
Astronomy
&Astrophysics

A&A 672, A83 (2023)
https://doi.org/10.1051/0004-6361/202346015
© The Authors 2023

Fast correlation function calculator

A high-performance pair-counting toolkit⋆

Cheng Zhao (赵成)

Institute of Physics, Laboratory of Astrophysics, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny,
1290 Versoix, Switzerland
e-mail: cheng.zhao@epfl.ch

Received 29 January 2023 / Accepted 24 February 2023

ABSTRACT

Context. A novel high-performance exact pair-counting toolkit called fast correlation function calculator (FCFC) is presented.
Aims. With the rapid growth of modern cosmological datasets, the evaluation of correlation functions with observational and simula-
tion catalogues has become a challenge. High-efficiency pair-counting codes are thus in great demand.
Methods. We introduce different data structures and algorithms that can be used for pair-counting problems, and perform comprehen-
sive benchmarks to identify the most efficient algorithms for real-world cosmological applications. We then describe the three levels
of parallelisms used by FCFC, SIMD, OpenMP, and MPI, and run extensive tests to investigate the scalabilities. Finally, we compare
the efficiency of FCFC with alternative pair-counting codes.
Results. The data structures and histogram update algorithms implemented in FCFC are shown to outperform alternative meth-
ods. FCFC does not benefit greatly from SIMD because the bottleneck of our histogram update algorithm is mainly cache latency.
Nevertheless, the efficiency of FCFC scales well with the numbers of OpenMP threads and MPI processes, even though speedups may
be degraded with over a few thousand threads in total. FCFC is found to be faster than most (if not all) other public pair-counting codes
for modern cosmological pair-counting applications.

Key words. methods: data analysis – methods: numerical – techniques: miscellaneous – large-scale structure of Universe

1. Introduction

Correlation functions are a useful statistical tool in cosmology
that characterise the excess probability of finding tracers with
given separations compared to a random distribution. Thus, they
are a measure of the clustering pattern of a tracer distribu-
tion, which can then be used to infer the statistical quantities
of the underlying density field. In the current standard cosmo-
logical paradigm, the distribution of matter results from tiny
fluctuations in the primordial Universe, which evolve following
gravitational instability and cosmic expansion. For this reason,
correlation functions are crucial for our understanding of infla-
tion and cosmic structure formation models (e.g. Bernardeau
et al. 2002). The pair correlation function, also known as the
radial distribution function, which is essentially the isotropic
two-point correlation function (2PCF), is also a fundamental
quantity in statistical mechanics, where it links microscopic
details to macroscopic properties (Chandler 1987).

The measurement of 2PCFs of galaxies and quasars has been
a key goal of massive spectroscopic surveys, such as the Baryon
Oscillation Spectroscopic Survey (BOSS; Dawson et al. 2013),
the Extended Baryon Oscillation Spectroscopic Survey (eBOSS;
Dawson et al. 2016), and the ongoing Dark Energy Spectro-
scopic Instrument (DESI; DESI Collaboration 2016). With a
data catalogue and the corresponding random sample, the 2PCF

⋆ The fast correlation function calculator is publicly available at
https://github.com/cheng-zhao/FCFC

is generally measured using the Landy–Szalay (LS) estimator
(Landy & Szalay 1993),

ξ = (DD − 2DR + RR)/RR, (1)

where DD, DR, and RR denote data–data, data–random, and
random–random pair counts, respectively. Observational and
simulated galaxy samples today usually consist of several mil-
lion or more than several million galaxies. Robust clustering
measurements further require random samples with typically
ten times the objects. As a result, the brute-force pair-counting
approach that evaluates N2 pair separations, where N is the num-
ber of data points, is impractical. The calculation of 2PCFs from
pair counts has become a practical challenge for modern cos-
mological analysis, not to for mention higher-order statistics like
three-point correlation functions.

The evaluation of correlation functions is effectively a range-
searching problem, which reports objects within a query range.
Range searching is a fundamental topic in computational geom-
etry. A variety of data structures and algorithms is available to
solve range-searching problems with different objects and query
ranges (see e.g. de Berg et al. 2008). In the context of cos-
mology, efficient correlation function calculators have also been
studied extensively in the literature, from the pioneering work
by Moore et al. (2001) to the recent remarkable development of
Sinha & Garrison (2020). Meanwhile, significant efforts have
been made to make full use of high-performance computing
(HPC) resources, such as a large number of multi-core CPUs and
GPUs (e.g. Dolence & Brunner 2008; Alonso 2012; Chhugani
et al. 2012; Ponce et al. 2012). Different approximate methods

A83, page 1 of 20
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

https://www.aanda.org
https://doi.org/10.1051/0004-6361/202346015
https://orcid.org/0000-0002-1991-7295
mailto:cheng.zhao@epfl.ch
https://github.com/cheng-zhao/FCFC
https://www.edpsciences.org/en/
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org

A&A 672, A83 (2023)

Abstract data type
data

summary
data

pointer
link to

other nodes

Nodes

Data in memory

Fig. 1. Architecture of the data structures implemented in this work.

are explored widely as well (e.g. Zhang & Pen 2005; Slepian &
Eisenstein 2015; Philcox et al. 2022).

Even though very many pair-counting codes are publicly
available (e.g. Alonso 2012; Jarvis 2015; Rohin 2018; Donoso
2019; Sinha & Garrison 2020, and references therein), we intro-
duce the fast correlation function calculator1 (FCFC), a novel
high-efficiency, scalable, portable, flexible, and user-friendly
toolkit for exact pair counting. We focus on FCFC version 1.0.1
in this article, which supports 2PCFs for 3D data, with various
commonly used binning schemes. It may be the fastest pub-
licly available 2PCF calculator for modern cosmological datasets
so far.

This paper is organised as follows. We begin with a com-
parison of different data structures for pair-counting problems
in Sect. 2. Then, we introduce the pair-counting and histogram
update algorithms used by FCFC in Sect. 3. In Sect. 4 we describe
the performance of FCFC with different levels of parallelisms. A
direct comparison between FCFC and Corrfunc, another effi-
cient cosmological pair-counting code, is presented in Sect. 5.
Finally, we conclude in Sect. 6.

2. Data structures

Data structures are a technique for organising and storing an
input dataset in memory that allows efficient data access. Typ-
ically, it is not only unnecessary, but also inefficient to process
the data all at once in a program. A well-designed data structure
may prevent the retrieval of irrelevant data during data queries
as much as possible; this is known as data pruning. Thus, data
structures are usually crucial for efficient algorithms. To this
end, several types of data structures for pair-counting applica-
tions have been proposed in the literature, including regular
grids (Alonso 2012; Sinha & Garrison 2020), linked list (Donoso
2019), the k-d tree (Moore et al. 2001), and ball tree (Rohin
2018).

In general, a data structure sorts and partitions the dataset,
and stores the data segments on different nodes, either by copy-
ing the data directly or by saving only the addresses in memory.
Each node is typically defined as an abstract data type, which
contains summaries of the associate data, but this is some-
times done implicitly, to quickly judge whether the data should
be retrieved. Connections between different nodes may also be
built to optimise the node traversal process. This architecture is
illustrated in Fig. 1. Because the datasets for cosmological appli-
cations are large, we save only data pointers on the nodes, to
make the latter more compact and reduce the chance of cache

1 https://github.com/cheng-zhao/FCFC

misses during node traversal. The raw data, which are accessed
less often, are stored separately and continuously in the mem-
ory. In particular, during the construction of the data structures,
the data are sorted in such a way that the points belonging to
adjacent nodes are aligned continuously.

For pair-counting applications, it is crucial to be able to com-
pute the separation ranges between nodes efficiently to omit
nodes that are too far away or too close to each other, without
visiting individual data points. For this purpose, we describe a
few data structures in this section, including regular grids, the
k-d tree, and a new variant of the ball tree, and compare their
performance in terms of pair counting. Throughout this sec-
tion, the costs of structure constructions are not counted for our
benchmarks, as they generally take <1 % of the time used by the
pair-counting processes. Moreover, throughout this section, we
do not consider multiple histogram bins. This is because with
the same histogram update algorithm, almost identical costs are
added to the pair-counting process with different data structures,
which makes the comparisons of the data-pruning efficiency less
effective. The computational costs are all measured with a single
Haswell CPU core (see Appendix A).

2.1. Regular grids

A simple way to partition a dataset is to divide the domain
into regular axis-aligned grids, with unique identifiers for spatial
indexing. Normally, the positions and extents of the grid cells
can be expressed by polynomials of the identifiers, or indices.
Therefore, distance ranges between different grid cells can be
inferred from the differences of cell indices, which can be com-
puted prior to the cell traversal process. This makes regular grids
a potentially very efficient data structure for pair counting.

With the architecture shown in Fig. 1, only three passes
through the dataset are required to construct regular grids for
a catalogue: (1) find the minimum axis-aligned bounding box
(AABB) of the catalogue to define grids (2) count the number
of data points in each grid cell (3) group the data points based
on the associate cell indices. Therefore, the construction of reg-
ular grids can be very efficient, with a time complexity of O(N),
where N denotes the total number of data points. In contrast, the
storage consumed by regular grids is very sensitive to the num-
ber of grid cells and scales as O(

∏
i Ng,i), where Ng,i indicates

the number of cells along the ith dimension.
The efficiency of data pruning for regular grids largely

depends on the cell sizes as well. An example is shown in Fig. 2,
where the data partitions with two different cell sizes are illus-
trated, even though the choices of the cell sizes are likely unwise
for real-world applications. Given the same reference point and
maximum distance for an isotropic range search, the numbers of
visited cells and data points are both significantly different when
the number of cells per box side is varied. Here, data points
belonging to different grid cells are arranged in column-major
order, and gaps between adjacent memory visits are observed.
Sorting the cells using a space-filling curve, such as the Hilbert
curve, may improve the memory locality and reduce the chance
of cache misses (see e.g. Springel 2005, for an application).
Nevertheless, the improvement is expected to be marginal, as the
memory jumps can never be entirely eliminated, and it is more
difficult but possible to pre-compute the map from indices of
grid cells to the distance ranges between cells.

The algorithm for pair counting with regular grids is as
simple as traversing all grid cells that contain data points and
successively visting cells that are separated within the distance
range of interest, given the pre-computed offsets of indices. This

A83, page 2 of 20

https://github.com/cheng-zhao/FCFC

Zhao, C.: A&A proofs, manuscript no. aa46015-23

A0y

Ax0

A1y

Ax1

A2y

Ax2

(a)

B0y

Bx0

B1y

Bx1

B2y

Bx2

B3y

Bx3

(b)

A00

A01

A02

A10

A11

A12

A20

A21

A22

(c)
B00

B01

B02

B03

B10

B11

B12

B20

B21

B22

B23

B31

B32

B33

(d)

Fig. 2. Illustration of an isotropic range search using regular grids with
different cell sizes. The points in panels a and b indicate a randomly
generated dataset in 2D, with the current reference point marked in red.
Yellow areas denote cells that are visited, given the query range indi-
cated by red circles. Panels c and d show the arrangements of data points
in memory for the column-major grid configurations in panels a and b,
respectively. Pink regions indicate data points that are visited during the
range search process. The cell sizes are chosen for illustration purposes
and are not meant to be optimal.

procedure is detailed in Appendix B. Consequently, the com-
plexity of the algorithm depends not only on the number of grid
cells that intersect with the query range, but also on the aver-
age number of data points in each cell. Apparently, when the
side lengths of regular grid cells are increased, the number of
cells to be visited is reduced, but there may be more unnecessary
distance evaluations for pairs, as illustrated by Fig. 2. Thus, the
choice of cell sizes is crucial for the efficiency of a grid-based
pair-counting algorithm (see also Sinha & Garrison 2020, for
relevant discussions).

We then performed a series of benchmarks with the pair-
counting routine based on regular grids, which reports the
number of pairs with separations smaller than Rmax, and omits
histogram bins of distances to separate the impacts of the data
structure and histogram update algorithm (see Sect. 3.2 for
details). For simplicity, the pair-counting procedure is based on
cubic grid cells with a side length of Lcell, and run on N uni-
formly distributed random points in a periodic cubic volume with
the box size of Lbox. The execution time of the pair-counting pro-
cesses with different settings are shown in Fig. 3, together with
the theoretical model detailed in Appendix C. Lbox and Lcell are
expressed as factors of Rmax, as the benchmark results are irrel-
evant to the units of lengths. The results confirm the sensitivity
of computational costs to cell sizes. For the configurations we
explored, the optimal Lcell is typically 0.1 to 0.5 times Rmax.

100

101

102

103

104

Ti
m

e
[s

]

Lbox = 5Rmax
N = 1 × 105

N = 5 × 105

N = 1 × 106

101

102

103

104

Ti
m

e
[s

]

Lbox = 10Rmax
N = 8 × 105

N = 1.6 × 106

N = 4 × 106

10−1 100

Lcell/Rmax (regular grids)

102

103

104

Ti
m

e
[s

]

Lbox = 25Rmax
N = 6.25 × 106

N = 1.25 × 107

N = 2.5 × 107

Fig. 3. Execution time of the grid-based pair-counting routine with dif-
ferent cell sizes and query ranges for periodic uniform random samples
with different cubic box sizes and numbers of points. The solid lines
show the best-fitting theoretical results detailed in Appendix C.

2.2. k-d tree

A k-d tree (Bentley 1975) is a binary space-partition data
structure that is commonly used for range-searching and nearest-
neighbour algorithms. It partitions the k-dimensional space
recursively with axis-aligned planes. Depending on the choice
of the splitting planes, there are several variants of the k-tree
structure. In this work, we chose the ‘optimised’ k-d tree intro-
duced by Friedman et al. (1977), for which the space-partition
planes are perpendicular to the dimension with the largest data
variance, and split the dataset into two parts at the median point.
Therefore, this variant always produces a balanced tree structure
and is particularly useful for observational catalogues with an
arbitrary survey geometry.

