LETTER TO THE EDITOR

Evidence for a gamma-ray molecular target in the enigmatic PeVatron candidate LHAASO J2108+5157*

1 Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1420, 44430 Guadalajara, Jalisco, Mexico
e-mail: eduardo.delafuente@academicos.udg.mx
2 Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
3 Doctorado en Ciencias en Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1420, 44430 Guadalajara, Jalisco, Mexico
4 Departamento de Astronomía, Universidad de Guanajuato, Apartado Postal 144, 36000 Guanajuato, Mexico
5 Department of Space, Earth, and Environment, Chalmers University of Technology, Onsala Space Observatory, Onsala 439 92, Sweden
6 Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan
7 Department of Applied Physics, Faculty of Engineering, Kanagawa University, 3-27-1 Roikkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
8 Department of Space, Earth, and Environment, Chalmers University of Technology, Onsala Space Observatory, Onsala 439 92, Sweden
9 Nobeyama Radio Observatory, National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), 462-2 Nobeyama, Minamimaki, Nagano 384-1305, Japan
10 Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
11 National Astronomical Research Institute of Thailand (Public Organization), 260 Moo 4, T. Donkaew, A. Maerim, Chiangmai 51080, Thailand

Received 17 April 2023 / Accepted 20 June 2023

ABSTRACT

Context. Peta-eV (PeV) astronomy emerged in 2021 with the discovery of ultra-high-energy gamma-ray sources associated with powerful natural particle accelerators known as PeVatrons. In order to determine the nature of their emission, namely whether it has a hadronic or leptonic origin, it is essential to characterise the physical parameters of the environment where it originates.

Aims. We unambiguously confirm the association of molecular gas with the PeVatron candidate LHAASO J2108+5157 using unprecedented high angular-resolution (17″) 12,13 C O(J = 1 → 0) observations carried out with the Nobeyama 45m radio telescope.

Methods. We characterised a molecular cloud in the vicinity of the PeVatron candidate LHAASO J2108+5157 by determining its physical parameters from our 12,13 C O(J = 1 → 0) line observations. We used an updated estimation of the distance to the cloud, which provided a more reliable result.

Results. The molecular emission was compared with excess gamma-ray images obtained with Fermi-LAT at energies above 2 GeV to search for spatial correlations and test a possible hadronic (π0 decay) origin for the gamma-ray emission.

Conclusions. We identified a molecular cloud in the vicinity of LHAASO J2107+5157 as the main target where cosmic rays from an unknown PeVatron produce the observed gamma-ray emission via π0 decay.

1. Introduction

PeVatrons were recently discovered thanks to the highly sensitive gamma-ray observatories LHAASO-KM2A (e.g., Cao et al. 2021a), Tibet-γAS (e.g., Amenomori et al. 2021a,b,c), and HAWC (e.g., Abeysekara et al. 2023, 2021, 2020). The study of PeVatrons is important to understand the origin of the most energetic particles in the universe. As an emerging field in astrophysics there are two important issues to be addressed. The first is to determine the nature of the observed gamma-ray emission, leptonic (e.g., electrons in the inverse Compton effect) or hadronic (e.g., neutral pion decay) and the interaction of cosmic-rays with molecular gas. The second is to identify the...
astronomical counterpart of the PeVatron, an object that accelerates the particles (at PeV) and then produces the observed gamma-ray emission in a target (e.g., molecular gas). Although several PeVatrons have already been associated with a counterpart (e.g., Boomerang, Cygnus Cocoon; Amenomi et al. 2021a; Abeysekara et al. 2021), there are exceptions, such as LHAASO J2108+5157 (J2108 hereafter), whose counterpart remains elusive (Cao et al. 2021b).

J2108 was proposed by Cao et al. (2021a,b) as a PeVatron candidate with gamma-ray emission from 25 to 100 TeV (9.5σ) and above 100 TeV (8.5σ) measured with the LHAASO-KM2A observatory at an angular resolution of ~0.3'' in the Cygnus OB7 molecular cloud (hereafter Cyg-OB7; Reiputh & Schröder 2008 and references therein). It is considered one of the most enigmatic PeVatrons as it lacks a leptonic gamma-ray counterpart (e.g., Boomerang, Cygnus Cocoon; Amenomori et al. 2021a; Abeysekara et al. 2021), there are exceptions, such as LHAASO J2108+5157 (J2108 hereafter), whose counterpart remains elusive (Cao et al. 2021b).

