Very massive star winds as sources of the short-lived radioactive isotope ^{26}Al

Sébastien Martinet1,, Georges Meynet1, Devesh Nandal1, Sylvia Ekström1, Cyril Georgy1, Lionel Haemmerlé1, Raphael Hirschi2,3, Norhashila Yusof4, Matthieu Gounelle5, and Vikram Dwarkadas6

1 Geneva Observatory, University of Geneva, Chemin Pegasi 51, 1290 Versoix, Switzerland
2 Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG, UK
3 Institute for Physics and Mathematics of the Universe (WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8583, Japan
4 Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
5 IMPMC, CNRS – UMR 7590, Sorbonne Université, Muséum national d’Histoire Naturelle, 75005 Paris, France
6 Department of Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA

Received 3 March 2022 / Accepted 27 May 2022

ABSTRACT

Context. The ^{26}Al short-lived radioactive nuclide is the source of the observed galactic diffuse γ-ray emission at 1.8 MeV. While different sources of ^{26}Al have been explored, such as asymptotic giant branch stars, massive stellar winds, and supernovae, the contribution of very massive stars has not been studied so far.

Aims. We study the contribution of the stellar wind of very massive stars, here, stars with initial masses between 150 and 300 M_{\odot}, to the enrichment in ^{26}Al of the galactic interstellar medium.

Methods. We studied the production of ^{26}Al by studying rotating and non-rotating very massive stellar models with initial masses between 150 and 300 M_{\odot}, for metallicities $Z = 0.006, 0.014,$ and 0.020. We compared this result to a simple Milky Way model and took the metallicity and the star formation rate gradients into account.

Results. We obtain that very massive stars contribute to the ^{26}Al enrichment of the interstellar medium. Typically, the contribution of the winds of massive stars to the total quantity of ^{26}Al in the Galaxy increases by 150% when very massive stars are considered.

Conclusions. Despite their rarity, very massive stars might be important contributors to ^{26}Al and might overall be very important actors for nucleosynthesis in the Galaxy.

Key words. stars: evolution – Galaxy: abundances – stars: massive – stars: abundances – stars: rotation

1. Introduction

^{26}Al holds a special position among the short-lived radioisotopes with lifetimes shorter than or equal to about 1 Myr. Together with ^{38}Fe, it is the only element emitting a gamma-ray line that has been observed as diffuse emission from the disk of our Galaxy. The origin of the gamma-ray emission is the decay of the ground state of ^{26}Al with a half-life of 0.717 Myr (Norris et al. 1983) into an excited state of ^{26}Mg, the deexcitation of which emits a 1.805 MeV photon.

The emission line was first detected by the HEAO-C satellite (Mahoney et al. 1982, 1984) and was then confirmed by balloon-borne experiments (Varendorff & Schoenfelder 1992) and later on by the ACE satellite (Yanasak et al. 2001). The first map of the Milky Way in this line has been obtained by the CGRO Comptel (von Ballmoos et al. 1987; Chen et al. 1995). Subsequent new maps have been obtained by INTEGRAL (Diehl et al. 2003). Through studying emission line intensity and adopting reasonable assumptions about the distribution of ^{26}Al in the Galaxy, a total amount between 1.7 and 3.5 M_{\odot} of ^{26}Al has been estimated to be present in the Milky Way today (Knödlseder 1999; Diehl et al. 2006; Wang et al. 2009). The current best estimate is $2 M_{\odot}$ (Pleintinger 2020). Interestingly, a comparison between the 1.8 MeV intensity map and other maps at different wavelengths showed that the best correspondence is obtained with free–free emission (Knödlseder et al. 1999). This clearly points to ionized regions in which hot stars are present, and thus favors short-lived massive stars as the main contributors to this ^{26}Al.

The amount of galactic ^{26}Al likely remains constant with time because we can reasonably assume that throughout the whole Galaxy and on a timescale that covers a few ^{26}Al lifetimes, that is, a few million years, a stationary equilibrium is reached between the production and destruction rate of this isotope. The change in mass of ^{26}Al in the Galaxy, M_{26}, can be written

$$\frac{d M_{26}}{dt} = P_{26} - \frac{M_{26}}{\tau_{26}},$$

(1)

where P_{26} is the rate of production of ^{26}Al, and $\frac{M_{26}}{\tau_{26}}$ is its decay rate. τ_{26} is the decay constant. For instance, when M_{26} is so low that the right-hand side is positive, then ^{26}Al will accumulate in the interstellar medium (ISM). In the reverse case, M_{26} is so high that the right-hand side is negative. Thus, on timescales of a few τ_{26}, an equilibrium is reached between the production and destruction rate of ^{26}Al. This implies that at any time, $M_{26} \sim P_{26} \tau_{26}$ can be reasonably assumed (see the question about the granularity of nucleosynthesis in Meyer & Clayton 2000). The ^{26}Al whose decay can be observed as diffuse γ-ray emission in...
the Galaxy today needs to have been ejected into the interstellar medium in the past million years. Thus, the 1.8 MeV observation is a measure of the recent nucleosynthetic activity (of at least some specific sources) in our Galaxy (see, e.g., the reviews by Diehl 2021).

