KMT-2022-BLG-0475Lb and KMT-2022-BLG-1480Lb: Microlensing ice giants detected via the non-caustic-crossing channel

Cheongho Han¹, Chung-Uk Lee², Ian A. Bond³, Weicheng Zang⁴,⁵, Sun-Ju Chung⁶,⁷, Michael D. Albrow⁸, Andrew Gould⁷,⁸, Kyu-Ha Hwang⁹, Yoon Kil Jung²,⁹, Yoon-Hyun Ryu², In-Gu Shin⁴, Yossi Shvartzvald¹⁰, Hongjing Yang⁵, Jennifer C. Yee⁴, Sang-Mok Cha²,¹¹, Deoneon Kim¹, Dong-Jin Kim², Seung-Lee Kim², Dong-Joo Lee², Yongseok Lee²,¹¹, Byeong-Gon Park², Richard W. Pogge⁸, (The KMTNet Collaboration), Shude Mao⁵, Wei Zhu⁵, (Microlensing Astronomy Probe Collaboration), Fumio Abe¹², Richard Barry¹³, David P. Bennett¹³,¹⁴, Aparna Bhattacharya¹³,¹⁴, Hirosame Fujii¹², Akihiko Fukui¹⁵,¹⁶, Ryusei Hamada¹⁷, Yukio Hirao¹⁷, Stela Ishitani Silva¹³,¹⁸, Yoshitaka Ito¹², Rintaro Kirikawa¹⁷, Iona Kondo¹⁷, Naoki Koshimoto¹⁰, Yutaka Matsubara¹², Shota Miyazaki¹⁷, Yasushi Muraki¹², Greg Olmschenk¹³, Clément Ranc²⁰, Nicholas J. Rattenbury²¹, Yuki Satoh¹⁷, Takahiro Sumi¹⁷, Daisuke Suzuki¹⁷, Taiga Toda¹⁷, Mio Tomoyoshi¹⁷, Paul J. Tristram²², Aikaterini Vandorou¹³,¹⁴, Hibiki Yama¹⁷, and Kansuke Yamashita¹⁷, (The MOA Collaboration)

(Affiliations can be found after the references)

Received 17 April 2023 / Accepted 30 June 2023

ABSTRACT

Aims. We investigate the microlensing data collected in the 2022 season from high-cadence microlensing surveys in order to find weak signals produced by planetary companions to lenses.

Methods. From these searches, we find that two lensing events, KMT-2022-BLG-0475 and KMT-2022-BLG-1480, exhibit weak short-term anomalies. From a detailed modeling of the lensing light curves, we determine that the anomalies are produced by planetary companions with a mass ratio to the primary of \(q \sim 10^{-4} \) for KMT-2022-BLG-0475L and \(q \sim 4.3 \times 10^{-4} \) for KMT-2022-BLG-1480L.

Results. We estimate that the host and planet masses and the projected planet-host separation are \((M_\text{p}/M_\odot, M_\text{p}/M_\odot, a_\text{p}/\text{au}) = (0.43^{+0.23}_{-0.23}, 1.73^{+0.42}_{-0.42}, 2.03^{+0.25}_{-0.25}) \) for KMT-2022-BLG-0475L and \((0.18^{+0.16}_{-0.16}, 1.82^{+0.60}_{-0.60}, 1.22^{+0.15}_{-0.15}) \) for KMT-2022-BLG-1480L, where \(M_\odot \) denotes the mass of the Sun. The two planetary systems have some characteristics in common: the primaries of the lenses are early-mid M dwarfs that lie in the Galactic bulge, and the companions are ice giants that lie beyond the snow lines of the planetary systems.

Key words. planets and satellites: detection – gravitational lensing: microlensing

1. Introduction

The microlensing signal of a planet usually appears as a short-term anomaly on the smooth and symmetric lensing light curve generated by the host of the planet (Mao & Paczyński 1991; Gould & Loeb 1992). The signal arises when a source approaches the perturbation region formed around the caustic induced by the planet. Caustics represent the positions on the source plane at which the lensing magnification of a point source is infinite, and thus source crossings over the caustic result in strong signals with characteristic spike features.

The region of planetary deviations extends beyond caustics, and planetary signals can be produced without the caustic crossing of a source. Planetary signals produced via the non-caustic-crossing channel are weaker than those generated by caustic crossings, and the strength of the signal diminishes as the separation of the source from the caustic increases. Furthermore, these signals do not exhibit characteristic features such as the spikes produced by caustic crossings. Due to the combination of these weak and featureless characteristics, the planetary signals generated via the non-caustic channel are difficult to notice. If such signals are missed despite meeting the detection criterion, statistical studies based on the incomplete planet sample would lead to erroneous results on the demographics of planets. To prevent this, the Korea Microlensing Telescope Network (KMTNet; Kim et al. 2016) group regularly conducts a systematic inspection of the data collected by survey experiments, searching for weak planetary signals, and has reported on the detected planets in a series of papers (Zang et al. 2021a,b, 2022, 2023; Hwang et al. 2022; Wang et al. 2022; Gould et al. 2022; Jung et al. 2022, 2023; Han et al. 2022a,b,c,d,e, 2023a; Shin et al. 2023).

In this work, we present analyses of the two microlensing events, KMT-2022-BLG-0475 and KMT-2022-BLG-1480, for which weak short-term anomalies were found from the systematic investigation of the data collected from high-cadence microlensing surveys conducted in the 2022 season. We investigate the nature of the anomalies by carrying out detailed analyses of the light curves.
The organization of the paper is as follows. In Sect. 2, we describe the observations and data used in the analyses. In Sect. 3, we begin by explaining the parameters used in modeling the lensing light curves, and we then detail the analyses conducted for the individual events, KMT-2022-BLG-0475 (Sect. 3.1) and KMT-2022-BLG-1480 (Sect. 3.2). In Sect. 4, we explain the procedure for constraining the source stars and estimating the angular Einstein radii of the events. In Sect. 5, we explain the procedure of the Bayesian analyses conducted to determine the physical lens parameters, and we present the estimated parameters. We summarize our results and conclude in Sect. 6.