2. Observations

The 12,13CO observations were performed on February 1, 3, 4, 11, 12, and March 19–20, 2023 with the FOREST receiver (Minamidani et al. 2016). The mapped region has a size of ~1 deg², and is centred at the galactic coordinates (l, b) = 92.307, 2.836, which corresponds to (α_J2000, δ_J2000) = 21:08:52.92, 51.57:00.91. The local standard of rest (LSR) velocity covered the range ~80 < V_LSR < 80 km s⁻¹ with a spectral resolution of ~0.5 km s⁻¹. The effective spatial resolution is 17″, and the main beam efficiency is 39±3%. The total integration time is 870 min covering 660 scans. Pointing errors were corrected to less than 5″ every 1.5 h by observing a SiO maser source, IRAS 21086+5238. Data reduction and calibration were performed according to the standard procedures using NOSTAR software provided by NRO1 and described in Yamagishi et al. (2018).

We retrieved hydrogen (HI) 21 cm line observations performed by the Dominion Radio Astrophysical Observatory2 (DRAO; Taylor et al. 2003). The images are projected into a 1024 x1024 mosaic with a pixel size of 18″ and an angular resolution of 1″. The velocity resolution is 0.82 km s⁻¹, and the rms of the brightness temperature is between 2.1 and 3.2 K.

3. Results and discussion

The left panel of Fig. 2 shows the Fermi-LAT TS map (contours) superimposed on the Nobeyama 13CO moment-0 map (colour map). From this map it can be seen that the spatial distribution of the CO emission exhibits a remarkable agreement with the morphology of the Fermi-LAT gamma-ray excess. The CO emission is particularly bright1 at the locations of the peak of the Fermi-LAT gamma-ray excess, and in the locations of J2108, 4FGL J2108.0+5155, and HS. The agreement of these morphologies indicates that the gamma-ray emission probably originates within the molecular cloud. Furthermore, if we assume that the LHAASO sub-PeV emission also traces the Fermi-LAT gamma-ray excess morphology, this would mean that the gamma-ray emission results from the interaction between the gas of the molecular cloud and HE particles accelerated by a PeVatron.

The 13CO spectrum of the region encircled by the dotted ellipse is shown in the right panel of Fig. 2. We identified three spectral components, labeled C1, C2, and C3, with V_LSR ~ −13, −3 and +9 km s⁻¹, respectively. Figure 3 shows the 13CO (top) and 13CO (down) moment-0 maps of these spectral components. These maps are integrated from −20 to −8 km s⁻¹ (left), from −6 to +2 km s⁻¹ (middle), and from +5 to +12 km s⁻¹ (right).

2 DRAO is part of the Canadian Galactic Plane Survey Project (CGPS). https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/search/#resultTableTab
3 The brightest emission at the top left corner of the map corresponds to the star cluster region Kronberger 82.
The spatial correlation between the CO emission and the Fermi-LAT gamma-ray excess is particularly evident for the molecular gas associated with the spectral component C$_1$ (see left panel of Fig. 3), hereafter referred to as [FTK-MC]. The cloud [FTK-MC] has an irregular morphology, consisting of two main components. Given their proximity to the gamma-ray sources J2108 and HS, we call these components [FTK-MC]J2108 and [FTK-MC]HS, located towards the north and south, respectively. The emission in the moment-0 maps of the central column of Fig. 3 (C$_2$) covers the entire region (including Kronberger 82; Paper I). Although this emission partially arises from gas associated with [FTK-MC]J2108 (V$_{LSR}$ \sim -3 km s$^{-1}$; Paper I), it is difficult to quantify how much of it is due to [FTK-MC]J2108 and how much to ambient gas (see e.g., position–velocity diagrams in Fig. A.1). The emission corresponding to the spectral component C$_3$ seems to be associated with another molecular region coincident with the edge of an HI cloud observed with DRAO between 5 and 12 km s$^{-1}$ (see Appendix B). Given the spatial correlation between the emission of C$_3$ and the Fermi-LAT gamma-ray excess, in this work we only consider the gas associated with this spectral component and exclude the contribution from the other two (see Appendix A). In Fig. 4 the 13CO emission (contours) of the cloud [FTK-MC] (i.e., the 13CO emission of the spectral component C$_1$) is superimposed on the Fermi-LAT TS map. It is clear that the peak of the Fermi-LAT gamma-ray excess coincides with the component [FTK-MC]J2108.
HS J2108[FTK-MC]+