To estimate P_{26}, we must identify the sources of 26Al. Massive stars can contribute to the 26Al budget through their winds and at the moment of their explosion as a supernova. Grids of models predicting the quantities ejected by stellar winds (Prantzos & Casse 1986; Meynet et al. 1997; Palacios et al. 2019), by winds and supernovae (Limongi & Chieffi 2006), and more recently, by winds in close binaries (Brinkman et al. 2019) have been published. Other sources have been explored, such as supermassive stars (stars above $10^4 M_\odot$ Hillebrandt et al. 1987), asymptotic giant branch (AGB) stars (Wasserburg et al. 2006; Mowlavi et al. 2005), and novae (Bennett et al. 2013). The AGB, however, are today considered as likely minor contributors.

Based on the prevalence of massive young stars as 26Al sources, models for specific young star-forming regions such as the Carina and the Cygnus regions, for which maps can be obtained (Knödlseder et al. 1996, 2002; Bouchet et al. 2003), or more generally, for starburst regions, have also been built (del Rio et al. 1996; Cerviño et al. 2000; Higdon et al. 2004; Rothschild et al. 2006; Voss et al. 2009; Lacki 2014; Krause et al. 2015). They agree reasonably well with observations. A still better constraint would be to see the emission of one source. Some attempts have been made to detect a signal from the nearest Wolf-Rayet star, y Velorum (Oberlack et al. 2000), but without success. In case of a point-like source, models would predict enough flux to be detectable, however. An explanation for the nondetection might be that due to the velocities of the stellar winds, 26Al is distributed rapidly enough in a large area around the star, which would then make the detection much harder (Mowlavi et al. 2005; Mowlavi & Meynet 2006). The minimum level for detecting an emission is higher for a source that is diluted over a large area than for a point-like source.

Recent papers that have simulated galactic-scale 26Al maps (Plentinger et al. 2019) have also explored the contribution of massive stars toward 26Al and 60Fe at the scale of the Galaxy (Wang et al. 2020). Furthermore, questions such as how 26Al can trace metal losses through hot chimneys (Krause et al. 2021), or how it is distributed in superbubbles (Rodgers-Lee et al. 2019), have also been explored. All these works are based on 26Al masses that are ejected by stars with initial masses between 25 and around 120 M_\odot. However, stars more massive than 120 M_\odot up to at least $300 M_\odot$ likely exist (Crowther et al. 2010; Bestenlehner et al. 2020; Brands et al. 2022), and their extreme evolution and high mass-loss rates could make them important contributors to the 26Al production in the Galaxy. In the present paper, we explore the contribution of these very massive stars to enriching the interstellar medium in 26Al through their winds. Although these stars are very rare (see Sect. 6.2), their contribution might be important depending on the mass-loss rates they exhibit.

The paper is organized as follows: in Sect. 2 we briefly indicate the physical ingredients used to compute the present models for very massive stars. The physics contributing to make very massive stars potential 26Al sources is discussed in Sect. 3. The 26Al masses ejected by the stellar winds of these stars and their dependence on initial mass, rotation, and metallicity is discussed in Sect. 4. A simple estimate of the contribution of very massive stars to the total 26Al mass budget in the Milky Way is given in Sect. 5. The main conclusions are listed in Sect. 6, and we offer some possible links with other topics involving 26Al.

2. Ingredients of the stellar models

We computed very massive star models with GENEC (Eggenberger et al. 2008). The stars had initial masses of 180, 250, and 300 M_\odot for $Z = 0.006$ and $Z = 0.014$, had no rotation or a rotation rate of $V/V_c = 0.4$, where V_c is the critical velocity. The nuclear network allows following the abundance variation of 30 isotopes. In addition to the CNO cycles, the Ne–Na and Mg–Al chains were included. The isomeric (26Al*) and the ground state (26Al0) of 26Al were considered as two different species. The nuclear reaction rate of 25Mg(p,y)26Al0 was taken from Iliadis et al. (2001). Champagne et al. (1993) was used for 26Al(p,y)27Si, and Caughlan & Fowler (1988) for 26Al(n,α)23Na and 26Al(n,p)26Mg. The rates are the same as those used in the previous study on this topic by Palacios et al. (2005).

