Evolution of protoplanetary discs with magnetically driven disc winds
(Corrigendum)

Takeru K. Suzuki¹,², Masahiro Ogihara³,⁴, Alessandro Morbidelli³, Aurélien Crida³,⁵, and Tristan Guillot³

¹ School of Arts & Sciences, University of Tokyo, 3-8-1, Komaba, Meguro, Tokyo 153-8902, Japan
e-mail: stakeru@ea.c.u-tokyo.ac.jp
² Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan
³ Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS Bvd de l’Observatoire, CS 34229, 06304 Nice Cedex 4, France
⁴ Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan
⁵ Institut Universitaire de France, 103 bd Saint Michel, 75005 Paris, France

A&A, 596, A74 (2016), https://doi.org/10.1051/0004-6361/201628955

Key words. accretion, accretion disks – ISM: jets and outflows – magnetohydrodynamics (MHD) – protoplanetary disks – stars: winds, outflows – errata, addenda

In the last paragraph of Sect. 2.5 of the original paper, the treatment of the boundary condition was incorrectly described. In the original paper, we stated that \(\frac{\partial}{\partial r} (\Sigma r^2) = 0 \) was imposed at the inner and outer boundaries, \(r = r_{\text{in}} = 0.01 \) au and \(r = r_{\text{out}} = 10^4 \) au, and that this condition corresponds to the zero-torque boundary condition. However, this statement and explanation were incorrect. The actual boundary condition implemented in our calculations was to impose \(\frac{\partial}{\partial r} (\Sigma r) = 0 \) at \(r = r_{\text{in}} \) and \(r = r_{\text{out}} \). This is consistent with the zero-torque boundary condition, \(r^2 \Sigma r \frac{\partial}{\partial r} = \propto \Sigma r^2 \) for a constant \(\Sigma r \) and \(T \propto r^{-\frac{3}{2}} \); see Eqs. (10) and (A.5)) \(\rightarrow 0 \) at the centre, \(r \rightarrow 0 \). The physical meaning of \(\frac{\partial}{\partial r} (\Sigma r) = 0 \) at \(r = r_{\text{in}} \) and \(r = r_{\text{out}} \) is to impose a constant mass accretion rate induced by the \(r \phi \) stress for a constant \(\Sigma r \) and \(T \propto r^{-\frac{3}{2}} \) (Eq. (33)) across the boundary. All of the results presented in the original paper remain unchanged.