Algorithm 1 shows the procedure we followed to construct
the k-d tree for pair-counting purposes. The root node of the tree
is associated with all the data points. For each non-leaf node,
the two subsets of data after space partition are assigned to their
two children, respectively. In addition, we stored the minimum
AABB of points on each node for efficient data pruning because
it is easy to evaluate the minimum and maximum distances
between AABBs, which can be good estimates of the separation
ranges of points on different nodes. Finally, the tree construction
process was terminated when all leaf nodes contained at most
nleaf points.

Since the k-d tree is always balanced, there are in total O(N)
tree nodes for a fixed nleaf . The storage cost of the tree is then
O(N). Computations of the minimum AABB and coordinate
variances require only two passes through the dataset. Addi-
tionally, we split the data for the child nodes using the linear-
time adaptive QUICKSELECT algorithm (MedianOfNinthers;
Alexandrescu 2017). Therefore, the k-d tree construction can
be accomplished in O(N log N) time, given the tree depth of
O(log N).

Figure 4 shows the k-d tree constructed with nleaf = 3 for
the same sample points as in Fig. 2. The space partition is adap-
tive, and in this particular example, the tree is complete, with
the same number of points on all leaf nodes. In addition, the

A83, page 3 of 20

A&A 672, A83 (2023)

�0

�1

�3

�4

�2

�5

�6

(a)

a

b

c

d

e

f

g

h(b)
�0

�1

�3

a b

�4

c d

�2

�5

e f

�6

g h

(c)

a b c d e f g h
(d)

Fig. 4. Illustration of an isotropic range search using the k-d tree. Panels a, b, and c show the partitions of the data points (black dots) during
the k-d tree construction, the resulting minimum axis-aligned bounding box of leaf nodes and their parents, and the diagram of the tree structure,
respectively. In particular, non-leaf nodes in panel (c) are indicated by the corresponding dividing lines in panel a. The red point and circle in
panel b indicate the reference point and radius for a range search. The grey regions in panel c and the yellow areas in panels b and c highlight the
visited non-leaf and leaf nodes during this query. The retrieved data points are shown in pink in panel d.

Algorithm 1 KDTREE_BUILD (P, nleaf)
Input: a point set P and the capacity of leaf nodes.
Output: the root of a k-d tree for P.

1: Create a new node ν, with ν.data← P.
2: ν.bound← MINIMUMAABB (P) ▷ bounding volume of ν
3: if cardinality(P) ≤ nleaf then
4: return ν as a leaf node
5: else
6: Find the axis direction with the largest coordinate vari-

ance for all points in P, and divide P into P1 and P2
with a splitting plane perpendicular to this direction, such
that P = P1 ∪ P2, P1 ∩ P2 = ∅, and cardinality(P1) =
⌊cardinality(P)/2⌋.

7: ν.left← KDTREE_BUILD (P1, nleaf) ▷ left child of ν
8: ν.right← KDTREE_BUILD (P2, nleaf) ▷ right child of ν
9: return ν

10: end if

total AABB volume of nodes with the same depth can be sig-
nificantly smaller than the volume of the full dataset, especially
for leaf nodes, due to the gaps between the bounding boxes of
different nodes. This implies a relatively high data-pruning effi-
ciency, as it is easier to detect data groups that are too far away
or too close to each other than in the grid-based method. For the
example shown in Fig. 4, only four leaf nodes were visited after
checking the distances between AABBs. Furthermore, since the
leaf nodes visited are in the same branch of the tree, the asso-
ciated data points are continuously aligned in memory, which
indicates a high memory-access efficiency.

We used the dual-tree algorithm (see Sect. 3.1) to count pairs
with the k-d tree, which traverses the tree nodes in a top-down
manner. In brief, we skipped all the descendants of two nodes
when the separation range between the minimum AABBs of
these nodes was entirely inside or outside the query range for pair
counting. In other words, a leaf node was only visited when the
corresponding AABB intersected with the query range boundary
of its counterpart during the tree traversal process, which usu-
ally is a leaf node as well. Consequently, the sizes of nodes from
which the data points are retrieved are adaptive, and the number
of visited nodes is greatly reduced compared to the grid-based
approach, especially when the query range is large.

100

101

102

103
Ti

m
e

[s
]

Lbox = 5Rmax
N = 1 × 105

N = 5 × 105

N = 1 × 106

101

102

103

Ti
m

e
[s

]

Lbox = 10Rmax
N = 8 × 105

N = 1.6 × 106

N = 4 × 106

20 22 24 26 28

nleaf (k-d tree)

102

103

Ti
m

e
[s

]

Lbox = 25Rmax
N = 6.25 × 106

N = 1.25 × 107

N = 2.5 × 107

Fig. 5. Execution time of the pair-counting routine based on the k-d
tree with different capacities of leaf nodes for periodic uniform random
samples with different cubic box sizes and numbers of points. The solid
lines show the best-fitting theoretical results detailed in Appendix C.

We then ran the pair-counting routine based on the k-d tree
upon the same catalogues as were used for benchmarks of the
grid-based method. Again, we considered a single histogram
bin for separations smaller than Rmax. The results with different
choices of leaf node capacity are shown in Fig. 5. The execution
time of the pair-counting algorithm based on the k-d tree does
not vary significantly as nleaf , especially when 4 ≤ nleaf ≤ 64,
compared to the strong cell-size dependence of the grid-based
method (see Fig. 3; we provide more detail in Appendix C).
Moreover, the optimal nleaf is found to be 8 for almost all con-
figurations presented in Fig. 5. This makes the k-d tree structure
particularly useful in practice, as it is not necessary to explore
different choices of nleaf to maximise the pair-counting efficiency
for different input samples2.

2 The optimal nleaf may change if the costs of distance evaluations and
node visits vary disproportionally; see Sect. 4.1.

A83, page 4 of 20

Zhao, C.: A&A proofs, manuscript no. aa46015-23

2.3. Ball tree

Similar to the k-d tree, the ball tree (Omohundro 1989) is also
a binary space partition tree that is useful for range queries,
especially for high dimensions. In general, every node of a ball
tree defines a hypersphere that contains all the points on the
node. This makes it slightly easier to compute the minimum and
maximum distances between two nodes than in the case of axis-
aligned boxes for the k-d tree. However, for traditional ball-tree
implementations (e.g. Moore 2000), the tree is not necessarily
balanced, and the hyperspheres, or balls, can be significantly
larger than the minimum bounding spheres of the points. As
a result, both the dual-tree algorithm (see Sect. 3.1) and the
data-pruning process are sub-optimal for pair counting (see the
application in Rohin 2018, however). We then introduce a new
variant of the ball–tree structure to circumvent these problems.

To construct a balanced ball tree, one way is to use the space
partition scheme of the k-d tree. In this case, all subsets of data
points are bounded by axis-aligned boxes, and data pruning with
minimum bounding spheres is supposed to be less efficient than
with the k-d tree because their volumes are generally larger than
the corresponding minimum AABBs. Moreover, axis-aligned
partition schemes may be sub-optimal for observational data
with complicated shapes. To circumvent these problems, we fol-
lowed the space partition approach introduced by Dolatshah et al.
(2015), which defines the splitting plane based on a principal
component analysis (PCA). In particular, the plane was chosen
to be perpendicular to the most significant principal component
of the data distribution, which is the direction with the largest
variance of the data points. Thus, the resulting data subsets are
statistically the least extended. In this way, the minimum bound-
ing spheres of the ball-tree nodes are generally small enough in
practice for efficient data pruning.

The next step was to compute the minimum bounding
spheres of the subdivided datasets. In principle, the exact solu-
tion can be obtained in linear time using a randomised algorithm
(Welzl 1991; Gärtner 1999). However, it is relatively slow for
a large dataset. We then focused on the approximate algorithm
introduced by Ritter (1990), which ensures that all the input
data points are enclosed by the reported sphere, but it typically
overestimates the radius by ≲20 % (e.g. Larsson 2008). This
algorithm sets up an initial sphere with three points that are
far away from each other and then goes through the rest of the
data points. Whenever a point is found outside the sphere, a new
sphere that encloses both the point and the previous sphere is
constructed. Following Larsson (2008), we improved this algo-
rithm by constructing a better initial sphere, which is defined by
the extreme points along the directions of the first two principal
components. In practice, the minimum bounding sphere of the
four extreme points was computed exactly, and this sphere was
updated the same way as in Ritter (1990).

The full procedure for the construction of our ball-tree vari-
ant is shown in Algorithm 2, which is very similar to that of the
k-d tree (see Algorithm 1), and consumes O(N) space as well
since the tree is balanced. In practice, we relied on the sym-
metric QR algorithm (e.g. Golub & Van Loan 2013) for the 3D
PCA. When the number of data points is large, the computing
time for PCA is dominated by the covariance matrix evaluation,
which requires two passes through the dataset. The update of
the minimum bounding sphere needs another pass. Again, we
used the adaptive QUICKSELECT algorithm for the data parti-
tion, but with a comparison rule that involves the first principal
component of the dataset. Therefore, the time complexity for

Algorithm 2 BALLTREE_BUILD (P, nleaf)
Input: a point set P and the capacity of leaf nodes.
Output: the root of a ball tree for P.

1: Create a new node ν, with ν.data← P.
2: Compute u1 and u2, the first two principal components of P.
3: E ← FINDEXTREMEPOINTS (P, {u1,u2})
4: B← MINIMUMBOUNDINGSPHERE (E)
5: for all p ∈ P \ E do
6: if p outside B then B← GROWSPHERE (B, p) end if
7: end for
8: ν.bound← B ▷ bounding volume of ν
9: if cardinality(P) ≤ nleaf then

10: return ν as a leaf node
11: else
12: Divide P into subsets P1 and P2, such that P = P1 ∪P2,
P1 ∩ P2 = ∅, max(p1∈P1)(p1 · u1) ≤ min(p2∈P2)(p2 · u1), and
cardinality(P1) = ⌊cardinality(P)/2⌋.

13: ν.left← BALLTREE_BUILD (P1, nleaf) ▷ left child of ν
14: ν.right← BALLTREE_BUILD (P2, nleaf) ▷ right child of ν
15: return ν
16: end if

constructing a single ball-tree node is O(N), and is O(N log N)
for the whole tree. In practice, the ball-tree construction process
is typically only marginally slower than that of the k-d tree.

An example of the ball tree constructed with the points as
in Fig. 2 is shown in Fig. 6. The space partition lines are not
axis-aligned in general, resulting in different data point groups
than those of the axis-aligned partition scheme (see Fig. 4). Dif-
ferent nodes with the same depth do not share data points, but
their bounding spheres may overlap. The bounding sphere of a
node may not be fully inside that of its parent. This does not
necessarily mean that the data-pruning efficiency is low, as the
distances between different nodes are always examined in the
top-down order. For the example in Fig. 6, the range-searching
process involves one more leaf node than that of the k-d tree, but
the visited data points are still stored continuously, indicating a
good memory locality.

Similar to the case of the k-d tree, the tree-independent dual-
tree algorithm (see Sect. 3.1) was used to count pairs with the
ball tree. The benchmark results with the ball tree are shown in
Fig. 7, with a single histogram bin for separations below Rmax.
The dependences of the execution time measurements on nleaf
are similar to those of the k-d tree. The theoretical model was
derived for the k-d tree (see Appendix C), but it also works well
for the ball tree. This can be explained by the fact that the spatial
partition schemes are similar for these two data structures for a
periodic box. Again, the results are not sensitive to the choice
of nleaf , and a leaf node capacity of 8 is found to be optimal for
almost all cases.

2.4. Comparison of the data structures

In order to identify the optimal data structure among those
discussed so far for real-world pair-counting problems, we per-
formed two additional sets of benchmarks with both periodic
and non-periodic datasets. For tests with periodic boundary
conditions, which is the case for cosmological simulations, we
generated uniformly distributed random points in a cubic vol-
ume with a box size of Lbox. Then, to mimic the geometry of
the observational data in redshift bins, we cut the cubic cata-
logues at Rout = Lbox and Rin = Lbox/2 with respect to a corner of

A83, page 5 of 20

A&A 672, A83 (2023)

�0

�1

�3

�4

�2

�5

�6

(a)

a

b

c d

ea

b

c d

e f

g

h

(b)
�0

�1

�3

a b

�4

c d

�2

�5

e f

�6

g h

(c)

a b c d e f g h
(d)

Fig. 6. Same as Fig. 4, but for a variant of the ball tree. Panel a shows the partition lines based on the PCA, and panel b shows the resulting
minimum bounding spheres of leaf nodes and their parents.

100

101

102

103

Ti
m

e
[s

]

Lbox = 5Rmax
N = 1 × 105

N = 5 × 105

N = 1 × 106

101

102

103

Ti
m

e
[s

]

Lbox = 10Rmax
N = 8 × 105

N = 1.6 × 106

N = 4 × 106

20 22 24 26 28

nleaf (ball tree)

102

103

Ti
m

e
[s

]

Lbox = 25Rmax
N = 6.25 × 106

N = 1.25 × 107

N = 2.5 × 107

Fig. 7. Execution time of the pair-counting routine based on the ball
tree with different capacities of leaf nodes for periodic uniform random
samples with different cubic box sizes and numbers of points. The solid
lines show the best-fitting theoretical results detailed in Appendix C.

the boxes, and took the sections in between as our non-periodic
samples, which are essentially octants of spherical shells. The
reason for using random samples is that the most computation-
ally challenging pair-counting tasks in practice are usually with
random catalogues because high-density randoms are required
for clustering measurements.

We counted pairs in [0,Rmax) as a whole to exclude costs
from the histogram update process, as the goal was only to exam-
ine the data-pruning efficiencies of different data structures. For
all tests, we set Lbox = 10Rmax, which is typical for modern
cosmological applications, for instance, pair-counting with sep-
arations up to 200 h−1 Mpc, for simulations with a side length of
2 h−1 Gpc. We considered only cubic grid cells for regular grids,
but with two choices of cell sizes, 0.1Rmax and 0.2Rmax, which
are near optimum for most cases shown in Fig. 3. We set nleaf = 8
for the k-d and ball trees because it is the most favourable for
almost all cases in Figs. 5 and 7.