The present models differ mainly in three points (Martinet et al., in prep.) with respect to the physics used in the grids by Ekström et al. (2012) and Yusof et al. (2022). First, we adopted the Ledoux criterion for convection instead of Schwarzschild and an overshoot of 0.2 H_p instead of 0.1 H_p. These changes were made because there are some indications that the Ledoux criterion might be more appropriate (Georgy et al. 2014; Kaiser et al. 2020) for these stars, and that an increase in overshoot parameter is needed for stars with masses higher than 8 M_\odot (Martinet et al. 2021). Another change is that our very massive star models have been computed with an equation of state accounting for electron-positron pair production (Timmes & Swesty 2000). These changes have, however, very little impact on the question discussed in this paper. The results depend on the structure of the models during the main-sequence (MS) phase. Changing from Schwarzschild to Ledoux during the MS phase does not change anything because the mass of the convective core decreases with time. This produces no gradient in the chemical composition in the layer just above the convective core. A larger overshoot will tend to reduce the time between the beginning of the evolution and the first surface enrichment in 26Al. However, very massive stars have very large convective cores, and this time would be short even with a smaller overshoot. The change in the equation of state has no effect on the MS phase.

The radiative mass-loss rate we adopted on the MS was taken from Vink et al. (2011); for the domains that are not covered by this prescription (see Fig. 1 of Eggenberger et al. 2021), we used the de Jager et al. (1988) rates. Gräfener & Hamann (2008) prescriptions were used where they apply, while Nugis & Lamers (2000) prescriptions were used everywhere else for the Wolf-Rayet phase. The Wolf-Rayet phase was assumed to begin when the effective temperature of the model is higher than 10,000 K and the surface mass fraction of hydrogen at the surface is below 0.3. The radiative mass-loss rate correction factor described in Maeder & Meynet (2000) was applied for rotating models. The dependence on metallicity was taken such that $M(Z) =$

1. The critical velocity is the velocity at which the centrifugal force at the equator balances the gravity there. Its expression is taken as indicated by expression (6) in Ekström et al. (2008).

2. These isotopes are 1H, 34He, 12C, 13C, 14N, 16O, 17O, 18O, 20Ne, 23Na, 24Mg, 26Al, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, and 56Ni.

3. The models at $Z = 0.020$ were computed with the same equation of state as in Ekström et al. (2012).
(Z/Z_0)^0.7 M(Z), except during the red supergiant (RSG) phase, for which no dependence on the metallicity was used. This follows van Loon et al. (2005) and Groenewegen (2012a,b), who showed that the metallicity dependence for the mass-loss rates of these stars appear to be weak. For the rotation prescription, the models used the shear diffusion coefficient as given by Maeder (1997) and the horizontal diffusion coefficient from Zahn (1992).

3. 26Al production and wind ejection in very massive stars

The evolution as a function of the age for 60 and 250 M_☉ models is shown in the left and right panel of Fig. 1, respectively. As is well known, 26Al is synthesized during the core-H burning phase by proton capture on 25Mg. At a mass of 60 M_☉, the abundance of 26Al at the center reaches a maximum before the age of 1 Myr. The decrease that follows results from the fact that the β-decay of the radioisotope dominates the production process when the abundance of 25Mg decreases. At the beginning of the core He-burning phase, the central 26Al mass fraction drops rapidly. 26Al is destroyed at the beginning of the core He-burning phase mainly by neutron captures, is initially released by the 12C(α, n)15O reactions, and then mainly by 26Ne(α, n)28Mg.

As a result either of mass loss alone (in non-rotating models) or of mass loss and rotationally induced mixing in the outer radiative zone, the surface, and hence the winds, become enriched in 26Al during the core H-burning phase. This surface enrichment lasts until products of core He-burning appear at the surface. From this stage on, the surface abundance of 26Al rapidly decreases, reflecting the destruction of 26Al when interior regions of the star processed by He-burning reactions are exposed at the surface by stellar winds.

Comparing the rotating and the non-rotating model for the 60 M_☉, we see, as was already discussed in Palacios et al. (2005), that rotation favors the 26Al wind enrichment through the following effects:

1. Species synthesized in the core appear at the surface by rotational mixing on a timescale that is shorter than the time for mass loss to uncover layers whose composition has been changed by nuclear burning. The left panel of Fig. 1 shows that the maximum abundance at the surface is typically reached at an age of ~3.6 Myr in the non-rotating 60 M_☉ model, while the same surface mass fraction is reached at an age shorter than 2 Myr in the corresponding rotating model.