Fig. 3. 12,13CO moment-0 maps of the three spectral components shown in the right panel of Fig. 2. The units of the colour-scale are K km s$^{-1}$, corrected for antenna main-beam efficiency. The molecular cloud [FTK-MC] is most prominent in the map with velocity in the range from -20 to 8 km s$^{-1}$, which corresponds to the spectral component C$_1$, and is delineated with a dashed line. The positions of the sources J2108 and HS are indicated with crosses.

All previous studies of the molecular gas around J2108 have used observations of the 12CO emission. The main problem with this approach is that, since the emission is optically thick, the derived column density is just a lower limit of the actual value, which hinders the determination of the density of nucleons. Our Nobeyama observations of the 13CO emission allow us to determine for the first time the physical parameters of the molecular gas around J2108 in the optically thin regime, resulting in more reliable values of the physical parameters. The calculation of the density of nucleons, n(H) = $2n$(H$_2$) + n(HI), requires the size of the molecular cloud [FTK–MC]. However, given its complex morphology, we first fitted 2D Gaussian functions to the emission of [FTK-MC]J2108 and [FTK-MC]HS. The FWHM of the fitted Gaussians are represented as dashed and dotted ellipses in Fig. 4. The central positions of the fitted Gaussians are $l, b = 92.20^\circ, 2.90^\circ$ and $l, b = 92.53^\circ, 2.59^\circ$, respectively. A representative angular size for [FTK-MC] can be obtained as the sum of the fitted sizes of [FTK-MC]J2108 and [FTK-MC]HS, which gives a value of 0.55 \pm 0.02 deg. Subsequently, the column densities of the molecular and atomic gas are obtained from the 13CO and HI emission corresponding to the spectral component C$_1$ ($V$$_{LSR}$ \sim -13 km s$^{-1}$). The details of the data analysis and calculations are given in Appendix A.

For our analysis we adopted a distance of 1.6 \pm 0.1 kpc. This distance was determined using the Revised Kinematic Distance Calculator of Reid et al. (2014, 2019) on the basis of the systemic velocity of the spectral component C$_1$ ($V$$_{LSR}$ \sim -13 km s$^{-1}$). This value is similar, albeit slightly lower, to that adopted in Paper I (1.7 kpc), and close to the upper limit of the distances that Schneider et al. (2006) report for Cygnus-X. On the other hand, it is just half the value of 3.28 kpc proposed by Cao et al. (2021b). The reason for adopting a distance of 1.6 \pm 0.1 kpc is that the calculator takes into account the likelihood of the cloud being associated with nearby sources whose distance has been accurately measured via trigonometric parallax. In addition, the distance calculator of Reid et al. (2014, 2019) also takes into account the probable association of the molecular cloud with Galactic spiral arms, which increases the reliability of the estimated distance. The details of the calculation of the distance are given in Appendix B. Following the methods and equations presented in Paper I, and using the observational values associated with component C$_1$ shown in Table C.2, we derived physical parameters for [FTK-MC]J2108 and [FTK-MC]HS, separately. The column and volumetric densities of the cloud [FTK-MC] are taken as the average of the values of those obtained for [FTK-MC]J2108 and [FTK-MC]HS. All the derived physical parameters are listed in Table C.3.