2. Observations and data

We inspected the microlensing data of the KMTNet survey collected from observations conducted in the 2022 season. The total number of KMTNet lensing events detected in the season is 2803. For the individual events, we first fitted light curves with a single-lens single-source (1L1S) model and then visually inspected residuals from the model. From this inspection, we found that the lensing events KMT-2022-BLG-0475 and KMT-2022-BLG-1480 exhibited weak short-term anomalies. We then cross-checked whether there were additional data from the surveys conducted by other microlensing observation groups.

We find that both events were additionally observed by the Microlensing Observations in Astrophysics (MOA; Bond et al. 2011) group, who referred to them as MOA-2022-BLG-185 and MOA-2022-BLG-383, respectively. For KMT-2022-BLG-1480, there were extra data acquired from the survey observations conducted by the Microlensing Astronomy Probe (MAP) collaboration during the period from 2021 August to 2022 September, whose primary purpose was to verify short-term planetary signals found by the KMTNet survey. In the analyses of the events, we used the combined data from the three survey experiments.

The observations of the events were carried out using the telescopes that are operated by the individual survey groups. The three identical telescopes used by the KMTNet group have a 1.6 m aperture equipped with a camera yielding 4 deg² field of view, and they are distributed in the three continents of the Southern Hemisphere for the continuous coverage of lensing events. The sites of the individual KMTNet telescopes are the Cerro Tololo Interamerican Observatory in Chile (KMT), the South African Astronomical Observatory in South Africa (KMTS), and the Siding Spring Observatory in Australia (KMTA). The MOA group utilizes the 1.8 m telescope at the Mt. John Observatory in New Zealand, and the camera mounted on the telescope has a 1.2 deg² field of view. The MAP collaboration uses the 3.6 m Canada-France-Hawaii Telescope (CFHT) in Hawaii.

Observations by the KMTNet, MOA, and MAP groups were acquired in the V band for the measurement of the source colors of the events. Reduction of data and photometry of source stars were done using the pipelines of the individual survey groups. For the data used in the analyses, we readjusted the error bars estimated from the automated pipelines so that the error bars are consistent with the scatter of data and the χ^2 per degree of freedom (dof) for each data set becomes unity, following the method described in Yee et al. (2012).

3. Light curve analyses

The analyses of the lensing events were carried out by searching for lensing solutions specified by the sets of lensing parameters that best describe the observed light curves. The lensing parameters vary depending on the interpretation of an event. It is known that a short-term anomaly can be produced by two channels, in which the first is a binary-lens single-source (2L1S) channel with a low-mass companion to the lens, and the other is a single-lens binary-source (1L2S) channel with a faint companion to the source (Gaudi 1998).

The basic lensing parameters used in common for the 2L1S and 1L2S models are $(\theta_{\text{E}}, u_0, \theta_0, \rho)$. The first two parameters represent the time of the closest source approach to the lens and the lens-source separation (impact parameter) scaled to the angular Einstein radius θ_0 at t_0, respectively. The third parameter denotes the event timescale, which is defined as the time for the source to transit θ_0. The last parameter is the normalized source radius, which is defined as the ratio of the angular source radius θ_0 to θ_0. The normalized source radius is needed in modeling to describe the deformation of a lensing light curve caused by finite-source effects (Bennett & Rhie 1996).

In addition to the basic parameters, the 2L1S and 1L2S models require additional parameters for the description of the extra lens and source components. The extra parameters for the 2L1S model are $(\theta_0, u_0, z_2, \rho_2, \theta_2)$, which refer to the closest approach time, impact parameter, the normalized radius of the source companion S_2, and the flux ratio between the source companion and primary (S_1), respectively. A summary of the lensing parameters that need to be included under various interpretations of the lens-system configuration is provided in Table 2 of Han et al. (2023b).

For the individual events, we checked whether higher-order effects improve the fits by conducting additional modeling. The considered higher-order effects are the microlens-parallax effect (Gould 1992) and the lens-oriental effects (Albrow et al. 2000), which are caused by the orbital motion of Earth and lens, respectively. For the consideration of the microlens-lens parallax effects, we included two extra parameters $(\pi_{\text{E}}, \pi_{\text{E}}, \pi_{\text{E}}, \pi_{\text{E}})$, which denote the north and east components of the microlens-parallax vector

$$\pi_{\text{E}} = \left(\pi_{\text{rel}} - \pi_{\text{S}} = au(1/D_{\text{L}} - 1/D_{\text{S}}) \right),$$

respectively. Here, $\pi_{\text{rel}} = \pi_{\text{L}} - \pi_{\text{S}} = au(1/D_{\text{L}} - 1/D_{\text{S}})$ denotes the relative lens-source parallax, while D_{L} and D_{S} denote the distances to the lens and source, respectively. The lens-oriental effects were incorporated into the modeling by including two extra parameters $(d\chi/dt, d\alpha/dt)$, which represent the annual

A&A 676, A97 (2023)
change rates of the binary-lens separation and the source trajectory angle, respectively.

We searched for the solutions of the lensing parameters as follows. For the 2L1S modeling, we found the binary-lens parameters s and q using a grid approach with multiple seed values of a, and the other parameters were found using a downhill approach based on the Markov chain Monte Carlo logic. For the local solutions identified from the $\Delta \chi^2$ map on the s--q parameter plane, we then refined the individual solutions by allowing all parameters to vary. We adopted the grid approach to search for the binary parameters because it was known that the change of the lensing magnification is discontinuous due to the formation of caustics, and this makes it difficult to find a solution using a downhill approach with initial parameters (s, q) lying away from the solution. In contrast, the magnification of a 1L2S event smoothly changes with the variation of the lensing parameters, and thus we searched for the 1L2S parameters using a downhill approach with initial values set by considering the magnitude and location of the anomaly features. In the following subsections, we describe the detailed procedure of modeling and present results found from the analyses of the individual events.