2. Due to diffusion of hydrogen from the radiative envelope into the convective core, the convective core remains larger in the rotating model than in the non-rotating model. This also favors a rapid emergence of core H-burning products at the surface.

3. The core H-burning lifetime is increased by rotation from 3.5 to more than 4.5 Myr in the case of the 60 M_☉ model. This supports 26Al wind ejection during that phase.

We can wonder whether the diffusion of some 25Mg from the radiative envelope into the convective core contributes in some significant way to the increase of 26Al that is produced in the rotating model. We note that the maximum value of the mass fraction of 26Al at the center of the rotating 60 M_☉ is slightly higher than the maximum value reached in the non-rotating corresponding model. This may in part be due to that effect, but it is also due to the difference in the central temperatures between the two models (see the discussion in Sect. 4).

The right panel of Fig. 1 shows the case of a 250 M_☉ very massive star. The following differences with respect to a more classical 60 M_☉ stellar model are evident:

1. 26Al appears significantly earlier at the surface, typically at ages of a few 0.1 Myr. The main reason is that convective cores in very massive stars occupy a much larger fraction of the total mass than they do in less massive stars.

2. The time difference between reaching the peak abundance at the center and at the surface is reduced. This further reduces the time for the decay of 26Al between these two epochs. This favors larger ejected amounts.

3. The mass lost with a composition bearing the signatures of H-burning corresponds to 60% of the initial mass for the 250 M_☉ model, while it corresponds to 25% in the case of the rotating 60 M_☉ model and to even less for the non-rotating model. This reflects the increase in mass loss with initial mass. We likely underestimate the mass-loss rates with the present models, and thus their predictions are likely on the conservative side (see the discussion in Sect. 6).
The impact of rotation, while non-negligible, is not as strong in the 250 M_\odot stellar model as in the 60 M_\odot model. This reflects the fact that mass loss by stellar winds and convection dominates the evolution of these stars more strongly than in models with a lower initial mass.

Overall, rotation has a major effect on the increase in the 26Al yields because strong transport from rotational mixing brings large quantities of 26Al to the surface earlier on, enabling the 26Al-enriched envelope to be lost by the winds on longer timescales. While higher initial masses contain a larger reservoir of 25Mg to produce 26Al, they also have stronger mixing due to larger convective cores. This effect, combined with the higher mass loss events, will dominate the rotation effect at very high initial masses.

4. 26Al stellar yields

For each model, we computed the quantity of 26Al that is ejected by stellar winds, $Y_{\text{Al}^{26}}^{\text{winds}}$. This quantity was obtained by computing the integral

$$Y_{\text{Al}^{26}}^{\text{winds}}(M, Z, V) = \int_0^{\tau(M, Z, V)} X_{\text{Al}^{26}}^{S}(M, Z, V, \tau) \dot{M}(M, Z, V, \tau) \, d\tau,$$

where $\tau(M, Z, V)$ is the lifetime of a star with an initial mass M, an initial metallicity Z, and an initial rotation V, $X_{\text{Al}^{26}}^{S}$, and \dot{M} are the mass fraction of 26Al at the surface and the mass-loss rates for the same model as a function of time. While the decay of 26Al in the stellar interior was accounted for, we did not account for the 26Al decay in the wind ejecta because as explained in the introduction, we need to evaluate the production rate of 26Al.

The stellar yields resulting from our different models can be found in Table A.1 in the appendix and are shown as a function of the initial mass, initial metallicity, and rotation in Fig. 2. The yields become larger than $10^{-5} M_\odot$ for initial masses above about 25 M_\odot. Above this mass, the 26Al increases in general with the mass, metallicity, and rotation. We can note the following interesting features in Fig. 2:

1. For initial masses equal to or above 60 M_\odot, $Y_{\text{Al}^{26}}^{\text{winds}}$ increases with the initial mass and the metallicity according to power laws. For solar metallicity models with rotation, typically $Y_{\text{Al}^{26}}^{\text{winds}} \propto M^{1.93}$, and for a rotating 120 M_\odot model, $Y_{\text{Al}^{26}}^{\text{winds}} \propto Z^{4.15}$.

2. Above 60 M_\odot, the differences between rotating and non-rotating models decrease. This reflects the fact that in the very high mass regime, models are more dominated by mass loss and convection than by rotation (at least for the rotational velocities considered here).