We derived a nucleon number density of n(H) = 133 cm$^{-3}$, which four times higher than the value obtained by Cao et al. (2021b) of n(H) \sim 30 cm$^{-3}$. After re-scaling our calculations with their proposed distance of 3.28 kpc, the number density obtained in this work is still a factor of 2 higher. This shows the importance of using optically thin emission to derive the physical parameters of the molecular gas. By considering the neutral pion decay hadronic model in the Naima software package4 (Zabalza 2015, and references therein), and using the estimated nucleon number density and distance as input parameters, and the additional parameters described in Paper I, we obtained a total required energy of the cosmic-ray proton population of W_p \sim 1.1×10^{47} ergs to reproduce the observed J2108 sub-PeV

energy flux (Cao et al. 2021b). The parameters and results of the hadronic modelling are presented in Table C.4.

We note that although the total energy of cosmic ray protons derived from our calculations is a factor of 20 lower than that obtained by Cao et al. (2021b), it is consistent with the proposed scenario that PeVatron may be associated with an old supernova-like explosion (Kar & Gupta 2022). The energy of protons required to reproduce the LHAASO gamma-ray emission could easily be created by such a mechanism. However, we do not rule out the possibility of alternative astrophysical objects responsible for the acceleration of the HE protons. Further observations and studies will be of great importance to identify the nature of the PeVatron in this enigmatic source.

4. Conclusions

In the following we summarise the results and conclusions that we obtained from our Nobeyama 12,13CO(J = 1 → 0) observations towards the region around sub-PeV gamma-ray source J2108:

1. We identified for the first time a molecular cloud, [FTK-MC], whose location coincides with the position of the PeVatron candidate LHAASO J2108+5157. The morphology of this cloud is in striking agreement with the distribution of the Fermi-LAT up to 2 GeV gamma-ray excess.

2. The cloud [FTK-MC] consists of two main components, [FTK-MC]J2108 and [FTK-MC]HS. The systemic velocity of [FTK-MC] is ~13 km s⁻¹. It has an angular size of ~0.55° and is located at a distance of 1.6 ± 0.1 kpc.

3. The nucleon density, n(H) = 2n(H₂) + n(HI), in [FTK-MC], derived from optically thin 13CO emission, is estimated to be 133 cm⁻³, which results in a total mass M(HI + H₂) ~ 7.5×10⁵ M☉. The required total energy of protons to produce the observed sub-PeV emission of LHAASO J2108+5157 is Wₚ of 1.1×10⁷⁷ erg.

4. Based on these results, we favour a scenario where the molecular cloud [FTK-MC] is the main target of HE particles accelerated by an unidentified PeVatron. Thus, the gamma-rays observed by Fermi-LAT and LHAASO-K2MA have a hadronic component in nature.

Acknowledgements. This work is based on observations with the 45 m telescope at the Nobeyama Radio Observatory (NRO). NRO is a branch of the National Astronomical Observatory of Japan, National Institutes of Natural Sciences. This research was supported by the Inter-University Research Programme of the Institute for Cosmic Ray Research, University of Tokyo, grant 2023-F-005. IT-J acknowledges support from Consejo Nacional de Ciencias y Tecnología, México (CONACyT) grant 754851, and Onsala Space Observatory during an academic stay in 2023. We are grateful for the computational resources and technical support provided by the Centro de Análisis de Datos y Supercomputación (CADS) of the Universidad de Guadalajara through the Leo-Atrox supercomputer.

References

Amenomori, M., Bao, Y. W., Bi, X. J., et al. 2021a, Nat. Astron., 5, 460
Reipurth, B., & Schnider, N. 2008, in Handbook of Star Forming Regions, ASP Conf. Ser., 1, 1
Toledano-Juárez, I. 2023, PhD Thesis, Universidad de Guadalajara, México
Appendix A: Analysis of the spectra of the molecular emission

Fig. A.1. 13CO map from Fig. 3 top panel. The dashed and dotted rectangles indicate the ranges in the J2108– and HS– cloud positions respectively, where the galactic longitude as function of the VLSR map is obtained: HS–cloud (bottom left) and J2108–cloud (bottom right). Three gas patches (C$_1$ bottom, C$_2$ middle and C$_3$ top) are observed. Colour–bar units are K deg.

