Periodicities in an active region correlated with Type III radio bursts observed by Parker Solar Probe (Corrigendum)

Cynthia Cattell\(^1\), Lindsay Glesener\(^1\), Benjamin Leiran\(^1\), John Dombeck\(^1\), Keith Goetz\(^1\), Juan Carlos Martínez Oliveros\(^2\), Samuel T. Badman\(^2,3\), Marc Pulupa\(^2\), and Stuart D. Bale\(^2,3\)

\(^1\) School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 USA
\(^2\) Space Sciences Laboratory, University of California, Berkeley, Berkeley, CA 94709 USA
\(^3\) Department of Physics, University of California, Berkeley, Berkeley, CA 94709 USA

A&A, 650, A6 (2021), https://doi.org/10.1051/0004-6361/202039510

Key words. Sun: radio radiation – Sun: corona – Sun: X-rays, gamma rays – Sun: oscillations – magnetic reconnection – errata, addenda

In the original paper, the time intervals for the Parker Solar Probe (PSP) radio data plotted in two figures, Fig. 4 (left-hand panels) and Fig. 6, were incorrect. The errors described herein do not change the conclusions of the original paper.

Fig. 1. Periodicities in PSP/FIELDS High-Frequency-Radio (HFR) power. Top: 6.225 MHz; middle: 18.375 MHz interpolated normalized power, with orange dots indicating the identified peaks; bottom: periods identified for all frequencies >5 MHz.

The light curves and periodicity analysis for the correct time interval for the the left-hand panels of Fig. 4 (original paper) are shown in Fig. 1. For the two radio frequencies plotted (6.225 MHz and 18.375 MHz), the periods found via the peak finder method are 5.6 ± 1.6 min and 5.1 ± 1.4 min. The fast Fourier transforms are peaked at 4.4 min and 4.1 min. These results are within the error bars of the periods in the original figure.

The periodicity analysis for an earlier time on April 9, 2019, is plotted in Fig. 2, which replaces Fig. 6 of the original paper. The periods are consistent with those in the original paper, providing evidence that these quasi-periodic variations in the Type III radio waves can persist for long times.

Acknowledgements. The authors are very grateful to Theo Mahaffey. His careful and detailed examination of the code identified the error. He also implemented a new approach to verifying results.

Fig. 2. Periodicities seen in PSP/FIELDS HFR radio data for an earlier interval with a higher data rate.

PSP (>5MHz) 2019-04-09 05:20:00-06:40:00

\(10.1051/0004-6361/202039510\)