3. Below 60 M_\odot, we note that the behavior of the yields as a function of mass can be nonmonotonous (see the non-rotating $Z = 0.006$ models). At this metallicity, the yield of the 60 M_\odot model typically presents a local maximum. This is due to the specific combination of the effects of stellar winds and convection in this model. At 60 M_\odot, this combination produces a longer phase than in models with higher initial mass, during which layers processed by H-burning appear at the surface.

4. The non-rotating models at $Z = 0.020$ give similar yields as the rotating models at $Z = 0.014$, showing thus a degeneracy of the yields between increase in rotation and an increase in metallicity.

5. The rotating models at $Z = 0.006$ give lower yields than the non-rotating models for masses below about 85 M_\odot. This is due to the fact that non-rotating $Z = 0.006$ models from 40 to 85 M_\odot remain at lower effective temperature than rotating models during He-burning. This induces higher mass losses for these models and results in larger 26Al yields.

Figure 3 compares the stellar yields obtained from the present models with and without rotation at $Z = 0.014$ with models by different authors. The models of Limongi & Chieffi (2018) and Brinkman et al. (2021) displayed here are for single solar metallicity stars. For initial masses above 60 M_\odot, the agreement between the predictions of the different models for both rotating and non-rotating models is good in general. In the 30–60 M_\odot mass range, the non-rotating models of this work produce more 26Al than the models of Limongi & Chieffi (2018) and Brinkman et al. (2021), while the rotating models agree. Below 25 M_\odot, the present yields are larger than those of Brinkman et al. (2021) and Limongi & Chieffi (2018) because the mass loss in RSG stars is higher, except for the 12–15 M_\odot mass range, where a large difference is displayed by the Limongi & Chieffi (2018) models. This is due to the higher mass-loss rates chosen for these models. They have implemented rates obtained from dust-driven wind during the RSG phase.
to the total lifetime of the star considered. The contribution of stars of a given mass M, regardless of their age, is given by $\Psi(R) \times \Phi(M) \times Y_{\text{winds}}^{\text{Al26}}$. The contribution of stars of different masses is then given by $\Psi(R) Y^{\text{winds}}_{\text{Al26}}$, where

$$Y^{\text{winds}}_{\text{Al26}} = \int_{M_{\text{Min}}}^{M_{\text{Max}}} \Psi(R) Y^{\text{winds}}_{\text{Al26}}(M, Z, V) \Phi(M) dM$$

is the average mass of ^{26}Al ejected by stellar winds per star formed in a given initial mass interval. The rate of ^{26}Al production in a galactic ring with an internal radius R and width dR is given by $2\pi R \Psi(R) Y^{\text{winds}}_{\text{Al26}} dR$, and the total mass in the Galaxy is obtained by integrating the above expression throughout the entire plane of the Milky Way. We call this quantity P_{26}, the galactic production rate. The different rings have different metallicities because the Galaxy presents a metallicity gradient such that the metallicity tends to increase when the galactocentric distance decreases. The above integration needs to account for this, such that the yields that are adopted correspond to the metallicity of each ring, depending on its distance to the galactic center. From this production rate, we can estimate the total amount of ^{26}Al in the Galaxy that is due to stellar winds, M_{26}, assuming that this total amount does not depend on time. As seen in the introduction, it is equal to $M_{26} = P_{26} T_{26}$.

In Fig. 4 we show the result of this integration, adopting the star formation rate from Kubryk et al. (2015). We slightly reduced this to obtain a number of core-collapse supernovae of 2 per century in the Milky Way, a Salpeter IMF with $\alpha = 2.35$, and a metallicity gradient taken from Hayden et al. (2014) (shown in the bottom panel of Fig. 4).

The top panel of Fig. 4 shows the ^{26}Al production in rings with a width of 0.1 kpc as a function of galactocentric distance. We considered four different sets of stellar populations, with and without rotation, and including and excluding very massive stars (VMS) in the IMF. These four sets were chosen to underline the effect of rotational mixing on the galactic production of ^{26}Al, and to explore the impact on ^{26}Al production when only a few VMS are included in these populations. The choice of a maximum mass of 300 M_\odot is motivated by the highest initial masses of VMS derived from observations of the Tarantula nebula (Bestenlehner et al. 2020; Brands et al. 2022) in the Large Magellanic Cloud (LMC). The resulting total amount of ^{26}Al produced by these populations ranges from 0.340 M_\odot to 1.431 M_\odot. These integrated quantities are displayed in the legend and give the total content of ^{26}Al in the Milky Way that is produced by the winds according to the stellar models. Only stars above 8 M_\odot were used to compute the ^{26}Al lost by the winds. Stars with lower masses have very limited mass loss, and stars with masses lower than 8–12 M_\odot do not even produce ^{26}Al through the Ne–Na and Mg–Al chains because their central temperature during core H-burning is lower. The number of stars above 8 M_\odot was computed through the SFR, taking every star in the Milky Way model into account. It is therefore normalized on the whole range from 0.07 M_\odot to the maximum mass included (here either 120 M_\odot or 300 M_\odot), as we