The lower panels of Fig. A.1 show two maps of Galactic longitude as a function of VLSR, position–velocity diagrams, by integrating emission within the Galactic longitude range that corresponds to the extent of the fitted ellipses of [FTK–MC]HS (dotted lines) and the [FTK–MC]J2108 (dashed lines), respectively (see Fig. 4). The molecular gas associated with each of the three spectral components C$_1$, C$_2$, and C$_3$ appears as horizontal bands in these PV diagrams. [FTK–MC]J2108 and [FTK–MC]HS are associated with molecular gas at $V_{LSR} \sim -13$ km, corresponding to spectral component C$_1$, with [FTK–MC]J2108 (bottom right) showing a higher velocity dispersion of this component. Nevertheless, the spectral component C$_2$ covers the entire map at $V_{LSR} \sim -3$ km s$^{-1}$, which can also be seen in Fig. 3. For this reason, we neglect component C$_2$ in the analysis.

To better determine the physical parameters of [FTK–MC] as a whole, we first analysed its two components [FTK–MC]J2108 and [FTK–MC]HS separately. The average 12CO and 13CO spectra of the [FTK–MC]J2108 and [FTK–MC]HS components are shown in Fig. A.2 top left and middle left panels, respectively. Main beam efficiencies η_{MB} of 38.9 and 39.9% at 115 and 110 GHz, respectively, were considered to use a main-beam brightness temperature scale. The spectra are well fitted considering four Gaussian components, two of which are related to the spectral component C$_2$. This Gaussian fit was used to extract the contribution of the spectral component C$_2$ and then to plot the corresponding reduced spectra in the top right and middle right panels for 12CO and 13CO, respectively, to better visualise and analyse component C$_1$. Next, we considered two Gaussian components to fit these reduced spectra and estimate the physical parameters of component C$_1$. In order to obtain the nucleon column density $N(\text{H}) = 2N(\text{H}_2) + N(\text{HI})$, we show the HI 21 cm spectra of [FTK–MC]J2108 and [FTK–MC]HS in the bottom panel of Fig. A.2. A five-component Gaussian fit was applied to the observed HI 21 cm spectra, and only a V_{LSR} range between -20 and -4 km s$^{-1}$ (shaded range in Fig. A.2), which includes both [FTK–MC]J2108 and [FTK–MC]HS spectral components C$_1$, is used as the limits of the HI velocity integrated brightness temperature (see Table C.3) to determine the physical parameters.

Appendix B: Estimation of distance to the molecular cloud [FTK–MC]

A reliable distance to the molecular cloud [FTK–MC] is essential for calculating the value of its nucleon number density, which in turn is fundamental to determine the total energy of the protons from the PeVatron that produce the observed gamma-ray emission. Using low angular-resolution
observations of 12CO ($J=1\rightarrow0$). Cao et al. (2021b) proposed that the LHAASO J2108+5157 sub-GeV emission is associated with the molecular cloud [MM2017]4607, which is located in the same direction as [FTK–MC] and has a calculated distance of 3.28 kpc (Miville-Deschenes et al. 2017). This distance was estimated from the rotation curve model of Brand & Blitz (1993), using a position of $l=92.27^\circ$, $b=2.77^\circ$ and systemic velocity of -13.7 km s$^{-1}$.