For the benchmarks, we used the pair-counting algorithm
described in Appendix B for regular grids and the dual-tree
algorithm presented in Sect. 3.1 for the trees. Both algorithms

100

101

102

103

104

105
Ti

m
e

[s
]

Periodic box
Lbox = 10Rmax

grid (Lcell/Rmax = 0.2)
grid (Lcell/Rmax = 0.1)

k-d tree (nleaf = 8)
ball tree (nleaf = 8)

0.9

1.0

1.1

1.2

Ti
m

e/
Ti

m
e k-

d
tr

ee

105 106 107

N

1

2

4

Ti
m

e/
(k

N
2)

Octant of spherical shell
Rout = 2Rin = 10Rmax

105 106 107

N

Fig. 8. Comparisons of the computational costs of pair-counting rou-
tines based on different data structures for periodic uniform random
samples with different numbers of points in a cubic volume (left) and
for sections between Rin and Rout of the same catalogues with respect to
a corner of the boxes, where Rout is equal to the box size (right). The
middle and bottom panels show results normalised by the costs with the
k-d tree and kN2, respectively. Here, the value of k is chosen such that
the normalised costs at N = 5 × 107 are unity.

were highly optimised to permit a reasonable comparison of the
data-pruning efficiency of the data structures. We also note that
identical pair counts are produced with all the data structures
used. Our benchmark results with different input sample sizes
are shown in Fig. 8. The performance of the two tree structures
is very similar, with differences <5% for all our tests. Again,
we find that the efficiency of the grid-based method is sensi-
tive to the choice of cell size. In particular, the optimal cell size
decreases as the sample size increases. This is because too many
data points per cell may result in a large number of unnecessary
pair-separation evaluations, while the cost of traversing cells can

A83, page 6 of 20

Zhao, C.: A&A proofs, manuscript no. aa46015-23

be significant when many cells are almost empty. In contrast, the
sizes of tree nodes are adaptive.

In terms of the execution time, when the number of data
points is ≲106, regular grids with the optimal cell size can be
slightly better than the trees, but the improvement is only ≲5%
compared to the ball tree. However, when a sub-optimal cell size
is used, the computing time with regular grids can be as long
as twice that of the trees. When the number of data points is
≳107, the tree structures are always more efficient regardless of
the choice of cell size for regular grids, especially for the non-
periodic and non-cubic catalogues, but the speedups may be
marginal in practice if accounting for the cost of the histogram
update process. Meanwhile, for regular grids, the scaling of the
computational cost with respect to the sample size reaches N2

earlier than those of the tree structures. The scaling of the tree
structures is better than N2 even at N = 5 × 107.

To conclude, both the k-d tree and the ball tree perform better
than regular grids for modern and next-generation cosmological
pair-counting problems with ≳107 objects in the data or random
catalogues because the computational costs is lower in general,
and because fine-tuning parameters are absent that depend on the
input samples and strongly affect the performance. In particular,
given the second reason, we did not test the grid-based method
hereafter. There is no essential difference in the efficiencies of
the two tree structures, and therefore, we implemented both the
k-d tree and ball tree in the FCFC toolkit.

2.5. Discussion of the data structures for pair counting

A variety of data structures are available for different range-
searching problems in the field of computational geometry (e.g.
de Berg et al. 2008). The basic idea of time-efficient data struc-
tures is to allow for the report of groups of points directly without
visiting them individually. Therefore, the complexity of a pair-
counting algorithm can in principle be better than O(N2), which
is the complexity of a brute-force approach that examines all
data pairs. However, for cosmological applications, it is gener-
ally necessary to count pairs in thin separation bins. The 2PCFs
are typically measured in (s, µ) or (σ, π) bins for anisotropic
information, which are given by

s = |s| = |s2 − s1|, (2)

π =
|s · l|
|l| , (3)

σ =
√

s2 − π2, (4)
µ = π/s, (5)

where s1 and s2 denote the coordinates of two points that form a
pair, and l is the line-of-sight vector. For observational data, l is
typically defined as

lobs = s2 + s1, (6)

while for simulations, the plane-parallel line of sight is usually
assumed, for example,

lsim = êz = (0, 0, 1). (7)

The complicated binning schemes make it difficult to find
pairs of large data groups with separations all in the same bin.
For instance, the typical number density of modern galaxy sam-
ples is ρ ∼ 10−3 h3 Mpc−3. Then there is only one point in a
cubic volume with a box size of 10 h−1 Mpc on average, which

is already larger than the commonly used separation bin width
of 5 h−1 Mpc for 2PCFs. This problem may be less severe for
galaxy catalogues with strong clustering patterns. The most chal-
lenging tasks normally are pair counting with random samples
for the normalisation of 2PCFs, however. In most cases, individ-
ual pairs have therefore to be visited to update the pair-counting
histograms.

For a 3D periodic box, when ρR3
max ≫ 1, the total number of

pairs with separations in [0,Rmax) can be estimated by

N̂pair = N · ρ4πR3
max

3
= N2 · 4π

3

(
Rmax

Lbox

)3

. (8)

Since N̂pair ∝ N2, the complexity of a real-world pair-counting
algorithm is generally ineluctablyO(N2). For this reason, the aim
of the data structures described in this work is to reduce the con-
stant factor hidden in the complexity by efficient data pruning.
After all, N̂pair/N2 can be as small as ∼10−3 when Lbox = 10Rmax.
Hence, the pair-counting algorithm with a well-designed data
structure can still be faster than the brute-force approach by a
few orders of magnitude.

It is possible to reduce the complexity of the pair-counting
process for certain cosmological problems in principle, however.
As an example, because σ and π are independent with the plane-
parallel line of sight, the evaluation of (σ, π) pair counts for
periodic simulations can benefit from developments of orthog-
onal range queries (de Berg et al. 2008). For instance, following
the spirit of the range tree (e.g. Lueker 1978), a binary tree
with the z coordinates can be constructed, and at each node,
there can be an associate k-d tree or range tree for the x and
y coordinates. Then, groups of pairs in π bins can be reported
in logarithmic time, and individual pair visits are only required
for the associated 2D subtrees. This improves the overall pair-
counting complexity with additional storage space. We leave
detailed studies of this case to a future work.

For future samples with unprecedented number densities,
isotropic pair counting with s bins alone can potentially be
improved as well. For a given reference point (x0, y0, z0), the pair-
counting process is equivalent to a spherical range search, that is,
to finding all points (x, y, z) within a certain radius R,

(x − x0)2 + (y − y0)2 + (z − z0)2 < R2. (9)

When we define w ≡ x2 + y2 + z2, the condition can be rewritten
as

2x0x + 2y0y + 2z0z − w − w0 + R2 > 0. (10)

Therefore, the 3D spherical range-searching problem is con-
verted into a 4D half-space range search, that is, finding all the
points (x, y, z, w) above a given hyperplane. This is a well-known
problem in computational geometry, and data structures exist
that are able to accomplish the query in logarithmic time.
Tradeoffs between the query time and storage costs are also
possible (see de Berg et al. 2008; Agarwal 2017, for reviews).
However, these data structures and algorithms are generally
very difficult to implement in practice. We leave them for future
developments.

It is possible to further boost the efficiency of pair counting
hugely by allowing inexact solutions. For instance, there are data
structures for approximate range queries with controlled errors
that can be adjusted to vary the query time and storage costs
(e.g. da Fonseca & Mount 2010). There are also 2PCF estimators
that pixelate the volume (Alonso 2012), neglect the extent of tree

A83, page 7 of 20

A&A 672, A83 (2023)

Algorithm 3 PAIRCOUNT_DUALTREE (N , S,H)
Input: a stack N for pairs of tree nodes, the separation range S

of interest, and the histogramH for storing pair counts.
1: Pop a pair of tree nodes {ν1, ν2} from N .
2: if DISTANCERANGE (ν1.bound , ν2.bound) ∩S = ∅ then
3: return ▷ descendants of both nodes are pruned
4: else if DISTANCERANGE (ν1.bound , ν2.bound) ⊆ S or ν1

and ν2 are both leaves then
5: for all p1 ∈ ν1.data, p2 ∈ ν2.data do
6: d ← DISTANCE (p1, p2)
7: if d ∈ S then update histogramH with d end if
8: end for
9: else if neither of ν1 and ν2 is a leaf node then

10: Push {ν1.right, ν2.right} and {ν1.right, ν2.left} onto N .
11: Push {ν1.left, ν2.right} and {ν1.left, ν2.left} onto N .
12: else if ν1 is a leaf then
13: Push {ν1, ν2.right} and {ν1, ν2.left} onto N .
14: else ▷ ν2 is a leaf, but ν1 is not
15: Push {ν1.right, ν2} and {ν1.left, ν2} onto N .
16: end if

nodes that are far away from each other (Zhang & Pen 2005), or
make use of fast Fourier transforms (e.g. Pen et al. 2003). It is
important to validate these approximate methods in terms of the
accuracies on different scales with modern cosmological data.
We will perform relevant tests and combine the exact and inexact
methods in FCFC to achieve a higher efficiency with tuneable
precision in a follow-up paper.

3. Algorithms

Algorithms are another fundamental building block of a program
in addition to data structures. A good algorithm may accomplish
computational tasks efficiently by taking advantage of the layout
of input datasets in memory given the data structure, or making
use of memorisation to avoid redundant computations. The most
important algorithms used by FCFC are those for identifying
pairs within desired separation ranges, and updating histogram
bins given a large number of (multi-dimensional) pair separa-
tions, which are usually the most time-consuming tasks for a
correlation function calculator.

3.1. Tree-independent dual-tree algorithm

With the tree structures described in the previous section, a con-
siderable fraction of unnecessary distance evaluations can be
avoided provided an algorithm that detects node pairs that are
not in the separation range of interest as early as possible. To this
end, it is preferred to traverse trees in a top-down manner because
when the separation range between a pair of parent nodes is
entirely outside or inside the query range, all their descendant
nodes can be omitted. In particular, for the latter case, we visited
the data associated with the parent nodes directly to avoid unnec-
essary tree node visits. We then end up with Algorithm 3, which
is an improved version of the dual-tree algorithm introduced by
Moore et al. (2001). Our dual-tree algorithm is tree independent
(see also Curtin et al. 2013b). Therefore, it is applicable to all
binary space-partition tree structures in principle. The complex-
ity of the dual-tree algorithm should depend on the tree structure,
but in practice, the pair-counting efficiencies with the k-d and
ball trees are quite similar (see Fig. 8).

Our algorithm traverses the tree in the so-called depth-first
order, as it uses less memory than the breadth-first order for a

balanced tree. This is because at a given level, the depth of the
balanced binary tree is generally smaller than the width. We then
maintain a stack for pairs of tree nodes to avoid recursive func-
tion calls in typical depth-first dual-tree algorithms (Moore et al.
2001; March et al. 2012). This increases the scalability of the
algorithm with parallelisation, as different threads are able to
work independently given their private stacks for dual nodes (see
Sect. 4.2). The overhead due to the stack memory cost for recur-
sive function calls is also mitigated. We do not directly report
the total number of pairs from two nodes, as is done in Moore
et al. (2001), because the examination of individual pairs is usu-
ally necessary for histogram updates with separation bins (see
Sect. 2.5 for details).

Although not shown explicitly, the implementation of
Algorithm 3 in FCFC is further optimised for some specific but
common cases. For auto pair counts, we discard node pairs
{ν2, ν1} when {ν1, ν2} is (going to be) visited to avoid dupli-
cated pair examinations, as ν1 and ν2 belong to the same
tree. In addition, following Sinha & Garrison (2020), we do
not inspect individual pairs of data points for wrapping large
separations when periodic boundary conditions are enabled.
Instead, we compute the offsets of coordinates for the peri-
odic wrapping of node pairs given their bounding volumes, and
apply the offsets directly to all the associate data points. In
this way, a large number of periodic boundary detections are
avoided.

Moreover, the dual-tree algorithm can be directly applied to
angular pair counts and can easily be extended for higher-order
statistics, such as three- or four-point correlation functions. We
leave relevant developments to future work.

3.2. Update of pair-counting histograms

The cost of histogram updates in Algorithm 3 can be consid-
erable, as there are usually numerous pairs within the query
range, which scales with O(N2) for most cases (see Eq. (8)).
Therefore, the complexity of the histogram update process is
usually O(N2), which is independent of data structures and
algorithms. Nevertheless, it is possible to reduce the hidden
constant factor with a smart algorithm. In general, this factor
relies on the number of bins and the distribution of separations,
which are then crucial for comparing the performance of dif-
ferent histogram update algorithms. In practice, pair separations
are usually computed from the squared distances. We therefore
sampled squared distances randomly following their expected
distributions with a periodic box (see Appendix D for details)
for the histogram update algorithm benchmarks. We assumed
monotonically increasing histogram bins for the tests. In real-
ity, this can be fulfilled by pre-sorting the bins. We also required
the bins to be continuous, which is a common scenario in prac-
tice. Furthermore, we used zero-based bin indices throughout
this work.

3.2.1. Comparison-based methods

A direct way of locating the histogram bins of given separa-
tion values is to compare them with the bin edges. In this case,
the squared distances can be compared against pre-computed
squared bin edges, without evaluating square roots for the actual
separations. This improves the efficiency and the numerical sta-
bility of the algorithms. A commonly used method for this
purpose is the binary search algorithm. The average complexity
of this algorithm is O(log Nbin), where Nbin denotes the number

A83, page 8 of 20

Zhao, C.: A&A proofs, manuscript no. aa46015-23

of histogram bins. This complexity is optimal for comparison-
based methods when the separations are distributed uniformly
across the bins and come in random order.

However, in reality, there are usually more pairs with larger
separations (see Appendix D). Thus, it is worthwhile to consider
a simple algorithm that continuously traverses the histogram bins
in reverse order, that is, starting from the bin for the largest sepa-
rations (see Sinha & Garrison 2020). The worst-case complexity
of this algorithm is O(Nbin). However, the average computational
cost can be lower than that of the binary search algorithm, espe-
cially when the distribution of separations across the bins is
highly asymmetric.