3.1. KMT-2022-BLG-0475

The source of the lensing event KMT-2022-BLG-0475 lies at the equatorial coordinates $(\text{RA}, \text{Dec})_{\text{J2000}} = (18:05:20.56, -27:02:15.61)$, which correspond to the Galactic coordinates $(l, b) = (3^\circ835, -2^\circ804)$. The KMTNet group first discovered the event on 2022 April 19, which corresponds to the abridged heliocentric Julian date $HJD' = HJD - 2450000 = 9688$, when the source was brighter than the baseline magnitude $m_{\text{base}} = 18.78$ by $\Delta I \sim 0.6$ mag. Five days after the KMTNet discovery, the event was independently found by the MOA group, who designated the event as MOA-2022-BLG-185. Hereafter we use the KMTNet event notation following the convention of using the event ID reference of the first discovery survey. The event was in the overlapping region of the two KMTNet prime fields BLG03 and BLG43, toward which observations were conducted with a 0.5 h cadence for each field and 0.25 h in combination. The MOA observations were done with a similar cadence.

Figure 1 shows the light curve of KMT-2022-BLG-0475 constructed from the combination of the KMTNet and MOA data. The anomaly occurred at around $t_{\text{anom}} = 9698.4$, which was ~0.85 day before time of the peak. The zoom-in view of the region around the anomaly is shown the upper panel of Fig. 1. The anomaly lasted for about 0.5 day, and the beginning part was covered by the MOA data while the second half of the anomaly was covered by the KMTS data. There is a gap between the MOA and KMTS data during $9698.30 \leq HJD' \leq 9698.42$, and this gap corresponds to the night time at the KMTA site, which was clouded out except for the very beginning of the evening.

Figure 2 shows the best-fit 2L1S and 1L2S models in the region around the anomaly. From the 2L1S modeling, we identified a pair of 2L1S solutions resulting from the close–wide degeneracy. In Table 1, we present the lensing parameters of the two 2L1S and the 1L2S solutions together with the χ^2 values of the fits and dofs. It was found that the severity of the degeneracy between the close and wide 2L1S solutions is moderate, with the close solution being preferred over the wide solution by $\Delta \chi^2 = 8.4$. For the best-fit solution, that is, the close 2L1S solution, we also list the flux values of the source f_s and blend f_b, where the flux values are approximately scaled by the relation $I = 18.25 \log f$.

![Fig. 1. Light curve of KMT-2022-BLG-0475.](image1)

![Fig. 2. Zoomed-in view around the anomaly in the lensing light curve of KMT-2022-BLG-0475.](image2)

We find that the anomaly in the lensing light curve of KMT-2022-BLG-0475 is best explained by a planetary 2L1S model. The planet parameters are $(s, q)_{\text{close}} \sim (0.94, 1.76 \times 10^{-4})$ for the close solution and $(s, q)_{\text{wide}} \sim (1.14, 1.77 \times 10^{-4})$ for the wide solution. The estimated planet-to-host mass ratio is an order of magnitude smaller than the ratio between Jupiter and the Sun.
caustics, with the "central" caustic indicating the one lying close to the central caustic. A planetary companion induces two sets of lens system, and the main panel shows the enlarged view around respectively. In each panel, the inset shows the whole view of the event.

not be measured because of the short timescale, respectively. In each panel, the inset shows the whole view of the event.

Table 1. Model parameters for KMT-2022-BLG-0475.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2L1S</th>
<th>Wide</th>
<th>1L2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2/d.o.f.</td>
<td>7903.4/7918</td>
<td>7911.8/7918</td>
<td>7930.7/7918</td>
</tr>
<tr>
<td>t_0 (HJD)</td>
<td>9699.259 ± 0.002</td>
<td>9699.259 ± 0.002</td>
<td>9699.276 ± 0.003</td>
</tr>
<tr>
<td>u_0</td>
<td>0.035 ± 0.001</td>
<td>0.035 ± 0.001</td>
<td>0.035 ± 0.001</td>
</tr>
<tr>
<td>t_{E1} (days)</td>
<td>16.84 ± 0.13</td>
<td>16.77 ± 0.13</td>
<td>17.05 ± 0.13</td>
</tr>
<tr>
<td>s</td>
<td>0.940 ± 0.011</td>
<td>1.135 ± 0.012</td>
<td>—</td>
</tr>
<tr>
<td>q (10^{-4})</td>
<td>1.76 ± 0.26</td>
<td>1.77 ± 0.25</td>
<td>—</td>
</tr>
<tr>
<td>α (rad)</td>
<td>5.692 ± 0.004</td>
<td>5.691 ± 0.005</td>
<td>—</td>
</tr>
<tr>
<td>ρ (10^{-3})</td>
<td>4.06 ± 0.98</td>
<td>3.62 ± 1.09</td>
<td>—</td>
</tr>
<tr>
<td>$t_{0,2}$ (HJD)</td>
<td>—</td>
<td>—</td>
<td>9698.425 ± 0.012</td>
</tr>
<tr>
<td>$u_{0,2}$ (10^{-2})</td>
<td>—</td>
<td>—</td>
<td>-0.016 ± 0.104</td>
</tr>
<tr>
<td>ρ_2 (10^{-3})</td>
<td>—</td>
<td>—</td>
<td>3.51 ± 0.69</td>
</tr>
<tr>
<td>q_{1} (10^{-2})</td>
<td>—</td>
<td>—</td>
<td>0.40 ± 0.10</td>
</tr>
<tr>
<td>f_s</td>
<td>0.4054 ± 0.0003</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>f_0</td>
<td>-0.0215 ± 0.0010</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Notes. HJD* = HJD – 2450000.

Fig. 3. Lens-system configurations of the close (upper panel) and wide (lower panel) 2L1S solutions of KMT-2022-BLG-0475. In each panel, the red cuspy figures are caustics and the line with an arrow represents the source trajectory. The whole view of the lens system is shown in the inset, in which the small filled dots indicate the positions of the lens components and the solid circle represents the Einstein ring. The gray curves surrounding the caustic represent equi-magnification contours.