5. Contribution of the winds of very massive stars to ^{26}Al in the Milky Way

In this section, we compute the quantity of ^{26}Al in the Milky Way that is due to the winds of massive stars. The star formation rate (SFR) is $\Psi(R)$ and is given in terms of the number of stars that forms per unit surface and per unit time at a given galactocentric radius, R, in the Galaxy. We assumed that this function is constant in the past 10 Myr and that the Galaxy is axisymmetric. Our objective here is to estimate the impact of including very massive stars in the ^{26}Al due to stellar winds, rather than to provide a very detailed estimate based on a more complex model for the Galaxy. We normalized the initial mass function, $\Phi(M) dM$, such that

$$\int_{0.07 M_\odot}^{300 M_\odot} \Phi(M) dM = 1.0.$$

Thus we can interpret $\Phi(M) dM$ as the probability that a star of initial mass between M and $M + dM$ is formed when stars with initial masses between 0.07 and 300 M_\odot are formed. We assumed that this function does not vary with time, SFR, or with metallicity, Z. We estimated the production rate of ^{26}Al by stellar winds of stars of a given age t, with an initial mass between M and $M + dM$, a initial metallicity Z, and initial rotation V at a given galactocentric distance R per unit surface. This quantity is given by $\Psi(R) \times \Phi(M) dM \times X_{\text{ff}}^{\text{Al26}}(M, Z, V, t) M(M, Z, V, t)$. The contribution of these stars regardless of their age is obtained by integrating this expression over a period that begins at a time $t_0 - \tau(M, Z, V)$ and t_0, thus over a period whose duration is equal to the lifetime of the star considered. The contribution of stars of a given mass M, regardless of their age, is given by $\Psi(R) \times \Phi(M) \times Y_{\text{winds}}^{\text{Al26}}$. The contribution of stars of different masses is then given by $\Psi(R) Y_{\text{winds}}^{\text{Al26}}$, where

$$Y_{\text{winds}}^{\text{Al26}} = \int_{M_{\text{Min}}}^{M_{\text{Max}}} \Psi(R) Y_{\text{winds}}^{\text{Al26}}(M, Z, V) \Phi(M) dM$$

is the average mass of ^{26}Al ejected by stellar winds per star formed in a given initial mass interval. The rate of ^{26}Al production in a galactic ring with an internal radius R and width dR is given by $2\pi R \Psi(R) Y_{\text{winds}}^{\text{Al26}} dR$, and the total mass in the Galaxy is obtained by integrating the above expression throughout the entire plane of the Milky Way. We call this quantity P_{26}, the galactic production rate. The different rings have different metallicities because the Galaxy presents a metallicity gradient such that the metallicity tends to increase when the galactocentric distance decreases. The above integration needs to account for this, such that the yields that are adopted correspond to the metallicity of each ring, depending on its distance to the galactic center. From this production rate, we can estimate the total amount of ^{26}Al in the Galaxy that is due to stellar winds, M_{26}, assuming that this total amount does not depend on time. As seen in the introduction, it is equal to $M_{26} = P_{26} T_{26}$.

In Fig. 4 we show the result of this integration, adopting the star formation rate from Kubryk et al. (2015). We slightly reduced this to obtain a number of core-collapse supernovae of 2 per century in the Milky Way, a Salpeter IMF with $\alpha = 2.35$, and a metallicity gradient taken from Hayden et al. (2014) (shown in the bottom panel of Fig. 4).

The top panel of Fig. 4 shows the ^{26}Al production in rings with a width of 0.1 kpc as a function of galactocentric distance. We considered four different sets of stellar populations, with and without rotation, and including and excluding very massive stars (VMS) in the IMF. These four sets were chosen to underline the effect of rotational mixing on the galactic production of ^{26}Al, and to explore the impact on ^{26}Al production when only a few VMS are included in these populations. The choice of a maximum mass of 300 M_\odot is motivated by the highest initial masses of VMS derived from observations of the Tarantula nebula (Bestenlehner et al. 2020; Brands et al. 2022) in the Large Magellanic Cloud (LMC). The resulting total amount of ^{26}Al produced by these populations ranges from 0.340 M_\odot to 1.431 M_\odot. These integrated quantities are displayed in the legend and give the total content of ^{26}Al in the Milky Way that is produced by the winds according to the stellar models. Only stars above 8 M_\odot were used to compute the ^{26}Al lost by the winds. Stars with lower masses have very limited mass loss, and stars with masses lower than 8–12 M_\odot do not even produce ^{26}Al through the Ne–Na and Mg–Al chains because their central temperature during core H-burning is lower. The number of stars above 8 M_\odot was computed through the SFR, taking every star in the Milky Way model into account. It is therefore normalized on the whole range from 0.07 M_\odot to the maximum mass included (here either 120 M_\odot or 300 M_\odot), as we