In principle, comparison-based methods can be further
improved by taking advantage of the locality of separation val-
ues during the pair-counting process. This is particularly true for
the tree structures discussed in Sect. 2, which groups nearby
data points together. In this case, the splay tree is a poten-
tially useful data structure for histogram updates, with which
frequently accessed bins can be visited more quickly (Sleator
& Tarjan 1985). Nevertheless, the performance of comparison-
based methods is limited by the Nbin dependences and unavoid-
able conditional branches, which are harmful to the performance
of instruction-level parallelism with modern pipelined proces-
sors. Given also the high efficiency of alternative algorithms
introduced later, we did not implement a splay tree in this work.

3.2.2. Index-mapping functions

The pair separation histogram can be updated in constant time
and without branches when it is possible to map squared dis-
tances directly onto the indices of the corresponding histogram
bins. For evenly spaced bins on both linear and logarithmic
scales, which are the most common configurations in practice,
the index-mapping forms are simple. Thus, it is of practical
interest to examine index-mapping algorithms for these specific
cases.

For uniform linear separation bins in the range of [smin, smax),
the index of the bin for a given squared distance s2 is

ilin(s2) =

 √s2 − smin

∆lins

 , s2
min ≤ s2 < s2

max, (11)

where ∆lins indicates the width of the bins. Because the pair-
counting process is independent of coordinate units, we can
rescale data-point coordinates and histogram bins by (1/∆lins)
in advance to eliminate the division in Eq. (11), thus improving
the overall efficiency of the pair-counting algorithm. Eventually,
we need only three operations for the evaluation of bin index for
each valid pair, which are square root, subtraction, and floor.

Similarly, the index of squared distance s2 for logarithmic
bins in the range of [smin, smax) can be obtained by

ilog(s2) =

 1
2 log s2 − log smin

∆logs

 , s2
min ≤ s2 < s2

max. (12)

Here, ∆logs is the width of the bins on logarithmic scale. Again,
we can rescale all coordinates and histogram bins to further
improve the efficiency. For instance, with a rescaling factor
of (1/smin), the (log smin) term in Eq. (12) can be omitted.
Then, if pre-computing the factor (2∆logs)−1, we end up with
one logarithm, one multiplication, and one floor for the index
mapping.

Although the complexity of index-mapping algorithms is
only O(1), which outperforms those of comparison-based meth-
ods, the actual computing time largely depends on the efficiency
of the index calculations. A considerable number of compar-
isons can be accomplished during the evaluation of the logarithm
in Eq. (12). Therefore, histogram update algorithms based on
index-mapping functions are not necessarily faster than the
methods described in Sect. 3.2.1, especially when Nbin is small.
To make the constant-time complexity effective, we need more
efficient index-mapping methods than the direct function evalu-
ations, not to mention the limited numerical precision of these
functions.

3.2.3. Index lookup tables

A common way of accelerating the evaluation of a numeri-
cal function is to look up pre-computed values from a table.
This technique can be very efficient if the domain of the func-
tion is discrete and reasonably small. In general, index-mapping
functions for histogram updates do not fulfil this condition, as
the squared distances can be of any value inside [s2

min, s
2
max).

Nevertheless, when the edges of histogram bins are integers, only
the integer part of a squared distance determines the index of the
histogram bin. In this case, we can create an index lookup table,
the keys to which are the integer parts of all possible squared dis-
tance values. The index-mapping process can then be completed
by truncating squared distances and looking up indices in the
table. Moreover, the efficiency of this method can benefit from
the data locality with the tree structures discussed previously,
which reduces the cache-miss rate of table lookup.

This method is also applicable when all the histogram bin
edges can be converted into integers by a common rescaling fac-
tor, as it is permissible to rescale the histogram bins together
with the coordinates of data points. This is a common scenario
in practice. For instance, given equally spaced separation bins
with smin = 0, the rescaling factor that converts all bin edges into
integers is simply the inverse of the bin width. However, because
the length of the lookup table is

Ntable = ⌊s2
max⌋ − ⌊s2

min⌋ , (13)

when the (rescaled) distance range is wide, the table may be too
large to fit in the CPU caches. As a result, the lookup efficiency
can be significantly downgraded due to the expensive memory
accesses. One solution to this problem is to rescale the histogram
bins by a factor that is smaller than 1. The bin edges are the not
guaranteed to be integers, however. When we also consider cases
in which the bin edges cannot all be converted into machine-
representable integers, an index lookup algorithm that does not
rely on integer bin edges is necessary.

For non-integer bin edges, we have to take care of non-
injective lookup table entries. This is because squared distances
belonging to different separation bins may share the same integer
part. In this case, we can record the index ranges for non-
injective entries and use a comparison-based method to further
identify the exact index for a given squared distance. In prac-
tice, we used the reverse traversal algorithm (see Sect. 3.2.1)
because it is simple. It is worth noting that this hybrid index-
lookup method is able to deal with separation bins with arbitrary
bin edges and widths as long as the bins are continuous.

The efficiency of this method depends on the rescaling fac-
tor of the histogram bins. When the factor is small, there is a
higher chance of encountering non-injective table entries, which
requires further comparisons that are relatively slow. In con-
trast, large rescaling factors yield large tables that may increase

A83, page 9 of 20

A&A 672, A83 (2023)

102 103 104 105 106

Ntable

2

5

10

20

30

Ti
m

e
pe

rv
al

ue
[n

s]

Linear s bins

Nbin = 20 Nbin = 200

102 103 104 105 106

Ntable

Logarithmic s bins

Fig. 9. Performance of the separation histogram update routine based
on the hybrid index-lookup algorithm with different lookup table sizes.
The execution time is measured with 6.4 × 109 randomly sampled
squared distances in the range of [0, 2002) h−2 Mpc2. Both linear and
logarithmic separation bins are tested, with s in ranges of [0, 200) and
[0.1, 200) h−1 Mpc, respectively. There are also two different numbers
of bins, 20 and 200, for the two binning schemes.

the cache-miss rate. In principle, the optimal rescaling factor
depends on the CPU cache sizes and should be estimated through
benchmarks.

3.2.4. Comparison of the histogram update algorithms

In order to compare the performance of the different histogram
update algorithms discussed so far, and to choose the optimal
table size for the hybrid index-lookup method, we performed
a series of benchmark tests on Haswell CPUs with squared
distance values sampled randomly following Appendix D. In
particular, the squared distances were sampled in the range
of [0, 2002) h−2 Mpc2. We examined both linear and logarith-
mic separation bins, which are the most commonly used bin-
ning schemes in practice, with s in ranges of [0, 200) and
[0.1, 200) h−1 Mpc , respectively. To inspect the Nbin depen-
dences of the algorithms, we further tested two different numbers
of histogram bins, 20 and 200, for both binning schemes. Some
of the algorithms required rescaling of the squared distances,
which can be achieved by pre-processing the coordinates of
all data points in reality. The computational cost of this pre-
processing step is O(N), which is generally much smaller than
that of the histogram update process with O(N2) pairs. Thus, the
costs of histogram update routines we report do not include those
for rescaling separations.

Given 6.4 × 109 random squared distances, the execution
times of the hybrid index-lookup algorithm with different lookup
table sizes and histogram bins are shown in Fig. 9. A table with
∼104 entries is always almost optimal, regardless of the sepa-
ration bin configurations. The indices of histogram bins can be
represent by 8- or 16-bit integers in most cases, and therefore, the
memory cost of a table with ∼104 entries is about 10 to 20 KB,
which fits in the level-1 (L1) cache of most modern CPUs for
supercomputers. This explains the optimality of the table size.
The optimal histogram update cost per squared distance value
is about 2 ns for all the separation bin configurations in Fig. 9,
which correspond to barely ∼5 Haswell CPU cycles, that is,
slightly larger than the four-cycle latency of L1 cache accesses
(Fog 2022). This means that we achieve almost the maximum
theoretical efficiency for histogram updates. Thus, we always
chose separation rescaling factors that yielded Ntable ∼ 104 for
the hybrid index-lookup algorithm.

100

101

102

Ti
m

e
[s

]

Linear s bins
Nbin = 20

binary search
linear index mapping
index lookup table

reverse traversal
logarithmic index mapping

hybrid lookup (Ntable = 104)

Linear s bins
Nbin = 200

108 109 1010

Ndist

100

101

102

Ti
m

e
[s

]

Logarithmic s bins
Nbin = 20

108 109 1010

Ndist

Logarithmic s bins
Nbin = 200

Fig. 10. Execution times of various histogram update algorithms for
different histogram bins and numbers of squared distances sampled in
the range of [0, 2002) h−2 Mpc2. The separation ranges of the linear and
logarithmic bins are [0, 200) and [0.1, 200) h−1 Mpc , respectively. Two
different numbers of bins are also tested. The solid lines show the best-
fitting straight lines with a constant execution time per squared distance.

We furthermore compared the performance of different his-
togram update algorithms with the same input squared separa-
tion sequences and histogram bins. The results are presented in
Fig. 10. We did not use the hybrid method for linear separations
bins because the bin edges are integers and lookup tables are
directly applicable. In all cases, the execution time scales linearly
with Ndist, the number of squared distances sampled. It is not sur-
prising that the comparison-based methods, binary search and
reverse traversal, are sensitive to both the binning scheme and
number of separation bins. The performance of index-mapping
algorithms also largely depends on the binning schemes, but not
on Nbin. This can be explained by the different costs of the index-
mapping functions. The linear index-mapping method expressed
by Eq. (11) is faster than the comparison-based methods for the
examined Nbin values; and the logarithmic mapping shown in
Eq. (12) is generally less efficient, especially when compared
to the reverse traversal algorithm. In contrast, the index-lookup
algorithms are insensitive to the configurations of separation
bins, and they outperform all the other methods in all the cases
presented here. The lookup cost for each squared distance value
is always ∼2 ns on average.

We then implemented the index-lookup methods in FCFC for
pair counting because they are highly efficient and can deal with
arbitrary separation bins. In particular, for linear separation bins,
we computed the smallest positive factor that converts both edges
of the first bin into integers. Given the separation ranges rescaled
by this factor, if the Ntable expressed by Eq. (13) is ≲3 × 104, we
used the index-lookup table for integer bin edges directly. For all
the other cases, either the Ntable computed in this way is too large
or the separation bins are not evenly spaced, we relied on the
hybrid index-lookup method with Ntable ∼ 104. In order to elimi-
nate potential numerical errors due to rescaling, we always chose
a rescaling factor that was a power of the radix used by floating
point representations and that yielded a lookup table size that
was closest to 104. In this case, the rescaling only changes the
exponent of almost all floating-point numbers, so the mantissas

A83, page 10 of 20

Zhao, C.: A&A proofs, manuscript no. aa46015-23

were untouched and no additional numerical errors were intro-
duced. When the factor was chosen, we rescaled all histogram
bins and the coordinates of the data points accordingly.

4. Parallelisation

Modern multi-core vector processors are able to run multiple
independent instructions simultaneously on different pieces of
data. HPC clusters are usually equipped with hundreds or thou-
sands of such CPUs. To make full use of the computing facilities,
the computational task needs to be broken down into similar
sub-tasks, and different levels of parallelisms need to be used.

4.1. SIMD

Single instruction, multiple data (SIMD) refers to a type of data-
level parallelism that permits operations of multiple data (i.e.
a vector) with a single instruction3. For instance, most of the
modern x86 CPUs support advanced vector extensions (AVX),
which provides 256-bit registers for eight single-precision or
four double-precision floating-point numbers to be processed
simultaneously. A number of CPUs also support advanced vec-
tor extensions 2 (AVX2), which is an extension of AVX with
the same register width, but more instructions, or even AVX-
512, which permits 512-bit SIMD operations. AVX-512 consists
of multiple extension sets. We focus on AVX-512 foundation
(AVX-512F) in this work because it is available for all AVX-512
implementations and is sufficient for our application.

SIMD is potentially able to boost the performance of a pair-
counting code because distances between different pairs of data
points can be evaluated at once, which has to be processed
for each individual pair with the conventional sequential (also
known as scalar) approach. Thus, the traversal of points on pairs
of tree nodes can be highly accelerated. In contrast, SIMD does
not help the data-pruning process much because the maintenance
of the dual-node stack (see Sect. 3.1) cannot be parallelised with
vector operations. In this case, larger tree nodes and fewer node
comparisons are preferred for a better overall pair-counting effi-
ciency, so that the optimal leaf node capacity may change with
different register widths.

To explore the optimal nleaf for the k-d tree and ball tree
with AVX and AVX-512, we performed a new set of bench-
marks with both the scalar and vectorised dual-tree algorithms
on the Haswell and Knights Landing CPUs (see Appendix A).
Because only distance evaluations were vectorised here, which
involves barely elementary arithmetic, the speedups are expected
to be very similar for newer CPUs. In particular, we checked both
single- and double-precision arithmetics by using the float and
double data types in the C progamming language, as illustrated
in Fig. 11. Similar to the tests in Sect. 2, we measured the exe-
cution time of the pair-counting algorithm, which reports the
number of pairs with separations smaller than Rmax for 4 × 106

uniformly distributed random points in a cubic box with a side
length of Lbox = 10Rmax. It has been shown previously that the
optimal nleaf is not sensitive to the specifications of the input
samples. Therefore, we did not vary the box size or the number
of data points here. Figure 11 shows that with SIMD, nleaf = 32 is
near optimal for almost all cases. Moreover, when nleaf ≳ 32, the-
oretical maximum speedups with SIMD are generally achieved.
For instance, AVX is able to process four double-precision num-
bers at once, and the actual speedups of the AVX-vectorised

3 We implement SIMD with the intrinsics available in the C program-
ming language throughout this work.

102

103

Ti
m

e
[s

]

Haswell

k-d tree

Scalar
AVX ()
AVX-512 ()

AVX ()
AVX-512 ()

2

4

8

SI
M

D
sp

ee
du

p

Haswell

ball tree

103

Ti
m

e
[s

]

Knights Landing

k-d tree

22 24 26 28

nleaf (k-d tree)

2

4

8

16
SI

M
D

sp
ee

du
p

Knights Landing

ball tree

22 24 26 28

nleaf (ball tree)

double

double

float

float

(Lbox = 10Rmax,N = 4 × 106)

Fig. 11. Execution time of the scalar, AVX-vectorised, and AVX-512-
vectorised pair-counting routines based on the k-d and ball trees, with
different capacities of leaf nodes, for a periodic uniform random sam-
ple. Results for both Haswell and Knights Landing CPUs are shown.
Speedup is measured as the ratio of the computing time of the scalar
code to that of the vectorised counterpart.

algorithms are indeed ∼4 with respect to the scalar counter-
parts. It implies that the efficiency of the dual-tree algorithm is
not likely to be surpassed by the SIMD-vectorised pair-counting
algorithm based on regular grids. The speedup can be larger than
the number of floating-point numbers processed simultaneously.
This might be due to additional efficiency boosts with the fused
multiply-add (FMA) instructions that are available with most
modern SIMD implementations.