$q \sim 10^{-3}$, indicating that the planet has a mass that is substantially smaller than that of a typical gas giant. Although the 1L2S model approximately describes the anomaly, it leaves residuals of 0.03 mag level in the beginning and ending parts of the anomaly, resulting in a poorer fit than the 2L1S model by $\Delta \chi^2 = 27.3$. It was found that the microlens-parallax parameters could not be measured because of the short timescale, $t_{E1} \sim 16.8$ days, of the event.

In the upper and lower panels of Fig. 3, we present the lens-system configurations of the close and wide 2L1S solutions, respectively. In each panel, the inset shows the whole view of the lens system, and the main panel shows the enlarged view around the central caustic. A planetary companion induces two sets of caustics, with the “central” caustic indicating the one lying close to the primary lens, while the other caustic, lying away from the primary, is referred to as the as the “planetary” caustic. The configuration shows that the anomaly was produced by the passage of the source through the deviation region formed in front of the protruding cusp of the central caustic. We found that finite-source effects were detected despite the fact that the source did not cross the caustic. In order to show the deformation of the anomaly pattern by finite-source effects, we plot the light curve not crossing the caustic. In order to show the deformation of the anomaly pattern by finite-source effects, we plot the light curve

from a close–wide degeneracy are known to follow the Hwang et al. (2022) relation, resulting in a poorer fit than the 2L1S model by $\Delta \chi^2 = 27.3$. It was found that the microlens-parallax parameters could not be measured because of the short timescale, $t_{E1} \sim 16.8$ days, of the event.

Planet separations of a pair of degenerate solutions resulting from a close–wide degeneracy are known to follow the relation $\sqrt{s_{\text{close}} \times s_{\text{wide}}}$ = 1.0. For the close and wide solutions of KMT-2022-BLG-0475, this value is $\sqrt{s_{\text{close}} \times s_{\text{wide}}}$ = 1.032, which deviates from unity with a fractional discrepancy, $(\sqrt{s_{\text{close}} \times s_{\text{wide}}} - 1.0)/1.0 \sim 3.2\%$. We find that the relation between the two planet separations is better described by the Hwang et al. (2022) relation,

$$s_t = \sqrt{s_{\text{in}} \times s_{\text{out}}} = \frac{\sqrt{\tau_{\text{anom}}^2 + 4 \pm \tau_{\text{anom}}}}{2},$$

which was introduced to explain the relation between the planet separations s_{in} and s_{out} of the two solutions that are subject to the inner–outer degeneracy (Gaudi & Gould 1997). Here \(u_{\text{anom}} = \tau_{\text{anom}}^2 + u_0^2\), \(\tau_{\text{anom}} = (t_{\text{anom}} - t_0)/h_E\). t_{anom} is the time of the anomaly, and the sign in the left and right sides of Eq. (2) is “+” for a major image perturbation and “−” for a minor-image perturbation. The terms “inner” and “outer” refer to the cases in which the source passes the inner and outer sides of the planetary caustic, respectively. In the case of KMT-2022-BLG-0475 (and major-image perturbations in general), the close and wide solutions correspond to the outer and inner solutions, respectively. From the measured planet separations of $s_{\text{in}} = s_{\text{wide}} = 1.135$ and $s_{\text{out}} = s_{\text{close}} = 0.940$, we find that

$$s^2 = (s_{\text{in}} \times s_{\text{out}})^{1/2} = 1.033,$$

From the lensing parameters $(t_0, \tau_{\text{anom}}, t_E, u_0) = (9699.25, 9698.40, 16.8, 0.035)$, we find that $\tau = (t_{\text{anom}} - t_0)/h_E = 0.050,$
\begin{equation}
\mu_{\text{anom}} = 0.061, \quad \text{and} \quad s^I = \sqrt{\mu_{\text{anom}}^2 + 4} + \mu_{\text{anom}} = 1.038.
\end{equation}

Then, the fraction deviation of the \(s^I\) values estimated from Eqs. (3) and (4) is \(\Delta s^I / s^I = 0.5\%\), which is 6.4 times smaller than the 3.2\% fractional discrepancy of the \(\sqrt{\Delta E_{\text{close}}} \times \Delta E_{\text{wide}} = 1\) relation. Although the \(\sqrt{\Delta E_{\text{close}}} \times \Delta E_{\text{wide}} = 1\) relation is approximately valid in the case of KMT-2022-BLG-0475, the deviation from the relation can be substantial, especially when the planetary separation is very close to unity, and thus the relation in Eq. (2) helps identify correct degenerate solutions.

3.2. KMT-2022-BLG-1480

The lensing event KMT-2022-BLG-1480 occurred on a source lying at \((\text{RA}, \text{Dec})_{\text{2000}} = (17:58:54.96, -29:28:23.99)\), which correspond to \((l, b) = (1.015, -27.771)\). The event was first found by the KMTNet group on 2022 July 11 (HJD' = 9771), when the source was brighter than the baseline magnitude, \(m_{\text{base}} = 18.11\), by \(\Delta J \sim 0.65\) mag. The source was in the KMTNet prime field BLG02, toward which observations were conducted with a 0.5 hr cadence. This field overlaps with the BLG42 field in most region, but the source was in the offset region that was not covered by the BLG42 field. The event was also observed by the MOA and MAP survey groups, who observed event with a 0.2 hr cadence and a 0.5–1.0 day cadence, respectively.