In order to determine the distance to [FTK–MC] we used the Bayesian distance calculator (version 2) developed by Reid et al. (2019). To determine a probability density function of the distance this calculator uses as prior of a Bayesian analysis the probability of association to spiral arms of the Milky Way, the probability of association to near sources whose trigonometric parallaxes have been measured, and the probability of following the rotation curve of the Galaxy. We input the coordinates and systemic velocities of the molecular gas associated to the spectral components, C_1, C_2, and C_3 (see Fig. 2), and their calculated distances are 1.62 ± 0.05 kpc (probability of 0.49), 1.61 ± 0.05 kpc (probability of 0.59), and 1.21 ± 0.26 kpc (probability of 0.47), respectively. We note that the values of the distance of components C_1 and C_2 are heavily weighted by the precise measurement of the trigonometric parallax of the source G092.69+3.08, whose distance is 1.63 kpc and is in the vicinity of the [FTK–MC] cloud. On the other hand, the value of the distance of C_3 reflects its possible association with the local spiral arm. If the trigonometric parallax measurement of the source G092.69+3.08 is removed from the prior of the Bayesian analysis, the distances are 2.76 ± 0.72 kpc (probability of 0.51), 1.28 ± 0.24 kpc (probability of 0.92), and 1.21 ± 0.26 kpc (probability of 0.58), for C_1, C_2, and C_3, respectively.

As mentioned in Section 3, the molecular cloud [FTK–MC] is associated to the spectral component C_1. From the current observations it is difficult to determine the actual distance to [FTK–MC], but it is likely that it is part of the same molecular cloud as the gas associated to the spectral component C_2, and both of them are located at ~1.6 kpc, close to the source G092.69+3.08. In our analysis we only consider the C_1 component because of the high correlation it shows (see Fig. 4) with the gamma-ray observations of Fermi–LAT above 2 GeV (Abe et al. 2023). We adopt the calculated distance of 1.6 ± 0.1 kpc to [FTK–MC] instead of the previous ~ 3.3 kpc (Cao et al. 2021b).

Two different DRAO 21 cm moment-0 maps are shown on mesoscales in the upper panels of Figure B.1. The corresponding 12CO ($J=2\rightarrow1$) emission from OPU radio telescope are overlaid in contours (de la Fuente et al. 2023). These maps consider LSR velocity ranges between ~20 to ~8 km s$^{-1}$ (left), and 5 to 12 km s$^{-1}$ (right) at the same colour scale. The DRAO map with the Nobeyama 13CO is shown as an inset. The OPU contours are [-4, 4, 8, 12, 16, 20, 24, 28, 32] the rms of 1.0 K km s$^{-1}$. The Nobeyama 13CO contours are [-4, 4, 5, 8, 12, 16, 20] the rms of 0.5 K km s$^{-1}$.

![Fig. B.1. OPU 12CO($J=2\rightarrow1$) emission in contours (Paper I) overlaid with the DRAO HI 21 cm moment-0 map (colours) in the velocity range from ~20 to ~8 km s$^{-1}$ (left), and 5 to 12 km s$^{-1}$ (right) at the same colour scale. The DRAO map with the Nobeyama 13CO is shown as an inset. The OPU contours are [-4, 4, 8, 12, 16, 20, 24, 28, 32] the rms of 1.0 K km s$^{-1}$. The Nobeyama 13CO contours are [-4, 4, 5, 8, 12, 16, 20] the rms of 0.5 K km s$^{-1}$.

Fig. B.1. OPU 12CO($J=2\rightarrow1$) emission in contours (Paper I) overlaid with the DRAO HI 21 cm moment-0 map (colours) in the velocity range from ~20 to ~8 km s$^{-1}$ (left), and 5 to 12 km s$^{-1}$ (right) at the same colour scale. The DRAO map with the Nobeyama 13CO is shown as an inset. The OPU contours are [-4, 4, 8, 12, 16, 20, 24, 28, 32] the rms of 1.0 K km s$^{-1}$. The Nobeyama 13CO contours are [-4, 4, 5, 8, 12, 16, 20] the rms of 0.5 K km s$^{-1}$.
Appendix C: Tables

Table C.1. Fitted parameters of 12CO($J=1\rightarrow0$), 13CO($J=1\rightarrow0$), and HI emission via Gaussian fit for the two components of the [FTK–MC] molecular cloud (J2108 and HS gas; see Appendix B). The main beam (MB) averaged peak temperature (T_{MB}) uncertainties are only due to rms noise. Velocity channel resolutions are used to show the V_{LSR} and ΔV uncertainties. For HI we refer to the shaded line in Fig. A.2.