Our histogram update process, however, may benefit from
SIMD. On one hand, the index-lookup methods are sufficiently
fast for the access of CPU caches to have become the bottle-
neck (see the discussions in Sect. 3.2.4). On the other hand,
AVX does not provide instructions for reading lookup tables and
maintaining histograms. In this case, only the floor operation
can be vectorised, while the rest of the histogram update pro-
cess has to be implemented in scalar. The more recent AVX2
instruction provides the gather operation, which loads multi-
ple elements from non-contiguous memory locations, and might
useful for loading lookup tables and histogram counts. However,
there is still no instruction for the update of histogram with
AVX2. Only with AVX-512 are both gather and scatter oper-
ations available, where scatter stores multiple data at different
memory locations at once. Therefore, AVX-512 permits a full
vectorisation of our histogram update algorithm.

We then vectorised the histogram update process with
different SIMD instruction sets and performed benchmarks on
a number of different CPUs using 1010 randomly generated
squared separation sequences with the same binning schemes as
in Sect. 3.2.4. For AVX-512, we maintained private histograms

A83, page 11 of 20

A&A 672, A83 (2023)

0 1 2

Scalar

AVX

AVX2

Haswell

Linear s bins ()

Linear s bins ()

Logarithmic s bins ()

Logarithmic s bins ()

0 1 2

Broadwell

0 1 2

Scalar

AVX

AVX2

Rome

0 1 2

Milan

0 2 4 6 8

SIMD speedup

Scalar

AVX

AVX2

AVX-512

Knights
Landing

0 1 2

SIMD speedup

Cascade Lake

0123
Time per value [ns]

0123
Time per value [ns]

0123 0123

0102030 0123

double

float

double

float

Fig. 12. Execution time of the histogram update algorithms measured
upon 1010 random squared distances, and the speedups of the vectorised
algorithms with respect to the scalar counterparts on different CPUs
with different histogram bin settings and precisions of floating-point
numbers.

for individual vector elements to avoid conflicts, rather than rely-
ing on the conflict detection instructions (AVX-512CD). In this
way, we eliminated costs due to conflict detection and branching
by trading off memory usage. The averaged processing time
of each squared separation value, as well as the speedups of
the vectorised versions with respect to the scalar counterparts,
are illustrated in Fig. 12. Improvements with SIMD are almost
always marginal, except for the Knights Landing CPU. This
can be explained by the limits of cache throughputs. After
all, for most of the CPUs tested, the cost of processing one
square distance value is barely a few nanoseconds with the
scalar code. Moreover, with AVX, the main components of the
histogram update algorithm are not vectorised. The inclusion
of the gather instruction alone with AVX2 is harmful to the
efficiency of index lookups, possibly because the algorithm is
not fully vectorised, and there are additional micro-operations
than memory loads (see Chapter 15, Intel Corporation 2022).
The index-lookup algorithm can be significantly accelerated by
AVX-512 on the Knights Landing CPU, while for Cascade
Lake, the performance of the vectorised and scalar codes is very
similar. This shows that AVX-512 is only useful when the his-
togram update procedure is significantly slower than the latency
of cache access. Given these benchmark results, FCFCmakes use
of gather only when scatter, or AVX-512, is available. This
does not mean that AVX2 is useless because we benefit from the
versatile vectorised integer arithmetics introduced by AVX2.

To further examine whether or to which degree SIMD is
beneficial to the full pair-counting procedure, including both

102

103

104

105

Ti
m

e
[s

]

Haswell
AVX2*

Scalar SIMD Speedup

5 10 20 50

10−6 N

102

103

104

105

Ti
m

e
[s

]

Broadwell
AVX2*

Rome
AVX2*

5 10 20 50

10−6 N

Milan
AVX2*

Knights Landing
AVX-512

5 10 20 50

10−6 N

Cascade Lake
AVX-512

½

1

2

4

SI
M

D
sp

ee
du

p

½

1

2

4

SI
M

D
sp

ee
du

p

Fig. 13. Execution time of the scalar and vectorised versions of FCFC on
different CPUs (bars) for the full pair-counting procedure with 200 lin-
ear s bins in [0, 200) h−1 Mpc and 120 µ bins in [0, 1), run upon periodic
random samples in a cubic box with a side length of 3 h−1 Mpc. The pur-
ple lines indicate the speedups of the SIMD-parallelised versions with
respect to the scalar counterparts. AVX2* indicates AVX2, but without
the gather instructions.

distance evaluations and histogram update, we compared the
entire runtime of the scalar and vectorised FCFC on different
CPUs for auto pair counts upon periodic cubic random cata-
logues with a box size of 3 h−1 Gpc, with 200 linear s bins in
[0, 200) h−1 Mpc and 120 µ bins in [0, 1), which is a common
setting in practice. The results are presented in Fig. 13. We
conclude that SIMD is generally useful, although the overall
improvement can be marginal on certain CPUs. Thus, we always
enabled SIMD parallelisation throughout this work.

4.2. OpenMP

Open multi-processing4 (OpenMP) is a high-level application
programming interface (API) that provides a set of compiler
directives, library routines, and environment variables for multi-
thread parallelisms with shared memory. It is usually possible to
parallelise a program with high scalability using OpenMP, with
little modification of the serial code. Therefore, multi-threading
with OpenMP is generally easy to implement to take advantage
of multi-core processors. It is thus used extensively in cosmolog-
ical applications, including pair-counting programs (e.g. Alonso
2012; Donoso 2019; Sinha & Garrison 2020).

However, it is not trivial to parallelise our dual-tree algo-
rithm (see Algorithm 3) with high scalability. The update of the
dual-node stack has to be executed by one thread at a time to
prevent race conditions. This may result in additional overhead.
It is possible to reform the algorithm as a recursive function,
but then there additional costs accrue due to recurrent function
calls and creations of threads for subtasks. One way to eliminate
these expenses is maintaining a private stack on each thread. To
this end, the dual-node stack has to be initialised with multi-
ple elements that can be assigned to different threads and run
independently. In this way, the initialisation and allocation of
node pairs are crucial for the load balancing of the parallelised
dual-tree algorithm.

4 https://www.openmp.org

A83, page 12 of 20

https://www.openmp.org

Zhao, C.: A&A proofs, manuscript no. aa46015-23

20 22 24 26 28

Nthread

20

22

24

26

O
pe

nM
P

sp
ee

du
p

Haswell
Knights
Landing

Fig. 14. Speedups of the OpenMP-parallelised FCFC with respect to the
serial version on Haswell and Knights Landing CPUs with different
numbers of OpenMP threads, measured using a periodic cubic random
catalogue with N = 5×107, Lbox = 3 h−1 Gpc, and with 200 linear s bins
in [0, 200) h−1 Mpc and 120 µ bins in [0, 1). The dashed line denotes the
theoretical maximum speedup. SIMD is enabled in all cases.

In principle, Algorithm 3 can be run with a single thread
until the dual-node stack is sufficiently large, and then the node
pairs can be distributed to different threads. However, with the
depth-first tree traversal order, node pairs on the stack differ sig-
nificantly in size as the number of points on each node depends
mainly on the level (or depth) of the node. In this case, the word
loads of different threads are normally highly unbalanced, which
is harmful to the efficiency of the parallelised program. To cir-
cumvent this problem, we relied on the breadth-first tree traversal
order for the initialisation of node pairs, which were then stored
in a queue rather than a stack. Thus, after each iteration, the
node pairs in the queue were all at the same level and consisted
of a similar number of data points. When the queue was large
enough, we distributed the node pairs to different OpenMP
threads. The work loads were still not perfectly balanced in
general, however, because the numbers of pairs within the query
range can vary among different node pairs. It should be possible
to further increase the performance of the parallelised dual-tree
algorithm by using better scheduling strategies, such as the
work-stealing technique (e.g. Blumofe & Leiserson 1999). For
instance, the scaling efficiency of the 2PCF algorithm developed
by Chhugani et al. (2012) is remarkable even with over 25 000
threads5. We leave relevant investigations to a future work.

The performance of the OpenMP-parallelised FCFC on differ-
ent CPUs is shown in Fig. 14. The benchmarks were performed
with a periodic cubic random sample with 5 × 107 points and a
box size of 3 h−1 Gpc. Similar to the case in Sect. 4.1, we mea-
sured auto pair counts with 200 linear s bins in [0, 200) h−1 Mpc
and 120 µ bins in [0, 1). The speedup scales quite well with the
number of threads when there are ≲32 OpenMP threads. With
more threads, the speedups significantly deviate from the the-
oretical maximum values on both CPUs, possibly because of
the non-negligible overheads of maintaining a large number of
threads, as well as the imperfect work balancing. The scalability
of the OpenMP-parallelised FCFC is reasonably good. Therefore,
it is always recommended to enable OpenMP for pair-counting
tasks with FCFC.

4.3. MPI

The message-passing interface (MPI) is a standard that defines
a communication protocol for high-performance parallel com-
puting on distributed memory systems. It permits multi-process

5 However, the algorithm of Chhugani et al. (2012) is mainly useful
for isotropic 2PCFs with a small number of separation bins, and it is
therefore not general enough for actual cosmological applications.

20 22 24 26

Nprocess

20

22

24

M
PI

sp
ee

du
p

No OpenMP

Haswell Knights Landing

20 22 24 26

Nprocess

Max. OpenMP threads

Fig. 15. Speedups of the MPI-parallelised FCFC with respect to the
version without MPI on Haswell and Knights Landing CPUs with
different numbers of MPI processes, measured using periodic cubic
random catalogues with N = 5 × 107 (left) and 5 × 108 (right), Lbox =
3 h−1 Gpc, and with 200 linear s bins in [0, 200) h−1 Mpc and 120 µ bins
in [0, 1). The dashed lines indicate the theoretical maximum speedup.
The left panel shows results without OpenMP, and the right panel
presents results with the maximum available numbers of OpenMP
threads. SIMD is enabled in all cases.

programs that are able to make use of almost all computing
resources of a cluster in principle. In practice, MPI is com-
monly used along with OpenMP. In this hybrid paradigm, MPI
is typically used across the computing nodes or sockets of
a cluster, while OpenMP is used within nodes or sockets to
reduce communication overhead and memory usage. Thus, a bet-
ter scalability may be achieved than in pure MPI or OpenMP
manners.

Our parallelised dual-tree algorithm discussed in Sect. 4.2 is
applicable to the MPI parallelism. After creating the queue with
node pairs at the same tree level, bulks of tasks can be assigned
to different MPI processes, and then the breadth-first tree traver-
sal procedure is repeated on each process to generate subtasks for
threads if OpenMP is enabled in the meantime. In this way, the
pair-counting routine is executed independently by different pro-
cesses, and no communication is needed. In practice, the trees
and dual-node queues are constructed on a single process and
are broadcasted so that all processes maintain a local copy. The
node pairs in the queue are then dynamically assigned to pro-
cesses using the remote accessible memory (RMA) routines to
achieve better load balancing. Thus, the only additional steps for
MPI compared to the OpenMP-parallelised version are the syn-
chronisations of trees and lookup tables among all processes, as
well as the gathering of pair-counting results at the end.

The performance of the MPI-parallelised FCFC with and
without OpenMP is presented in Fig. 15 for auto pair counts
upon periodic cubic random samples with 5 × 108 and 5 × 107

points, respectively, and the same box size and binning scheme
as in Sect. 4.2. For FCFC with MPI, but without OpenMP, the
speedups scale well with the number of MPI processes on the
Haswell and Knights Landing nodes. The trends are similar to
those shown in Fig. 14, for which only OpenMP was enabled.
This is expected as we distributed the work loads in the same
way. When enabling OpenMP along with MPI and running FCFC
with the maximum available number of OpenMP threads (64
on Haswell and 272 on Knights Landing), the speedups are
basically unchanged on Haswell, but there is a significant degra-
dation in the efficiency when the number of processes is ≳8.
This may be due to the fact that small imbalances of work
loads become critical with thousands of independent threads
running simultaneously. As discussed in Sect. 4.2, we leave the

A83, page 13 of 20

A&A 672, A83 (2023)

101

102

103

104

105

Ti
m

e
[s

]

Corrfunc

Haswell

Corrfunc

Haswell

Corrfunc

Haswell

Corrfunc

Haswell

RR(s, µ) : 40 linear s bins, 20 µ bins
RR(s, µ) : 200 linear s bins, 120 µ bins
RR(s, µ) : 40 logarithmic s bins, 20 µ bins
RR(σ, π) : 40 linear σ bins, 200 linear π bins

101

102

103

104

Ti
m

e
[s

]

FCFC

Haswell

FCFC

Haswell

FCFC

Haswell

FCFC

Haswell

107 108

N (box)

1

2

4

6

F
C
F
C

sp
ee

du
p

Corrfunc

Haswell

Corrfunc

Haswell

Corrfunc

Haswell

Corrfunc

Haswell

FCFC

Haswell

FCFC

Haswell

FCFC

Haswell

FCFC

Haswell

107 108

N (survey)

101

102

103

104

105

Ti
m

e
[s
]

Corrfunc

Cascade Lake

Corrfunc

Cascade Lake

Corrfunc

Cascade Lake

Corrfunc

Cascade Lake

RR(B, `) : 40 linear B bins, 20 ` bins
RR(B, `) : 200 linear B bins, 120 ` bins
RR(B, `) : 40 logarithmic B bins, 20 ` bins
RR(f, c) : 40 linear f bins, 200 linear c bins

101

102

103

104

Ti
m

e
[s
]

FCFC

Cascade Lake

FCFC

Cascade Lake

FCFC

Cascade Lake

FCFC

Cascade Lake

107 108

(box)

1

5

10

15

F
C
F
C

sp
ee

du
p

Corrfunc

Cascade Lake

Corrfunc

Cascade Lake

Corrfunc

Cascade Lake

Corrfunc

Cascade Lake

FCFC

Cascade Lake

FCFC

Cascade Lake

FCFC

Cascade Lake

FCFC

Cascade Lake

107 108

(survey)

Fig. 16. Performance of FCFC and Corrfunc for auto pair counts with periodic and survey-like random samples with different numbers of points.
Both OpenMP and SIMD parallelisms are enabled. The codes are run on entire nodes with all cores of Haswell and Cascade Lake CPUs.

exploration of a better work-load scheduler to a forthcoming
paper.