In Fig. 4, we present the light curve of KMT-2022-BLG-1480. We found that a weak anomaly occurred about 3 days after the peak centered at \(t_{\text{anom}} \sim 9793.2\). The anomaly is characterized by a negative deviation in most part of the anomaly and a slight positive deviation in the beginning part centered at HJD' \(\sim 9792.2\). The anomaly, which lasted about 3 days, was covered by multiple data sets from KMTS, KMTA, and CFHT. The sky at the KMTC site was clouded out for two consecutive nights from July 30 to August 1, and thus the anomaly was not covered by the KMTC data.
Table 2. Model parameters for KMT-2022-BLG-1480.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Inner Standard</th>
<th>Standard</th>
<th>Outer Higher-order ($u_0 > 0$)</th>
<th>Outer Higher-order ($u_0 < 0$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2/d.o.f.</td>
<td>5724.8/5678</td>
<td>5660.9/5678</td>
<td>5654.0/5674</td>
<td>5655.3/5674</td>
</tr>
<tr>
<td>t_0 (HJD)</td>
<td>9790.133 ± 0.004</td>
<td>9790.132 ± 0.004</td>
<td>9790.134 ± 0.004</td>
<td>9790.138 ± 0.004</td>
</tr>
<tr>
<td>u_0</td>
<td>0.067 ± 0.001</td>
<td>0.069 ± 0.001</td>
<td>0.069 ± 0.001</td>
<td>-0.069 ± 0.001</td>
</tr>
<tr>
<td>t_E (days)</td>
<td>26.37 ± 0.15</td>
<td>26.09 ± 0.15</td>
<td>26.18 ± 0.16</td>
<td>26.08 ± 0.16</td>
</tr>
<tr>
<td>s</td>
<td>0.826 ± 0.004</td>
<td>1.030 ± 0.018</td>
<td>1.017 ± 0.014</td>
<td>1.011 ± 0.015</td>
</tr>
<tr>
<td>q (10^{-4})</td>
<td>4.87 ± 0.36</td>
<td>4.68 ± 0.783</td>
<td>4.30 ± 0.69</td>
<td>4.18 ± 0.70</td>
</tr>
<tr>
<td>α (rad)</td>
<td>0.516 ± 0.004</td>
<td>0.515 ± 0.004</td>
<td>0.525 ± 0.006</td>
<td>-0.532 ± 0.009</td>
</tr>
<tr>
<td>ρ (10^{-3})</td>
<td>< 6</td>
<td>14.18 ± 4.02</td>
<td>14.68 ± 2.51</td>
<td>14.83 ± 2.46</td>
</tr>
<tr>
<td>$\pi_{E,N}$</td>
<td>–</td>
<td>–</td>
<td>0.42 ± 0.29</td>
<td>0.27 ± 0.31</td>
</tr>
<tr>
<td>$\pi_{E,E}$</td>
<td>–</td>
<td>–</td>
<td>-0.02 ± 0.05</td>
<td>0.04 ± 0.05</td>
</tr>
<tr>
<td>ds/dt (yr$^{-1}$)</td>
<td>–</td>
<td>–</td>
<td>0.60 ± 0.40</td>
<td>1.14 ± 0.44</td>
</tr>
<tr>
<td>$d\alpha/dt$ (yr$^{-1}$)</td>
<td>–</td>
<td>–</td>
<td>-0.57 ± 0.49</td>
<td>1.59 ± 0.73</td>
</tr>
<tr>
<td>f_1</td>
<td>0.9222 ± 0.0009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_0</td>
<td>0.0921 ± 0.0016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6. Lens-system configurations for the inner and outer 2LIS solutions of KMT-2022-BLG-1480. Notations are same as those in Fig. 3.

finite-source effects were detected although the source did not cross the caustic. We plot the point-source model in Fig. 5 for the comparison with the finite-source model.

We find that the relation in Eq. (2) is also applicable to the two local solutions of KMT-2022-BLG-1480. With $(s_{\text{in}}, s_{\text{out}}) \sim (0.82, 1.03)$, the fractional deviation of the value $\sqrt{s_{\text{in}} \times s_{\text{out}}}$ from unity is $(\sqrt{s_{\text{in}}} \times s_{\text{out}} - 1.0)/1.0 \sim 8\%$. On the other hand, the fractional difference between $s^1 = \sqrt{s_{\text{in}} \times s_{\text{out}}}$ and $s^1 = [(u_{\text{anom}} + 4)/2 - u_{\text{anom}}]/2 = 0.934$ is $\Delta s^1/s^1 = 1.6\%$, which is 5 times smaller than that of the $\sqrt{s_{\text{in}} \times s_{\text{in}}} = 1$ relation. This also indicates that the two local solutions result from the inner–outer degeneracy rather than the close–wide degeneracy. We also checked the Hwang et al. (2022) relation between the planet-to-host mass ratio and the lensing parameters for the “dip-type” anomalies,

$$ q = \frac{(\Delta t_{\text{dp}})}{4t_E} \frac{s}{|u_0|} \sin |\alpha|, $$

(5)

where $\Delta t_{\text{dp}} \sim 1.9$ day is the duration of the dip in the anomaly. With the lensing parameters $(t_E, u_0, s, \alpha) = (26, 0.069, 1.03, 59\%)$, we found that the mass ratio analytically estimated from Eq. (5) is $q \sim 5.9 \times 10^{-4}$, which is close to the value 4.6×10^{-4} found from the modeling.