4 To obtain from this SFR, given in solar mass per pc$^{-2}$ and per billion years (see the middle panel of Fig. 4), an SFR given in number of stars per pc$^{-2}$ and per billion years, we need to divide by the average mass of a star when stars are formed over the whole mass range between 0.07 and 300 M_\odot.

5 AGB stars can reach a high temperature in their H-burning shell and thus can contribute to the production of this element. However, this is another channel of production that is not discussed here.
showed in Eq. (3). The extrapolation into metallicity was made for each initial mass and the yields are compatible with supersolar mass-loss rates.

For every population model, the ^{26}Al peak production is about 4.5 kpc. This is due to the combination of three factors: (1) the peak of the SFR, leading to higher quantities of massive stars, which produce more ^{26}Al; (2) the high metallicity of the inner part of the Milky Way, leading to higher yields, as we showed in Fig. 2, and (3) the surface covered by each bin. While the bins have a width of 0.1 kpc, the surface they cover indeed increases with πR^2. The combination of these three components explains the slight shift between the peak of the SFR and the ^{26}Al production. The ^{26}Al production then decreases more abruptly from 6 kpc to the outer parts. This is directly linked to the change in the metallicity trend, which dominates the yields.

The impact of rotation can be seen when the red (non-rotating) and yellow ($V/V_c = 0.4$) curves are compared. As expected from Sect. 4, the higher yields produced by rotating models lead to a twice higher Galactic ^{26}Al production. The larger effect is seen around the peak of SFR, once again due to the larger number of massive stars, for which all rotating models produce more ^{26}Al at these super solar metallicities.

The impact of including very massive stars can be seen when the red (IMF from 8 to 120 M_\odot) and blue (8 to 300 M_\odot) curves are compared. The inclusion of the VMS in the stellar population leads to an increase of 120–150% in the ^{26}Al galaxy production. The larger effect is seen once again around the peak of the SFR, where VMS have a higher probability to be produced. This means that a few VMS are sufficient to increase the ^{26}Al production significantly.

Finally, the combined effect of rotation and including the VMS leads to a four times higher ^{26}Al production compared to models that do not account for rotation or VMS. These results show that although very massive stars are very rare (see Sect. 6.2), their effect is still significant because their yields are large. Even a few VMS can have an important impact on the ^{26}Al production at the Galactic scale. This underlines the need to improve our knowledge of their frequency at various metallicities.

6. Discussion and conclusions

6.1. Impact of changing physical ingredients of the models

The evolution of very massive star models mainly depends on the mass-loss rates. We likely underestimate the mass-loss rates here due to the uncertainties on Eddington mass-loss rates (Vink et al. 2011; Bestenlehner et al. 2014; Vink 2018). This means that the ^{26}Al yields might also be underestimated. Increasing the mass-loss rates shortens the period preceding the time when layers that belonged to the convective core appear at the surface, and it increases the quantity of mass that is lost and is enriched in ^{26}Al from that stage on. Fig. 1 and the 250 M_\odot model show that the first effect, that is, shortening the phase before the surface is enriched in ^{26}Al, will have little impact. This phase is
already very short. With current mass-loss rates, starting from the time when the surface is enriched in ^{26}Al, more than 100 M_\odot are lost through winds. Increasing the amount of mass that is lost increases the ^{26}Al yield, and will thus increase the contribution of VMS to the global ^{26}Al budget.