5. Comparison with related work

To determine whether FCFC is useful in practice, it is impor-
tant to run it with real-world applications and to compare the
efficiency against related pair-counting tools. Sinha & Garrison
(2020) have performed extensive benchmarks with a num-
ber of different pair-counting codes, and they concluded that
Corrfunc outperforms all the other publicly available tools
they tested, including SciPy cKDTree6 (Virtanen et al. 2020),
Scikit-learn KDTree7 (Pedregosa et al. 2011), kdcount8,
Halotools (Hearin et al. 2017), TreeCorr (Jarvis 2015), CUTE
(Alonso 2012), MLPACK RangeSearch (Curtin et al. 2013a),
and SWOT9, for auto pair counts with logarithmic bins upon
simulation catalogues with ≳105 objects in a cubic volume
of 11003 h−3 Mpc3. For simplicity, we therefore compare FCFC
(version 1.0.110) only with Corrfunc (version 2.4.011) in this
work.

The most expensive tasks in reality are usually random–
random pair counts. We therefore focused only on auto pair
counts with random catalogues. Due to the differences in

6 https://docs.scipy.org/doc/scipy/reference/
generated/scipy.spatial.cKDTree.html
7 https://scikit-learn.org/stable/modules/generated/
sklearn.neighbors.KDTree.html
8 https://doi.org/10.5281/zenodo.1051242
9 https://github.com/jcoupon/swot
10 https://github.com/cheng-zhao/FCFC/releases/tag/v1.
0.1
11 https://github.com/manodeep/Corrfunc/releases/tag/2.
4.0

boundary periodicity and line of sight for pair counting with
simulation and observational data (see Sect. 2.5), we examined
two sets of randoms: (1) 5 × 108 uniformly distributed random
points in a cubic box with a side length of 3 h−1 Gpc to mimic
the random catalogue for a periodic simulation (1) the actual
random samples for the BOSS DR12 data12, with weights
enabled for pair counting. These two random catalogues were
further randomly down-sampled for benchmarks with smaller
datasets. For all catalogues, we performed pair counts with the
following binning schemes:
(1) 40 linear s bins in [0, 200) h−1 Mpc and 20 linear µ bins in

[0, 1);
(2) 200 linear s bins in [0, 200) h−1 Mpc and 120 linear µ bins in

[0, 1);
(3) 40 logarithmic s bins in [0.1, 200) h−1 Mpc and 20 linear µ

bins in [0, 1);
(4) 40 linear σ bins in [0, 200) h−1 Mpc and 200 linear π bins13

in [0, 200) h−1 Mpc.
The performance of FCFC and Corrfunc on the Haswell

and Cascade Lake14 nodes with double-precision arithmetics is
shown in Fig. 16. Here, we enabled OpenMP and SIMD for both
codes15 and ran them on an entire computing node with all avail-
able resources, that is, 64 threads with AVX2 on Haswell, and

12 We merge ‘random0_DR12v5_CMASSLOWZTOT_North.fits.gz’
and ‘random1_DR12v5_CMASSLOWZTOT_North.fits.gz’ in https:
//data.sdss.org/sas/dr12/boss/lss/, to form a random sample
with ∼9 × 107 objects.
13 The numbers of σ and π bins are different, as Corrfunc only allows
linear π bins with a width of 1 h−1 Mpc.
14 We did not test with Knights Landing CPUs as Corrfunc requires
more advanced AVX-512 instructions than those available on Knights
Landing.
15 Corrfunc is not MPI-parallelised.

A83, page 14 of 20

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html
https://doi.org/10.5281/zenodo.1051242
https://github.com/jcoupon/swot
https://github.com/cheng-zhao/FCFC/releases/tag/v1.0.1
https://github.com/cheng-zhao/FCFC/releases/tag/v1.0.1
https://github.com/manodeep/Corrfunc/releases/tag/2.4.0
https://github.com/manodeep/Corrfunc/releases/tag/2.4.0
https://data.sdss.org/sas/dr12/boss/lss/
https://data.sdss.org/sas/dr12/boss/lss/

Zhao, C.: A&A proofs, manuscript no. aa46015-23

36 threads with AVX-512 on Cascade Lake. The pair-counting
results from the two codes are identical, and therefore, we only
compare their efficiencies here. FCFC is faster than Corrfunc
for all cases. For logarithmic bins, the speedups of FCFC are rel-
atively small, while with linear bins, especially when the bin
counts are large, the speedups can be prominent. For the bin-
ning scheme (2), which is commonly used in practice for the
ease of rebinning with different bin widths, FCFC can be five and
ten times faster than Corrfunc with ≳108 objects on Haswell
and Cascade Lake CPUs, respectively. Speedups are generally
consistent with those of the index-lookup algorithms for his-
togram update (see Sect. 3.2.4). Thus, we conclude that the high
efficiency of FCFC is mainly due to the novel histogram update
algorithm.

6. Conclusions

We have presented FCFC, a high-performance software package
for exact pair counting. It is highly optimised for cosmological
applications, but should be useful for calculations of all kinds of
two-point correlation functions or radial distribution functions
with 3D data. We mainly focused on the efficiency and scalabil-
ity of the tool in this paper, but FCFC is also portable, flexible,
user-friendly, and applicable to a number of different practical
problems, such as the calculation of radial distribution functions
in statistical mechanics. A brief guide to the toolkit can be found
in Appendix E.

We have compared three different data structures for pair-
counting applications, that is, regular grids, the k-d tree, and a
novel variant of the ball tree. For the tree structures, we make
use of an improved dual-tree algorithm for pair counting. We
showed that the performance of regular grids is sensitive to the
choice of grid size. With a sub-optimal grid size, the efficiency
of the pair-counting procedure can be substantially degraded. In
contrast, the tree-based methods are almost always optimal for a
fixed capacity of leaf nodes, and thus there is no free parameter
for the tree constructions. In particular, we set nleaf = 8 for the
scalar version of FCFC, while nleaf = 32 was used for the SIMD-
vectorised implementation. When the number of data point is
sufficiently large, both trees outperform regular grids regard-
less of the grid size, but the improvements may be marginal
for cosmological catalogues with 107–108 objects. The efficien-
cies of the two tree structures are similar, however. Therefore, we
implemented both tree structures in FCFC.

We also introduced a new histogram update algorithm based
on index-lookup tables to speed up the increment of separa-
tion bins for correlation functions. For non-integer bin edges,
the lookup table was used together with a comparison-based
reverse traversal algorithm to locate histogram bins. Thus, our
index lookup method is applicable to arbitrary binning schemes,
including multi-dimensional bins for anisotropic measurements.
According to the comprehensive benchmarks with different prac-
tical binning schemes, the index lookup method is shown to
be considerably faster than the other commonly used histogram
update algorithms for all cases.

Then, we parallelised FCFC with three levels of common par-
allelisms, that is, SIMD of vector processors, shared-memory
OpenMP, and distributed memory MPI, with which it is pos-
sible to make full use of all computing resources of a cluster in
principle. The key gredient of FCFC, that is, the index-lookup
algorithm for separation bin updates, benefits only little from
SIMD because the main bottleneck is likely to be the latency of

CPU cache accesses. Nevertheless, the efficiency of FCFC scales
well with the numbers of MPI processes and OpenMP threads, as
long as the total number of threads does not exceed a few thou-
sands. When the number of threads is too large, the performance
boost due to parallelisation may be downgraded.

Finally, we compared OpenMP- and SIMD-parallelised FCFC
and Corrfunc with the same number of computing resources,
input catalogues, and binning schemes for pair counting. We
find that FCFC is faster than Corrfunc for all the cases tested.
The speedup is the most prominent with a large number of lin-
ear separation bins. FCFC can be more than ten times faster than
Corrfunc on modern AVX-512 CPUs for catalogues containing
∼108 objects and for pair counting with 200 linear s bins and
120 µ bins, which is a common setting for 2PCF calculations in
practice. Thus, FCFC is a very promising tool for modern and
future cosmological clustering measurements.

We will further extend our methods for more cosmological
applications in the future, such as angular and high-order clus-
tering statistics, including in particular three- and four-point cor-
relation functions. Approximate methods will also be explored
to further speed up the measurements with tolerable errors.
Moreover, we will implement more advanced load-balancing
schemes to further increase the scalability of FCFC, and hope-
fully make use of GPU acceleration.

Acknowledgements. I thank Charling Tao, Chia-Hsun Chuang, Daniel Eisenstein,
and Lehman Garrison for useful discussions on pair-counting algorithms. This
work is supported by the Swiss National Science Foundation (SNF) ‘Cosmology
with 3D Maps of the Universe’ research grants 200020_175751 and
200020_207379. FCFC also benefits from a number of open-source projects,
such as Fast Cubic Spline Interpolation (https://doi.org/10.
5281/zenodo.3611922) (Hornbeck 2020), MedianOfNinthers (https://
github.com/andralex/MedianOfNinthers) (Alexandrescu 2017), and sort
(https://github.com/swenson/sort). The benchmarks in this work are run
on the Baobab and Yggdrasil HPC clusters at Université de Genève (UNIGE),
as well as the National Energy Research Scientific Computing Center (NERSC)
(https://ror.org/05v3mvq14), a U.S. Department of Energy Office of
Science User Facility operated under Contract No. DE-AC02-05CH11231.

References
Agarwal, P. K. 2017, in A Journey Through Discrete Mathematics: A Tribute

to Jiří Matoušek, eds. M. Loebl, J. Nešetřil, & R. Thomas (Cham: Springer
International Publishing), 1

Alexandrescu, A. 2017, in Leibniz International Proceedings in Informatics
(LIPIcs), 75, 16th International Symposium on Experimental Algorithms
(SEA 2017), 24, eds. C. S. Iliopoulos, S. P. Pissis, S. J. Puglisi, & R. Raman
(Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik),
24:1

Alonso, D. 2012, ArXiv e-prints [arXiv:1210.1833]
Bentley, J. L. 1975, Commun. ACM, 18, 509
Bernardeau, F., Colombi, S., Gaztañaga, E., & Scoccimarro, R. 2002, Phys. Rep.,

367, 1
Blumofe, R. D., & Leiserson, C. E. 1999, J. ACM, 46, 720
Chandler, D. 1987, Introduction to Modern Statistical Mechanics (Oxford

University Press)
Chhugani, J., Kim, C., Shukla, H., et al. 2012, in Proceedings of the Interna-

tional Conference on High Performance Computing, Networking, Storage
and Analysis, SC ’12 (Washington, DC, USA: IEEE Computer Society
Press)

Curtin, R. R., Cline, J. R., Slagle, N. P., et al. 2013a, J. Mach. Learn. Res., 14,
801

Curtin, R. R., March, W. B., Ram, P., et al. 2013b, ArXiv e-prints
[arXiv:1304.4327]

da Fonseca, G. D., & Mount, D. M. 2010, Comput. Geometry, 43, 434
Dawson, K. S., Schlegel, D. J., Ahn, C. P., et al. 2013, AJ, 145, 10
Dawson, K. S., Kneib, J.-P., Percival, W. J., et al. 2016, AJ, 151, 44
de Berg, M., Cheong, O., van Kreveld, M., & Overmars, M. 2008, Computa-

tional Geometry: Algorithms and Applications, 3rd edn. (Berlin, Heidelberg:
Springer), 386

A83, page 15 of 20

https://doi.org/10.5281/zenodo.3611922
https://doi.org/10.5281/zenodo.3611922
https://github.com/andralex/MedianOfNinthers
https://github.com/andralex/MedianOfNinthers
https://github.com/swenson/sort
https://ror.org/05v3mvq14
http://linker.aanda.org/10.1051/0004-6361/202346015/1
http://linker.aanda.org/10.1051/0004-6361/202346015/1
http://linker.aanda.org/10.1051/0004-6361/202346015/2
http://linker.aanda.org/10.1051/0004-6361/202346015/2
https://arxiv.org/abs/1210.1833
http://linker.aanda.org/10.1051/0004-6361/202346015/4
http://linker.aanda.org/10.1051/0004-6361/202346015/5
http://linker.aanda.org/10.1051/0004-6361/202346015/5
http://linker.aanda.org/10.1051/0004-6361/202346015/6
http://linker.aanda.org/10.1051/0004-6361/202346015/7
http://linker.aanda.org/10.1051/0004-6361/202346015/8
http://linker.aanda.org/10.1051/0004-6361/202346015/8
http://linker.aanda.org/10.1051/0004-6361/202346015/8
http://linker.aanda.org/10.1051/0004-6361/202346015/9
http://linker.aanda.org/10.1051/0004-6361/202346015/9
https://arxiv.org/abs/1304.4327
http://linker.aanda.org/10.1051/0004-6361/202346015/11
http://linker.aanda.org/10.1051/0004-6361/202346015/12
http://linker.aanda.org/10.1051/0004-6361/202346015/13
http://linker.aanda.org/10.1051/0004-6361/202346015/14
http://linker.aanda.org/10.1051/0004-6361/202346015/14

A&A 672, A83 (2023)

DESI Collaboration (Aghamousa, A., et al.) 2016, ArXiv e-prints
[arXiv:1611.00036]