We check whether the microlens-parallax vector $\pi_E = (\pi_{E,N}, \pi_{E,E})$ can be measured by conducting extra modeling considering higher-order effects. We find that the inclusion of the higher-order effects improves the fit by $\Delta \chi^2 = 6.9$ with respect to the model obtained under the rectilinear lens-source motion (standard model). In Table 2, we list the lensing parameters of the pair of higher-order models with $u_0 > 0$ and $u_0 < 0$, which result from the mirror symmetry of the source trajectory with respect to the binary-lens axis (Skowron et al. 2011). The $\Delta \chi^2$ maps of the models on the $(\pi_{E,E}, \pi_{E,N})$ parameter plane obtained from the higher-order modeling are shown in Fig. 7. It is found that the maps of the solutions results in a similar pattern of a classical one-dimensional parallax ellipse, in which the east component
Table 3. Source properties, Einstein radii, and lens-source proper motions.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$(V - I)_S$</td>
<td>$(2.016 \pm 0.005, 18.980 \pm 0.008)$</td>
<td>$(2.498 \pm 0.005, 18.088 \pm 0.006)$</td>
</tr>
<tr>
<td>$(V - I)_{RGC}$</td>
<td>$(2.108, 15.747)$</td>
<td>$(2.732, 16.199)$</td>
</tr>
<tr>
<td>$(V - I)_{0,RGC}$</td>
<td>$(1.060, 14.332)$</td>
<td>$(1.060, 14.396)$</td>
</tr>
<tr>
<td>$(V - I)_{0,S}$</td>
<td>$(0.968 \pm 0.005, 17.566 \pm 0.008)$</td>
<td>$(0.826 \pm 0.005, 16.284 \pm 0.006)$</td>
</tr>
<tr>
<td>θ_0 (mas)</td>
<td>1.29 ± 0.09</td>
<td>1.98 ± 0.14</td>
</tr>
<tr>
<td>θ_E (mas)</td>
<td>0.32 ± 0.02</td>
<td>0.13 ± 0.01</td>
</tr>
<tr>
<td>$(\mu$ mas yr$^{-1}$)</td>
<td>6.92 ± 0.49</td>
<td>1.88 ± 0.13</td>
</tr>
</tbody>
</table>

$\pi_{E,E}$ is well constrained and the north component $\pi_{E,N}$ has a fairly big uncertainty. Gould et al. (1994) pointed out that the constraints of the one-dimensional parallax on the physical lens parameters are significant, and Han et al. (2016) indicated that the parallax constraint should be incorporated in the Bayesian analysis to estimate the physical lens parameters. We describe the detailed procedure of imposing the parallax constraint in the second paragraph of Sect. 5. While the parallax parameters $(\pi_{E,N}, \pi_{E,E})$ are constrained from the overall pattern of the light curve, the orbital parameters $(d\gamma/dt, d\alpha/dt)$ are constrained from the anomaly induced by the lens companion. For KMT-2022-BLG-1480, the orbital parameters are poorly constrained because the duration of the planet-induced anomaly is very short.

4. Source stars and angular Einstein radii

In this section, we constrain the source stars of the events to estimate the angular Einstein radii. Despite the non-caustic-crossing nature of the planetary signals, finite-source effects were detected for both events, and thus the normalized source radii were measured. With the measured value of ρ, we estimated the angular Einstein radius using the relation

$$\theta_E = \frac{\theta_0}{\rho},$$

(6)

where the angular radius of the source was deduced from the reddening- and extinction-corrected (de-reddened) color and magnitude.

The left and right panels of Fig. 8 show the source locations in the instrumental color-magnitude diagrams (CMDs) of stars lying around the source stars of KMT-2022-BLG-0475 and KMT-2022-BLG-1480, respectively. For each event, the instrumental source color and magnitude, $(V - I)_S$, were determined by estimating the flux values of the source f_S and blend f_B from the linear fit to the relation $F_{obs} = A(f_S + f_B)$, where the lensing magnification is obtained from the model. We are able to constrain the blend for KMT-2022-BLG-1480 and mark its location on the CMD, but the blend flux of KMT-2022-BLG-0475 resulted in a slightly negative value, making it difficult to constrain the blend position. By applying the method of Yoo et al. (2004), we then estimated the de-reddened source color and magnitude, $(V - I)_{0,S}$, using the centroid of the red giant clump (RGC), for which its de-reddened color and magnitude $(V - I)_{0,RGC}$ were known (Bensby et al. 2013; Natal et al. 2013), as a reference, that is,

$$(V - I)_{0,S} = (V - I)_{0,RGC} + [(V - I)_S - (V - I)_{RGC}].$$

(7)

Here, $(V - I)_{RGC}$ denotes the instrumental color and magnitude of the RGC centroid, and thus the last term in the bracket represents the offset of the source from the RGC centroid in the CMD.

In Table 3, we summarize the values of $(V - I)_S$, $(V - I)_{RGC}$, $(V - I)_{0,RGC}$, and $(V - I)_{0,S}$ for the individual events. From the estimated de-reddened colors and magnitudes, it was found that the source star of KMT-2022-BLG-0475 is an early K-type turnoff star, and that of KMT-2022-BLG-1480 is a late G-type subgiant. We estimated the angular source radius by first converting the measured $V - I$ color into $V - K$ color using the Bessell & Brett (1988) color-color relation, and then deducing θ_0 from the Kervella et al. (2004) relation between $(V - K, V)$ and θ_0. With the measured source radius, we then estimated the angular Einstein radius using the relation in Eq. (6) and the relative lens-source proper motion using the relation $\mu = \theta_0/\theta_E$. The estimated θ_0 and μ values of the individual events are listed in Table 3. We note that the uncertainties of the source colors and magnitudes presented in Table 3 are the values estimated from the model fitting, and those of θ_0 and θ_E are estimated by adding an additional 7% error to consider the uncertain de-reddened RGC color of Bensby et al. (2013) and the uncertain position of the RGC centroid (Gould 2014).
5. Physical lens parameters

We determined the physical parameters of the planetary systems using the lensing observables of the individual events. For KMT-2022-BLG-0475, the measured observables are \(t_e \) and \(\theta_E \), which are respectively related to the mass and distance to the planetary system by

\[
\begin{align*}
\theta_E &= \frac{\theta_E}{\mu}; \\
(\kappa M \pi_E)^{1/2} &= \langle \rangle, (8)
\end{align*}
\]

where \(\kappa = 4G/(c^2\text{au}) = 8.14 \text{ mas}/M_\odot \). For KMT-2022-BLG-1480, we additionally measured the observable \(\pi_E \), with which the physical parameters can be uniquely determined by

\[
\begin{align*}
M &= \frac{\theta_E}{\kappa \pi_E}; \\
D_L &= \frac{\text{au}}{\pi_E \theta_E + \pi_E}.
\end{align*}
\]

(9)

We estimated the physical parameters by conducting Bayesian analyses because the observable \(\pi_E \) was not measured for KMT-2022-BLG-0475, and the uncertainty of the north component of the parallax vector, \(\pi_{E,N} \), was fairly big although the east component \(\pi_{E,E} \) was relatively well constrained.

