
i=1

(xi − x(ti))2, (A.7)

where ti is the point along the curve for which its distance to the
ith point is minimized. Taking partial derivatives with respect to
ti or a j results in the set of equations

N∑
i=1

(xi − x(ti)) · v(ti) = 0 =

N∑
i=1

(xi − x(ti)) ·
∂x(ti)
∂a j

(A.8)

which constrain the wanted parameters, a j. The first of these
equations is the condition of orthogonality of the curve’s tangent
to the visual to the point. Small stretches of a stellar stream can
be fit with the functional form of Eq. (A.2) for a straightforward
extraction of the torsion. The torsion for this elliptical helix is
then much simplified and becomes a t-independent constant for
a circular helix with a = b, as in Eq. (16),

τ =
abcω

b2c2 sin2(ω t + φ) + a2c2 cos2(ω t + φ) + a2b2ω2
. (A.9)

Appendix B: N-body equations of motion

Finally, we specify the (simplest available) numerical method
employed to simulate an N-body stellar stream in section 2.3.
The positions of the stellar objects composing it are updated in
Cartesian coordinates. For this, we used Euler’s method, with
the time step ∆t = t f /Nt, with the velocity updated via a once-
improved Euler step,

xi
j+1 = xi

j + ∆tvi
j for i = 1, 2, 3 (B.1)

vi
j+1 = vi

j +
1
2

∆t f i(x j +
1
2

hv j) for i = 1, 2, 3, (B.2)

where f i is the function yielding each component’s acceleration.
The acceleration was calculated at each step from standard

formulae such as those for a spherical central source,

ai=1,2,3 = −GM
xi

(x2 + y2 + z2)3/2

−

N−1∑
j=1

G
m jxi

((x − x j)2 + (y − y j)2 + (z − z j)2)3/2 . (B.3)

The first line of this expression is the acceleration under a
central spherical source, and the second the force among the
stellar-stream stars (which is too weak to avoid the tidal stretch-
ing). If we turn to a cylindrical source, the force external to the
stream in Eq. (B.3) needs to be replaced, so that

ai=1,2 = − 2Gλ
xi

x2 + y2 −

N−1∑
j=1

G
m jxi

((x − x j)2 + (y − y j)2 + (z − z j)2)3/2

ai=3 = −

N−1∑
j=1

G
m jxi

((x − x j)2 + (y − y j)2 + (z − z j)2)3/2 . (B.4)

At last, we have simulated both cylinder+sphere and
plane+sphere background fields, with respective forces given in
Eq. (18) and (19).
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