Dolatshah, M., Hadian, A., & Minaei-Bidgoli, B. 2015, ArXiv e-prints
[arXiv:1511.00628]

Dolence, J., & Brunner, R. J. 2008, in The 9th LCI International Conference on
High-Performance Clustered Computing

Donoso, E. 2019, MNRAS, 487, 2824
Fog, A. 2022, The Microarchitecture of Intel, AMD and VIA CPUs: An

Optimization Guide for Assembly Programmers and Compiler Makers
Friedman, J. H., Bentley, J. L., & Finkel, R. A. 1977, ACM Trans. Math. Softw.,

3, 209
Gärtner, B. 1999, in Algorithms – ESA’ 99, ed. J. Nešetřil (Berlin, Heidelberg:

Springer), 325
Golub, G., & Van Loan, C. 2013, Matrix Computations, Johns Hopkins Studies

in the Mathematical Sciences (Johns Hopkins University Press)
Hearin, A. P., Campbell, D., Tollerud, E., et al. 2017, AJ, 154, 190
Hornbeck, H. 2020, ArXiv e-prints [arXiv:2001.09253]
Intel Corporation 2022, Intel 64 and IA-32 Architectures Optimization Reference

Manual
Jarvis, M. 2015, Astrophysics Source Code Library [record ascl:1508.007]
Landy, S. D., & Szalay, A. S. 1993, ApJ, 412, 64
Larsson, T. 2008, in Linköping Electronic Conference Proceedings, 34, Proceed-

ings of the Annual SIGRAD Conference, Stockholm, 27
Lueker, G. S. 1978, in 19th Annual Symposium on Foundations of Computer

Science (sfcs 1978), 28
March, W. B., Connolly, A. J., & Gray, A. G. 2012, in Proceedings of the

18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’12 (New York, NY, USA: Association for Computing
Machinery), 1478

Moore, A. W. 2000, in Proceedings of the Sixteenth Conference on Uncer-
tainty in Artificial Intelligence, UAI’00 (San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.), 397

Moore, A. W., Connolly, A. J., Genovese, C., et al. 2001, in Mining the Sky, eds.
A. J. Banday, S. Zaroubi, & M. Bartelmann, 71

Omohundro, S. M. 1989, Five Balltree Construction Algorithms, Tech. Rep. TR-
89-063, International Computer Science Institute

Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12,
2825

Peebles, P. J. E., & Hauser, M. G. 1974, ApJS, 28, 19
Pen, U.-L., Zhang, T., van Waerbeke, L., et al. 2003, ApJ, 592, 664
Philcox, O. H. E., Slepian, Z., Hou, J., et al. 2022, MNRAS, 509, 2457
Ponce, R., Cárdenas-Montes, M., Rodríguez-Vázquez, J. J., Sánchez, E., &

Sevilla, I. 2012, in Astronomical Data Analysis Software and Systems XXI,
eds. P. Ballester, D. Egret, & N. P. F. Lorente, ASP Conf. Ser., 461, 73

Reid, B., Ho, S., Padmanabhan, N., et al. 2016, MNRAS, 455, 1553
Ritter, J. 1990, in Graphics Gems, ed. A. S. Glassner (San Diego: Morgan

Kaufmann), 301
Rohin, Y. 2018, Astron. Comput., 25, 149
Sinha, M., & Garrison, L. H. 2020, MNRAS, 491, 3022
Sleator, D. D., & Tarjan, R. E. 1985, J. ACM, 32, 652
Slepian, Z., & Eisenstein, D. J. 2015, MNRAS, 454, 4142
Springel, V. 2005, MNRAS, 364, 1105
Szapudi, I., & Szalay, A. S. 1997, ArXiv e-prints [arXiv:astro-ph/9704241]
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nat. Methods, 17,

261
Welzl, E. 1991, in New Results and New Trends in Computer Science, ed.

H. Maurer (Berlin, Heidelberg: Springer Berlin Heidelberg), 359
Zhang, L. L., & Pen, U.-L. 2005, New A, 10, 569

A83, page 16 of 20

https://arxiv.org/abs/1611.00036
https://arxiv.org/abs/1511.00628
http://linker.aanda.org/10.1051/0004-6361/202346015/17
http://linker.aanda.org/10.1051/0004-6361/202346015/17
http://linker.aanda.org/10.1051/0004-6361/202346015/18
http://linker.aanda.org/10.1051/0004-6361/202346015/19
http://linker.aanda.org/10.1051/0004-6361/202346015/19
http://linker.aanda.org/10.1051/0004-6361/202346015/20
http://linker.aanda.org/10.1051/0004-6361/202346015/20
http://linker.aanda.org/10.1051/0004-6361/202346015/22
http://linker.aanda.org/10.1051/0004-6361/202346015/22
http://linker.aanda.org/10.1051/0004-6361/202346015/23
https://arxiv.org/abs/2001.09253
http://linker.aanda.org/10.1051/0004-6361/202346015/25
http://linker.aanda.org/10.1051/0004-6361/202346015/25
http://www.ascl.net/1508.007
http://linker.aanda.org/10.1051/0004-6361/202346015/27
http://linker.aanda.org/10.1051/0004-6361/202346015/28
http://linker.aanda.org/10.1051/0004-6361/202346015/29
http://linker.aanda.org/10.1051/0004-6361/202346015/29
http://linker.aanda.org/10.1051/0004-6361/202346015/30
http://linker.aanda.org/10.1051/0004-6361/202346015/30
http://linker.aanda.org/10.1051/0004-6361/202346015/30
http://linker.aanda.org/10.1051/0004-6361/202346015/31
http://linker.aanda.org/10.1051/0004-6361/202346015/31
http://linker.aanda.org/10.1051/0004-6361/202346015/32
http://linker.aanda.org/10.1051/0004-6361/202346015/33
http://linker.aanda.org/10.1051/0004-6361/202346015/34
http://linker.aanda.org/10.1051/0004-6361/202346015/34
http://linker.aanda.org/10.1051/0004-6361/202346015/35
http://linker.aanda.org/10.1051/0004-6361/202346015/36
http://linker.aanda.org/10.1051/0004-6361/202346015/37
http://linker.aanda.org/10.1051/0004-6361/202346015/38
http://linker.aanda.org/10.1051/0004-6361/202346015/39
http://linker.aanda.org/10.1051/0004-6361/202346015/40
http://linker.aanda.org/10.1051/0004-6361/202346015/41
http://linker.aanda.org/10.1051/0004-6361/202346015/42
http://linker.aanda.org/10.1051/0004-6361/202346015/43
http://linker.aanda.org/10.1051/0004-6361/202346015/44
http://linker.aanda.org/10.1051/0004-6361/202346015/45
https://arxiv.org/abs/astro-ph/9704241
http://linker.aanda.org/10.1051/0004-6361/202346015/47
http://linker.aanda.org/10.1051/0004-6361/202346015/47
http://linker.aanda.org/10.1051/0004-6361/202346015/48
http://linker.aanda.org/10.1051/0004-6361/202346015/49

Zhao, C.: A&A proofs, manuscript no. aa46015-23

Table A.1. Specifications of CPUs on the computing nodes used for the
benchmarks.

CPU name # of
sockets

of
threads AVX2 AVX-512

Haswell16 2 64 Yes No
Broadwell17 2 20 Yes No
Knights Landing18 1 272 Yes Yes
Cascade Lake19 2 36 Yes Yes
Rome20 2 128 Yes No
Milan21 2 256 Yes No

Appendix A: Benchmark specifications

We list the node specifications with different CPU architectures
used for the benchmarks in this work in Table A.1. The CPU scal-
ing governor are all set to ‘performance’, with the turbo boost
enabled. We relied on the gcc compiler22 for all our tests, with
the compilation flags -O3 and -march=native always enabled.
For the Haswell and Knights Landing nodes, the compiler ver-
sion was 7.5.0, while for all the other nodes, the version of gcc
was 11.2.0. For tests with MPI, we made use of the Open MPI
library23 version 4.1.2, with processes bound to CPU cores.

For all benchmarks24 in this work, each program was inde-
pendently run 12 times. The execution time is then reported as
the averaged cost of ten runs after excluding the longest and
shortest cases. All programs were run with entire nodes to avoid
resource contention from external jobs.

Appendix B: Pair-counting algorithm based on
regular grids

Algorithm 4 presents the pair-counting routine used for the
benchmarks in Sect. 2.1. We skipped empty cells without
attempting to access the associate data points because the num-
ber of points belonging to each cell is stored as the ‘data
summary’ of our architecture shown in Fig. 1. This reduces the
chance of cache misses, especially for small cells. In addition, to
speed up the evaluation of C′, we pre-computed the indices of all
cells within the query range with respect to a reference cell and
saved the offsets of indices. Thus, C′ can easily be obtained by
adding offsets to the index of cell c.

16 https://ark.intel.com/content/www/us/en/ark/
products/81060/intel-xeon-processor-e52698-v3-40m-
cache-2-30-ghz.html
17 https://ark.intel.com/content/www/us/en/ark/
products/92981/intel-xeon-processor-e52630-v4-25m-
cache-2-20-ghz.html
18 https://ark.intel.com/content/www/us/en/ark/
products/94035/intel-xeon-phi-processor-7250-16gb-
1-40-ghz-68-core.html
19 https://ark.intel.com/content/www/us/en/ark/
products/192443/intel-xeon-gold-6240-processor-24-
75m-cache-2-60-ghz.html
20 https://www.amd.com/en/product/8761
21 https://www.amd.com/en/product/10906
22 https://gcc.gnu.org/
23 https://www.open-mpi.org/
24 The benchmark codes for different data structures and histogram
update algorithms are publicly available at https://github.com/
cheng-zhao/FCFC/tree/main/benchmark.

Algorithm 4 PAIRCOUNT_GRID (C, S,H)
Input: a list C with all grid cells, the separation range S of

interest, and the histogramH for storing pair counts.
1: for all non-empty cell c ∈ C do
2: C′ ← {c′ ∈ C | DISTANCERANGE (c, c′) ⊆ S}
3: for all non-empty cell c′ ∈ C′ do
4: for all points p1 in c, points p2 in c′ do
5: d ← DISTANCE (p1, p2)
6: if d ∈ S then update histogramH with d end if
7: end for
8: end for
9: end for

Rmax
Lcell

Fig. C.1. Grid cells to be visited (coloured areas) for a reference cell
(black square) and an isotropic query range with a radius of Rmax. Yellow
regions indicate cells that are entirely inside the query range, and pink
zones denote cells that intersect the boundary of the query range, which
is shown in red. The side length of every cell is denoted by Lcell.

Appendix C: Complexities of pair-counting
algorithms based on different data structures

We analysed the complexity of pair-counting processes based on
different data structures in a simplified case, in which the data
points were distributed uniformly in a 3D periodic cubic box
with a side length of Lbox, and the distance range of interest was
given by [0,Rmax), with Rmax ≪ Lbox. This is a realistic and inter-
esting scenario in practice because the most challenging datasets
for pair counting are generally from large periodic simulations.

The complexity of a pair-counting algorithm consists of two
parts: (1) Nnode, the number of tree nodes or grid cells that are
visited (2) Npair, the number of pairs of data points that are exam-
ined. Apparently, in the small-node/cell limit, Nnode dominates
the complexity, while Npair is more relevant for large nodes or
cells. We then estimated both Nnode and Npair for different data
structures.

C.1. Regular grids

For cubic datasets, it is obvious that the cells of regular grids
are best cubes. In this case, the query range and grid cells to
be visited for a single reference cell are illustrated in Fig. C.1.
Given the edge length Lcell of all grid cells, the number of cells to
be visited for any given reference cell, denoted by Ntot, depends
solely on L̂cell ≡ Lcell/Rmax, as it does not change when Lcell and
Rmax are simultaneously rescaled with the same factor. Ntot can
be decomposed into two components:

Ntot = Ninner + Nedge, (C.1)

A83, page 17 of 20

https://ark.intel.com/content/www/us/en/ark/products/81060/intel-xeon-processor-e52698-v3-40m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/81060/intel-xeon-processor-e52698-v3-40m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/81060/intel-xeon-processor-e52698-v3-40m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/92981/intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/92981/intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/92981/intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/94035/intel-xeon-phi-processor-7250-16gb-1-40-ghz-68-core.html
https://ark.intel.com/content/www/us/en/ark/products/94035/intel-xeon-phi-processor-7250-16gb-1-40-ghz-68-core.html
https://ark.intel.com/content/www/us/en/ark/products/94035/intel-xeon-phi-processor-7250-16gb-1-40-ghz-68-core.html
https://ark.intel.com/content/www/us/en/ark/products/192443/intel-xeon-gold-6240-processor-24-75m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192443/intel-xeon-gold-6240-processor-24-75m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192443/intel-xeon-gold-6240-processor-24-75m-cache-2-60-ghz.html
https://www.amd.com/en/product/8761
https://www.amd.com/en/product/10906
https://gcc.gnu.org/
https://www.open-mpi.org/
https://github.com/cheng-zhao/FCFC/tree/main/benchmark
https://github.com/cheng-zhao/FCFC/tree/main/benchmark

A&A 672, A83 (2023)

10−2 10−1 100

Lcell/Rmax

101

103

105

107

N
um

be
ro

fv
is

ite
d

ce
lls

4π(Lcell/Rmax)−3/3

8π(Lcell/Rmax)−1.94

Ninner

Nedge

Ntot

Fig. C.2. Number of regular grid cells to be visited for each reference
cell with a side length Lcell, given a spherical range searching with the
maximum distance of Rmax, and a periodic box that is sufficiently large.
Here, Ntot = Ninner + Nedge, where Ninner and Nedge indicate the num-
ber of cells that are fully and partially inside the query range, which
correspond to the yellow and pink regions in Fig. C.1, respectively.
The dashed and dotted black lines show analytical formulae that fit the
numerical results in the small-cell limit well.

whereNinner andNedge indicate the numbers of cells that are fully
and partially inside the query range, as shown in yellow and pink
in Fig. C.1, respectively. These numbers can be evaluated numer-
ically, and the results are shown in Fig. C.2, together with two
empirical analytical formulae that fit Ninner and Nedge well in the
small-cell limit. In particular, when L̂cell ≲ 0.5,

Ninner(L̂cell) ≈ 4π L̂−3
cell/3, (C.2)

Nedge(L̂cell) ≈ 8π L̂−1.94
cell . (C.3)

In contrast, Ninner and Nedge are constants of 1 and 26, respec-
tively, when L̂cell ≥ 1.