The Bayesian analysis was done by first generating artificial lensing events from a Monte Carlo simulation, in which a Galactic model was used to assign the locations of the lens and source and their relative proper motion, and a mass-function model was used to assign the lens mass. We adopted the Jung et al. (2021) Galactic model and the Jung et al. (2018) mass function. With the assigned values of \((M, D_L, D_B, \mu, \beta) \), we computed the lensing observables \((t_{\ell,E}, \theta_{E,N}, \pi_{E,N}) \) of each simulated event using the relations in Eqs. (1) and (8). Under the assumption that the physical parameters are independently and identically distributed, we then constructed the Bayesian posteriors of \(M \) and \(D_L \) by imposing a weight \(w_i = \exp(-\chi^2/2) \). Here the \(\chi^2 \) value for each event was computed as

\[
\chi^2 = \frac{[t_{\ell,E} - t_E]^2}{\sigma(t_E)} + \frac{[\theta_{E,N} - \theta_{E,N}]^2}{\sigma(\theta_E)} + \sum_{j=1}^{2} \sum_{k=1}^{2} a_{jk} (\pi_{E,j} - \pi_E)(\pi_{E,k} - \pi_E),
\]

(10)

where \((t_E, \theta_{E,N}, \pi_{E,N}) \) represent the observed values of the lensing observables, \(\sigma(t_E), \sigma(\theta_{E,N}) \) denote the measurement uncertainties of \(t_E \) and \(\theta_{E,N} \), respectively, \(a_{jk} \) denotes the inverse covariance matrix of \(\pi_{E,N}, \pi_{E,E} \), denote the north and east components of the microlens-parallax vector of each simulated event, respectively. We note that the last term in Eq. (10) was not included for KMT-2022-BLG-0475, for which the microlens-parallax was not measured.

In the case of the event KMT-2022-BLG-1480, for which the blending flux was measured, we additionally imposed the blending constraint that was given by the fact that the lens could not be brighter than the blend. In order to impose the blending constraint, we computed the lens magnitude as

\[
I_L = M_{I,L} + 5 \log \left(\frac{D_L}{\text{pc}} \right) - 5 + A_I(L),
\]

(11)

where \(M_{I,L} \) represents the absolute \(I \)-band magnitude of a star corresponding to the lens mass, and \(A_I(L) \) represents the \(I \)-band extinction to the lens. For the computation of \(A_I(L) \), we modeled the extinction to the lens as

\[
A_{I,L} = A_{I,\text{tot}} \left[1 - \exp \left(- \frac{|z|}{h_{I,dust}} \right) \right],
\]

(12)

where \(A_{I,\text{tot}} = 1.53 \) is the total \(I \)-band extinction toward the field, \(h_{I,dust} = 100 \text{ pc} \) is the vertical scale height of dust, \(z = D_L \sin b + z_0 \) is the Galactic latitude, and \(z_0 = 15 \text{ pc} \) is the vertical position of the Sun above the Galactic plane (Siegert 2019). It turned out that the blending constraint had little effect on the posteriors because the other constraints, that is, those from \((t_E, \theta_{E,N}, \pi_{E,N}) \), already predicted that the planet host are remote faint stars whose flux contribution to the blended flux is negligible.

Figures 9 and 10 show the Bayesian posteriors of the lens mass and distances to the lens and source for the lens system KMT-2022-BLG-0475L. In each panel, the solid vertical line represents the median value, and the two dotted vertical lines indicate the uncertainty range of the posterior distribution. The blue and red curves represent the contributions by the disk and bulge lens populations, respectively.
Recent surveys that use transit and radial velocity methods have difficulties detecting ice giants around M dwarf stars, not only because of the long orbital period of the planet but also because of the faintness of the host stars. The number of detected low-mass planets increases with the increasing observational cadence of microlensing surveys, as shown in the histogram of detected microlensing planets as a function of the planet-to-host mass ratio presented in Fig. 1 of Han et al. (2022c). High-cadence lensing surveys, which can complement transit and radial velocity surveys, will play an important role in the construction of a more complete planet sample and thus help us better understand the demographics of extrasolar planets. The two events are also similar in that they have ρ measurements (and therefore also q measurements) despite the fact that the source does not cross any caustics. Zhu et al. (2014) predicted that about half of KMT planets would not have caustic crossings, and Jung et al. (2023) confirmed this for a statistical sample of 58 planetary events detected during the 2018–2019 period. However, Gould (2022) shows that about one-third of non-caustic-crossing events nevertheless yield θ_E measurements.

Measurements of θ_E are important, not only because they improve the Bayesian estimates (see Sect. 5), but also because they allow accurate predictions of when high-resolution adaptive-optics (AO) imaging will be able to resolve the lens separately from the source, which will then yield mass measurements of both the host and the planet (Gould 2022). For KMT-2022-BLG-0475, with proper motion $\mu = 6.9$ mas yr$^{-1}$, the separation in 2030 (approximate first AO light on 30 m class telescopes) will be $\Delta R \sim 55$ mas, which should be adequate to resolve the lens and source. Resolving the lens of this event would also be important for confirming the planetary interpretation of the event because it is difficult to completely rule out the 1L2S interpretation. By contrast, for KMT-2022-BLG-1480, with $\mu = 1.9$ mas yr$^{-1}$, the separation will be only $\Delta R \sim 15$ mas, which almost certainly means that AO observations should be delayed for many additional years. In particular, if the Bayesian mass and distance estimates are approximately correct, then the expected contrast ratio between the source and lens is $\Delta K \sim 7$ mag, which will likely require separations of at least four full widths at half maximum (i.e., 55 mas), even on the 39 m European Extremely Large Telescope. Hence, the contrast between the two planets presented in this paper underlines the importance of θ_E measurements.