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Molecule</th>
<th>Spectral Line</th>
<th>Size [deg]</th>
<th>V_{LSR} [km s$^{-1}$]</th>
<th>ΔV [km s$^{-1}$]</th>
<th>$T_{\text{MB}}^{\text{peak}}$ [K]</th>
<th>$\int T_{\text{MB}dV}$ [K km s$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[FTK–MC]HS</td>
<td>12CO($J=1\rightarrow0$)</td>
<td>C$_1$</td>
<td>0.34 ± 0.01</td>
<td>-12.7 ± 0.5</td>
<td>4.0 ± 0.5</td>
<td>6.13 ± 0.66</td>
<td>26.24 ± 4.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C$_2$</td>
<td>0.34 ± 0.01</td>
<td>-2.3 ± 0.5</td>
<td>3.5 ± 0.5</td>
<td>6.30 ± 0.68</td>
<td>23.53 ± 3.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C$_3$</td>
<td>0.34 ± 0.01</td>
<td>8.8 ± 0.5</td>
<td>2.8 ± 0.5</td>
<td>2.79 ± 0.28</td>
<td>8.21 ± 1.38</td>
</tr>
<tr>
<td></td>
<td>13CO($J=1\rightarrow0$)</td>
<td>C$_1$</td>
<td>0.34 ± 0.01</td>
<td>-13.2 ± 0.5</td>
<td>3.0 ± 0.5</td>
<td>1.42 ± 0.15</td>
<td>4.56 ± 0.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C$_2$</td>
<td>0.34 ± 0.01</td>
<td>-2.7 ± 0.5</td>
<td>2.2 ± 0.5</td>
<td>1.44 ± 0.16</td>
<td>3.42 ± 0.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C$_3$</td>
<td>0.34 ± 0.01</td>
<td>8.8 ± 0.5</td>
<td>2.7 ± 0.5</td>
<td>0.19 ± 0.02</td>
<td>0.56 ± 0.09</td>
</tr>
<tr>
<td>[FTK–MC]J2108</td>
<td>12CO($J=1\rightarrow0$)</td>
<td>C$_1$</td>
<td>0.21 ± 0.01</td>
<td>-13.2 ± 0.5</td>
<td>7.3 ± 0.5</td>
<td>4.05 ± 0.44</td>
<td>31.37 ± 6.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C$_2$</td>
<td>0.21 ± 0.01</td>
<td>-1.4 ± 0.5</td>
<td>3.6 ± 0.5</td>
<td>5.14 ± 1.18</td>
<td>19.74 ± 4.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C$_3$</td>
<td>0.21 ± 0.01</td>
<td>7.8 ± 0.5</td>
<td>3.2 ± 0.5</td>
<td>3.71 ± 0.40</td>
<td>12.69 ± 1.49</td>
</tr>
<tr>
<td></td>
<td>13CO($J=1\rightarrow0$)</td>
<td>C$_1$</td>
<td>0.21 ± 0.01</td>
<td>-11.6 ± 0.5</td>
<td>8.9 ± 0.5</td>
<td>0.55 ± 0.06</td>
<td>5.25 ± 0.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C$_2$</td>
<td>0.21 ± 0.01</td>
<td>-2.9 ± 0.5</td>
<td>3.9 ± 0.5</td>
<td>2.23 ± 0.24</td>
<td>9.33 ± 0.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C$_3$</td>
<td>0.21 ± 0.01</td>
<td>7.2 ± 0.5</td>
<td>1.5 ± 0.5</td>
<td>0.27 ± 0.03</td>
<td>0.42 ± 0.08</td>
</tr>
</tbody>
</table>

Table C.2. Observational parameters of the components of the [FTK–MC] molecular cloud