Given N data points that are uniformly distributed, with a
number density of ρ = N/L3

box, the number of pair separations to
be computed for the full dataset is a function of Ntot(L̂cell),

Ngrid
pair = ρNtot(L̂cell)L3

cell · N = N2(Lcell/Lbox)3
Ntot(L̂cell). (C.4)

Ideally, the number of points in cells that are entirely inside
the query range can be reported directly. This is impractical for
real-world pair-counting problems with multiple separation bins,
however. Therefore, we processed individual points of these cells
in any case (see Sect. 2.5 for more discussions). The total number
of cells that are visited can be estimated by

Ngrid
node = Ntot(L̂cell) ·min{(Lbox/Lcell)3,N}, (C.5)

where (Lbox/Lcell)3 is the number of all grid cells, and the term
min(L3

boxL−3
cell,N) indicates an approximation of the number of

cells containing data, which reduces to N in the small-cell limit
because most cells are empty in this case.

Because Ngrid
pair and Ngrid

node dominate the computational cost at
the large- and small-cell ends, respectively, it is not difficult to
find that the complexity of the grid-based pair-counting algo-
rithm scales with O(L3

cell) when Lcell ≳ Rmax, while it is O(L−3
cell)

if Lcell ≪ Rmax. These relations are consistent with the measure-
ments shown in Fig. 3, where the best-fitting (aNgrid

pair + bNgrid
node)

curves are also illustrated. Here, a and b are constants obtained
from least-squares fits to the measurements with all different
configurations. The agreement between the data and the model
is good in general, especially for the large- and small-cell ends.

C.2. k-d tree

When constructing the k-d tree upon a periodic cubic box with
uniform data distribution, the subdivided volumes after space
partition are expected to be small cubes with a cell size of
(nleaf/ρ)1/3. In this case, the number of k-d tree leaf nodes with
the partitioned volumes intersecting the query boundaries is
close to that of regular grids, which are shown as pink regions in
Fig. C.1, but with some important differences. Firstly, the query
range given a reference k-d tree node is slightly smaller than
that of regular grids, as we measure distances between nodes
using their minimum AABBs, which are generally smaller than
the corresponding grid cells. Similarly, it is possible that the
AABB of a node does not cross the query range boundary, even
if the corresponding subdivided volume intersects with it. For
instance, when there is only a single point on each leaf node,
no leaves intersect with the boundary of the query range as the
AABBs reduce to the points, which can only be inside or outside
the range. For both reasons, the number of leaf nodes with their
minimum AABBs intersecting the query boundary is smaller
than the prediction of Nedge(n̂1/3

leaf), and may be modelled with
an additional term,

Nleaf = η(nleaf)Nedge(n̂1/3
leaf), (C.6)

where

n̂leaf ≡ nleaf ρ
−1R−3

max. (C.7)

When Rmax is large, the reduction of the query range is not sig-
nificant. In this scenario, η is dominated by the fact that the
AABBs of leaf nodes are less likely to intersect with the query
range boundaries than regular grids. The lower limit of η is given
by the ratio of the AABB volume to that of a grid cell, which
is [(nleaf − 1)(nleaf + 1)]3 for uniformly distributed points. For
simplicity, we assume

η(nleaf) ≈
(

nleaf − 1
nleaf

)3

, (C.8)

which fulfils the condition η(1) = 0, and approaches 1 when nleaf
is sufficiently large.

Since the tree structure is self-similar, the number of node
separation evaluations, Nk-d

node, can be solved recursively. For
instance, for a k-d tree that contains nleaf data points per leaf
node at most, with nleaf > 1, further dividing the leaves into two
parts is as if a new tree with a leaf capacity of (nleaf/2) were con-
structed. Moreover, if the separation range between two original
leaf nodes intersects the boundary of the query range, the sepa-
rations between their two children are checked for pair counting
with the new tree. Consequently, we have

Nk-d
node(

nleaf

2
) − Nk-d

node(nleaf) =
4N
nleaf

· Nleaf(n̂
1/3
leaf), (C.9)

where (N/nleaf) is an approximation of the total number of leaf
nodes for the original k-d tree. Since the number of visited node
is only significant when there are many nodes, in which case
n̂leaf is small, we consider here only the small-cell end of Nleaf .
Given also Eqs. (C.3), (C.6), and (C.8), the right-hand side of
this recursive equation is a Laurent polynomial of nleaf , which
yields the following analytical solution:

Nk-d
node ∝

15 − 18
nleaf
+

8.3
n2

leaf

− 1.3
n3

leaf

 · π N1.65R1.94
max

n1.65
leaf L1.94

box

. (C.10)

A83, page 18 of 20

Zhao, C.: A&A proofs, manuscript no. aa46015-23

When considering the number of pair separations that are
evaluated during the dual-tree pair-counting process, we can
count the number of leaf nodes that are not entirely outside the
query range, even though the algorithm may terminate without
visiting all leaves. This is because for each node of the tree, the
associated dataset is the union of those on all the correspond-
ing descendant leaf nodes. Therefore, the total number of pair
separations computed for the full dataset is

Nk-d
pair = nleaf (Ninner + Nleaf) · N
= nleaf N

[
Ninner(n̂

1/3
leaf) + (nleaf − 1)3n−3

leaf Nedge(n̂1/3
leaf)

]
.

(C.11)

Therefore, in the large-node limit, the complexity of the pair-
counting algorithm based on the k-d tree scales with O(n0.35

leaf),
while it is a Laurent polynomial of nleaf for small tree nodes (see
Eq. (C.10)). The best-fitting (aNk-d

pair + bNk-d
node) curves are shown

in Fig. 5, where the constants a and b are obtained by least-
squares fits to all measurements. The theoretical complexity
agrees remarkably well with the data for almost all cases.

Since the ball tree is a similar data structure as the k-d tree,
especially for cubic periodic boxes, the derivations for the k-d
tree should work for the ball tree as well, but the relation in
Eq. (C.8) may be slightly different due to a different represen-
tation of the node bounding volume. We then fit the theoretical
complexity from Eqs. (C.10) and (C.11) to the measurements
shown in Fig. 7, and the agreement is excellent.

Appendix D: Random sampling of squared pair
separations

For periodic boxes, Eq. (8) shows that the total number of pairs
with separations below Rmax scales with R3

max. In this case,
the probability distribution function (PDF) of pair separations
satisfies

P(s) ∝ s2. (D.1)

The goal is to reproduce this distribution with uniform random
sequences in the range [0, 1), which are the direct outputs of most
random number generation algorithms in practice. Denoting this
random number as x, we have then P(x) = 1, and we need to find
the relation s(x), such that Eq. (D.1) holds.

When transforming a variable x to y, with y(x) being mono-
tonic, the PDFs of x and y satisfy

Py(y) = Px(x(y))
∣∣∣∣∣dx
dy

∣∣∣∣∣ . (D.2)

Given this relation, we find

s(x) ∝ x1/3. (D.3)

In other words, to sample randomly squared pair separations in
the range [0, 1), we barely need to compute x2/3 for uniform
random variables x generated in the same range. To extend the
maximum separation to Rmax, the conversion is simply

s2 = x2/3 · R2
max. (D.4)

Appendix E: Quick guide to FCFC

As of version 1.0.1, FCFC supports the following 2PCFs: ξ(s),
ξ(s, µ), ξ(σ, π), ξℓ(s), and wp(σ), where

ξℓ(s) = (2ℓ + 1)
∫ 1

0
ξ(s, µ)Lℓ(µ) dµ, (E.1)

wp(σ) ≈ 2
∫ πmax

0
ξ(σ, π) dπ. (E.2)

Here, Lℓ denotes the Legendre polynomial of order ℓ. The cor-
relation function estimator is user-defined and can be arbitrary.
It accepts both periodic and non-periodic input catalogues in
ASCII text, FITS, and HDF5 formats. In particular, the supports
of FITS and HDF5 formats require the CFITSIO25 and HDF526

libraries. Except for the optional libraries for file formats, as well
as the OpenMP and MPI libraries for the corresponding par-
allelisms, FCFC does not depend on any other external library.
It is fully compliant with the ISO C9927 and IEEE POSIX.1-
200828 standards. Therefore, FCFC can be easily compiled with
most modern C compilers and operating systems.

The specifications of a pair-counting task can be passed to
FCFC via a configuration file or command-line options. We intro-
duce here a few relevant settings for different practical scenarios.
For instance, the 2PCF of a periodic simulation catalogue is gen-
erally measured using the Peebles–Hauser estimator (Peebles &
Hauser 1974),

ξ = DD/RR − 1, (E.3)

where RR can be computed analytically. In this case, the relevant
configurations of FCFC can be

CATALOG = sim_data.txt
CATALOG_LABEL = D
PAIR_COUNT = DD
CF_ESTIMATOR = DD / @@ - 1

Here, CATALOG denotes the filename of the input catalogue, and
CATALOG_LABEL sets the label of this catalogue. PAIR_COUNT
defines the sources of catalogues forming pairs, so ‘DD’ indicates
auto pair counts of the catalogue ‘D’. Finally, CF_ESTIMATOR
sets the correlation function estimator, where ‘@@’ denotes the
analytical RR pair counts. Apparently, the estimator is basically
set in the same form as Eq. (E.3).

Similarly, given observational luminous red galaxy (LRG)
and emission line galaxy (ELG) samples with the file-
names ‘LRG_data.txt’ and ‘ELG_data.txt’, together with
the corresponding random catalogues ‘LRG_rand.txt’ and
‘ELG_rand.txt’, respectively, the auto 2PCFs of LRGs and
ELGs as well as the cross 2PCFs between LRGs and ELGs can
be computed at once with the following FCFC settings:

CATALOG = [LRG_data.txt, LRG_rand.txt,
ELG_data.txt, ELG_rand.txt]

CATALOG_LABEL = [L, R, E, S]
PAIR_COUNT = [LL, LR, RR, EE, ES, SS,

LE, LS, RE, RS]
CF_ESTIMATOR = [(LL - 2 * LR + RR) / RR,

(EE - 2 * ES + SS) / SS,
(LE - LS - RE + RS) / RS]

25 https://heasarc.gsfc.nasa.gov/fitsio/
26 https://www.hdfgroup.org/solutions/hdf5/
27 https://www.iso.org/standard/29237.html
28 https://ieeexplore.ieee.org/document/4694976

A83, page 19 of 20

https://heasarc.gsfc.nasa.gov/fitsio/
https://www.hdfgroup.org/solutions/hdf5/
https://www.iso.org/standard/29237.html
https://ieeexplore.ieee.org/document/4694976

A&A 672, A83 (2023)

The Szapudi–Szalay estimator (Szapudi & Szalay 1997) is used
for the cross correlation here,

ξ× = (DLDE − DLRE − RLDE + RLRE)/RLRE, (E.4)

where the subscripts ‘L’ and ‘E’ denote the catalogues for LRGs
and ELGs, respectively.

Because the libast library29 is embedded in FCFC, human-
readable expressions can be used not only for the correlation
function estimators, but also for numerical values read from
the input catalogues. For example, to compute auto pair counts
of the BOSS DR12 combined sample30 in the redshift range
0.2 < z < 0.5, we have to use weights to correct for systematics
and reduce variance, with the total weight given by (Reid et al.
2016)

wtot = wFKP wsys (wcp + wnoz − 1), (E.5)

where wFKP, wsys, wcp, and wnoz indicate the WEIGHT_FKP,
WEIGHT_SYSTOT, WEIGHT_CP, and WEIGHT_NOZ columns of the
data catalogue, respectively. In this case, FCFC can be configured
with

POSITION = [${RA}, ${DEC}, ${Z}]
SELECTION = ${Z} > 0.2 && ${Z} < 0.5
WEIGHT = ${WEIGHT_FKP} * ${WEIGHT_SYSTOT} *

(${WEIGHT_CP} + ${WEIGHT_NOZ} - 1)

Here, ${X} indicates the column X of the input FITS catalogue.
For more details on the configurations of FCFC, we refer to

the documentation of the toolkit31.

29 https://github.com/cheng-zhao/libast
30 https://data.sdss.org/sas/dr12/boss/lss/galaxy_
DR12v5_CMASSLOWZTOT_North.fits.gz
31 https://github.com/cheng-zhao/FCFC/blob/main/README.
md

A83, page 20 of 20

https://github.com/cheng-zhao/libast
https://data.sdss.org/sas/dr12/boss/lss/galaxy_DR12v5_CMASSLOWZTOT_North.fits.gz
https://data.sdss.org/sas/dr12/boss/lss/galaxy_DR12v5_CMASSLOWZTOT_North.fits.gz
https://github.com/cheng-zhao/FCFC/blob/main/README.md
https://github.com/cheng-zhao/FCFC/blob/main/README.md

	Fast correlation function calculator
	1 Introduction
	2 Data structures
	2.1 Regular grids
	2.2 k-d tree
	2.3 Ball tree
	2.4 Comparison of the data structures
	2.5 Discussion of the data structures for pair counting

	3 Algorithms
	3.1 Tree-independent dual-tree algorithm
	3.2 Update of pair-counting histograms
	3.2.1 Comparison-based methods
	3.2.2 Index-mapping functions
	3.2.3 Index lookup tables
	3.2.4 Comparison of the histogram update algorithms

	4 Parallelisation
	4.1 SIMD
	4.2 OpenMP
	4.3 MPI

	5 Comparison with related work
	6 Conclusions
	Acknowledgements
	References
	Appendix A: Benchmark specifications
	Appendix B: Pair-counting algorithm based on regular grids
	Appendix C: Complexities of pair-counting algorithms based on different data structures
	C.1 Regular grids
	C.2 k-d tree

	Appendix D: Random sampling of squared pair separations
	Appendix E: Quick guide to FCFC