6. Summary and conclusion

We analyzed the light curves of the microlensing events KMT-2022-BLG-0475 and KMT-2022-BLG-1480, for which weak short-term anomalies were found as part of a systematic investigation of the 2022 season data collected by high-cadence microlensing surveys. We tested various models that could produce the observed anomalies and found that they were generated by planetary companions to the lenses with a planet-to-host mass ratio $q \sim 1.8 \times 10^{-4}$ for KMT-2022-BLG-0475L and $q \sim 4.3 \times 10^{-4}$ for KMT-2022-BLG-1480L. From the physical parameters estimated from the Bayesian analyses using the observables of the events, we find that the planets KMT-2022-BLG-0475Lb and KMT-2022-BLG-1480Lb have masses ~ 1.7 and ~ 1.8 times the mass of Uranus, respectively, and they lie well beyond the snow lines of their hosts, which are early- and mid-M dwarfs, indicating that the planets are ice giants.

Surveys that use transit and radial velocity methods have difficulties detecting ice giants around M dwarf stars, not only because of the long orbital period of the planet but also because of the faintness of the host stars. The number of detected low-mass planets increases with the increasing observational cadence of microlensing surveys, as shown in the histogram of detected microlensing planets as a function of the planet-to-host mass ratio presented in Fig. 1 of Han et al. (2022c). High-cadence lensing surveys, which can complement transit and radial velocity surveys, will play an important role in the construction of a more complete planet sample and thus help us better understand the demographics of extrasolar planets.

The two events are also similar in that they have ρ measurements (and therefore also q measurements) despite the fact that the source does not cross any caustics. Zhu et al. (2014) predicted that about half of KMT planets would not have caustic crossings, and Jung et al. (2023) confirmed this for a statistical sample of 58 planetary events detected during the 2018–2019 period. However, Gould (2022) shows that about one-third of non-caustic-crossing events nevertheless yield θ_E measurements.

Measurements of θ_E are important, not only because they improve the Bayesian estimates (see Sect. 5), but also because they allow accurate predictions of when high-resolution adaptive-optics (AO) imaging will be able to resolve the lens separately from the source, which will then yield mass measurements of both the host and the planet (Gould 2022). For KMT-2022-BLG-0475, with proper motion $\mu = 6.9$ mas yr$^{-1}$, the separation in 2030 (approximate first AO light on 30 m class telescopes) will be $\Delta R \sim 55$ mas, which should be adequate to resolve the lens and source. Resolving the lens of this event would also be important for confirming the planetary interpretation of the event because it is difficult to completely rule out the 1L2S interpretation. By contrast, for KMT-2022-BLG-1480, with $\mu = 1.9$ mas yr$^{-1}$, the separation will be only $\Delta R \sim 15$ mas, which almost certainly means that AO observations should be delayed for many additional years. In particular, if the Bayesian mass and distance estimates are approximately correct, then the expected contrast ratio between the source and lens is $\Delta K \sim 7$ mag, which will likely require separations of at least four full widths at half maximum (i.e., 55 mas), even on the 39 m European Extremely Large Telescope. Hence, the contrast between the two planets presented in this paper underlines the importance of θ_E measurements.

Acknowledgements. Work by C.H. was supported by the grants of National Research Foundation of Korea (2019R1A2C2089565). This research has made use of the KMTNet system operated by the Korea Astronomy and Space Science Institute (KASI) at three host sites of CTIO in Chile, SAAO in South Africa, and SSO in Australia. Data transfer from the host site to KASI was supported by the Korea Research Environment Open NETwork (KREONET). The MOA project is supported by JSPS KAKENHI Grant Number JP252423004, JP252423004, JP252423004, JP15K04007, JP17H06287, and JP17H06287. J.C.Y., I.G.S., and S.J.C. acknowledge support from NSF Grant No. AST-2108414. Y.S. acknowledges support from BSF Grant No. 2020740. This research uses data obtained through the Telescope Access Program (TAP), which has been funded by the TAP member institutes. W. Zang, H.Y., S.M., and W. Zhu acknowledge support by the National Science Foundation of China (Grant No. 12133005). W. Zang acknowledges the support from...
the Harvard-Smithsonian Center for Astrophysics through the CfA Fellowship. C.R. was supported by the Research fellowship of the Alexander von Humboldt Foundation.

References

Wang, H., Zang, W., Zhu, W., et al. 2022, MNARS, 510, 1778
Zang, W., Han, C., Kondo, I., et al. 2021a, RA&A, 21, 239
Zang, W., Yang, H., Han, C., et al. 2022, MNARS, 515, 928

\begin{enumerate}
\item Department of Physics, Chungbuk National University, Cheongju 28644, Republic of Korea
e-mail: cheongho@astroph.chungbu.ac.kr
\item Korea Astronomy and Space Science Institute, Daejeon 34055, Republic of Korea
\item Institute of Natural and Mathematical Science, Massey University, Auckland 0745, New Zealand
\item Center for Astrophysics, Harvard & Smithsonian, 60 Garden St., Cambridge, MA 02138, USA
\item Department of Astronomy, Tsinghua University, Beijing 100084, PR China
\item University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch 8020, New Zealand
\item Max-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
\item Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210, USA
\item Korea University of Science and Technology, Korea, (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
\item Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel
\item School of Space Research, Kyung Hee University, Yongin, Kyonggi 17104, Republic of Korea
\item Institute for Space-Earth Environmental Research, Nagoya University, Nagoya 464-8601, Japan
\item Code 667, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
\item Department of Astronomy, University of Maryland, College Park, MD 20742, USA
\item Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
\item Instituto de Astrofísica de Canarias, Vía Láctea s/n, 38205 La Laguna, Tenerife, Spain
\item Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
\item Department of Physics, The Catholic University of America, Washington, DC 20064, USA
\item Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
\item Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France
\item Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand
\item University of Canterbury Mt. John Observatory, PO Box 56, Lake Tekapo 8770, New Zealand
\end{enumerate}

A97, page 10 of 10