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Molecular Line</th>
<th>Diameter [deg]</th>
<th>$T_{\text{MB}}^{\text{peak}}$ [K]</th>
<th>$\int T_{\text{MB}dV}$ [K km s$^{-1}$]</th>
<th>T_{ex} [K]</th>
<th>τ a</th>
</tr>
</thead>
<tbody>
<tr>
<td>[FTK–MC]HS</td>
<td>12CO($J=1\rightarrow0$)</td>
<td>0.34 ± 0.01</td>
<td>6.13 ± 0.66</td>
<td>26.24 ± 4.10</td>
<td>9.47 ± 0.68</td>
<td>15.64 ± 2.72</td>
</tr>
<tr>
<td></td>
<td>13CO($J=1\rightarrow0$)</td>
<td>0.34 ± 0.01</td>
<td>1.42 ± 0.15</td>
<td>4.56 ± 0.63</td>
<td>9.47 ± 0.68</td>
<td>0.26 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>HI (21 cm)</td>
<td>0.34 ± 0.01</td>
<td>-</td>
<td>1243.61 ± 33.78</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>[FTK–MC]J2108</td>
<td>12CO($J=1\rightarrow0$)</td>
<td>0.21 ± 0.01</td>
<td>4.05 ± 0.44</td>
<td>31.37 ± 6.10</td>
<td>7.31 ± 0.46</td>
<td>8.70 ± 1.43</td>
</tr>
<tr>
<td></td>
<td>13CO($J=1\rightarrow0$)</td>
<td>0.21 ± 0.01</td>
<td>0.55 ± 0.06</td>
<td>5.25 ± 0.91</td>
<td>7.31 ± 0.46</td>
<td>0.14 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>HI (21 cm)</td>
<td>0.21 ± 0.01</td>
<td>-</td>
<td>1207.18 ± 19.50</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a Optical depth of the 12CO and 13CO and molecular line emission.

Table C.3. Physical parameters of the [FTK–MC] molecular cloud

<table>
<thead>
<tr>
<th>$N(^{13}\text{CO})$ $^{\text{b}}$ [1015 cm$^{-2}$]</th>
<th>N(HI) $^{\text{a}}$ [1021 cm$^{-2}$]</th>
<th>N(H$_2$) $^{\text{b}}$ [1022 cm$^{-2}$]</th>
<th>n(HI) $^{\text{a}}$ [cm$^{-3}$]</th>
<th>n(H$_2$) $^{\text{a}}$ [cm$^{-3}$]</th>
<th>M_{ex}(H2) $^{\text{b}}$ [$10^4 M\odot$]</th>
<th>M(H2) $^{\text{a}}$ [$10^3 M\odot$]</th>
<th>M(HI + H2) $^{\text{a}}$ [$10^3 M\odot$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0 ± 0.4</td>
<td>2.2 ± 0.3</td>
<td>2.0 ± 1.0</td>
<td>48 ± 7</td>
<td>43 ± 22</td>
<td>5.8 ± 1.0</td>
<td>5.3 ± 2.8</td>
<td>7.5 ± 2.9</td>
</tr>
</tbody>
</table>

b For the calculations of the physical parameters a distance of 1.6 ± 0.1 kpc was assumed. The angular size of the [FTK–MC] molecular cloud is considered to be 0.55 ± 0.02 degrees, which is the sum of the sizes of the two individual components [FTK–MC]HS and [FTK–MC]J2108. a For the virial mass calculation an average of the line-widths of C$_1$ of the 13CO($J=1\rightarrow0$) emission from [FTK–MC]HS and [FTK–MC]J2108 was used.

Table C.4. Parameters and results of the hadronic model of Naima for the [FTK–MC] molecular cloud

<table>
<thead>
<tr>
<th>Distance [kpc] $^{\text{a}}$</th>
<th>N(H) $^{\text{a}}$ [1021 cm$^{-2}$]</th>
<th>n(H) $^{\text{a}}$ [cm$^{-3}$]</th>
<th>Size [degree] $^{\text{a}}$</th>
<th>W_p [10^{45} erg]</th>
<th>Cutoff [TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6±0.1</td>
<td>6.2±2.1</td>
<td>133±45</td>
<td>0.55±0.02</td>
<td>1.1$^{+0.6}_{-0.4}$</td>
<td>600±400</td>
</tr>
</tbody>
</table>

a The column and number density of nucleons is calculated as N(H) = 2N(H$_2$) + N(HI) and n(H) = 2n(H$_2$) + n(HI), respectively.