The impact of rotational mixing is also very significant, as a population of rotating massive stars produces twice the amount of ^{26}Al as a population of non-rotating stars would in the Milky Way. An increase in rotation rate would result in even higher ^{26}Al yields due to an even stronger transport from rotational mixing, which results in even more ^{26}Al at the surface early on. A less efficient transport of the chemical species will act in the opposite way and would decrease the quantities of ^{26}Al that are ejected by stellar winds. Convection also plays an important role in the transport of ^{26}Al to the surface. With an increase in core size (e.g., as suggested by Martinet et al. 2021; Scott et al. 2021), the transport of ^{26}Al would also be enhanced (as we showed Fig. 1), resulting in higher ^{26}Al yields. We showed that increasing the initial mass increases the mass loss and the convective core size for VMS. This means that increasing the upper mass limit for VMS (e.g., 300–500 M_\odot) would also result in an even larger increase of the ^{26}Al galactic production. This is shown in Fig. 5, where the ^{26}Al production in the galaxy is displayed for an IMF with an upper mass limit of up to 500 M_\odot. The yields used for stars with initial masses higher than 300 M_\odot were extrapolated and are compatible with the mass loss obtained in the 500 M_\odot models of Yusof et al. (2013). Pushing the upper mass limit to 500 M_\odot increases the total ^{26}Al output from winds by a factor of two in comparison to 300 M_\odot and would account for a very large fraction of galactic ^{26}Al.

Some changes in the nuclear reaction rates may of affect our results. We refer to Iliadis et al. (2011), who reported a detailed study of the dependence of the ^{26}Al masses synthesized by massive stars on the nuclear reaction rates. For the ^{26}Al produced in the H-burning convective core, an important reaction is the one synthesizing ^{26}Al from ^{25}Mg by the $^{25}\text{Mg}(p,\gamma)^{26}\text{Al}$ reaction. A higher reaction rate will increase the quantity of ^{26}Al that is ejected by the winds, and the opposite holds for a lower rate. The median rate by Iliadis et al. (2010) for the $^{25}\text{Mg}(p,\gamma)^{26}\text{Al}$ is 20% lower at most than the rate we used (taken from Iliadis et al. 2001) for the typical temperatures in the H-burning cores of massive stars. This reduction does not have a dramatic impact on the yields. It decreases them slightly if all other parameters remain unchanged. Very recently, the $^{26}\text{Al}(n,\alpha)$ reaction rate has been updated by Lederer-Woods et al. (2021), but this reaction does not impact the phase during which most of the ^{26}Al is produced and ejected. It is therefore not expected to have a strong effect on our results.

6.2. Synthesis of the main results and future perspectives

We computed the yields of ^{26}Al ejected by stellar winds for massive and very massive stars with and without rotation at three different metallicities. We showed that their impact on the global budget of ^{26}Al is significant. This underlines the need to search for such objects and obtain data on their frequency at different metallicities and environments.

Using a simple galactic model to compute the total ^{26}Al mass due to the winds of massive and very massive stars, we obtained that the Galaxy globally contains about 120,000 stars with masses between 8 and 300 M_\odot, and 500 stars with initial masses between 120 and 300 M_\odot. The variation in these numbers as a function of the galactocentric distance is shown in Fig. 6 (top panel). The lower panel displays the expected number of VMS with masses between 8 and 300 M_\odot as a function of the galactocentric distance. The same method as in Fig. 4 was used. The ^{26}Al yields above 300 M_\odot are extrapolated.

Fig. 5. Effect of the upper mass limit on the ^{26}Al production in rings with a width of 0.1 kpc as a function of the galactocentric distance. The same method as in Fig. 4 was used. The ^{26}Al yields above 300 M_\odot are extrapolated.
are now often discarded because they would yield a possibility to account for Solar System delivery by supernovae and AGB stars has long been considered (Gounelle et al. 2001), but is now abandoned after some nuclear events that seem, for the time being, unlikely. It is observed in the early Solar System (Gounelle & Meibom 2008). The probability of associating an AGB star with a star-forming region is very low (Kastner & Myers 1994). The most promising models currently involve the winds of massive stars (Arnould et al. 1997; Gounelle & Meynet 2012). A setting according to which a massive star injects 26Al into a dense shell that it generated itself (Gounelle & Meynet 2012; Dwarkadas et al. 2017) seems to be a likely model (Gounelle 2015).

Another aspect in which 26Al plays an important role is the question of the sources of pristine circumstellar grains, that is, of grains that formed around stars that travel through space and are finally locked in meteorites. Traces of 26Mg due to 26Al that was present at the time of formation of these pristine circumstellar grains, along with the measurements of the abundances of other isotopes, provide a clue about the nature of stars that produce such grains (see, e.g., Zinner et al. 1991; Dauphas & Chausidon 2011). The proportion in which these grains might be produced around VMS is an interesting open question, as is whether the 26Al that was injected into the protosolar nebula comes from a very massive star.

References

Caughlan, G. R., & Fowler, W. A. 1988, Atomic Data Nucl. Data Tables, 40, 283

Fig. 6. Population of VMS in our Milky Way model. Top panel: number of massive stars (8–120 M_{\odot}) and VMS (120–300 M_{\odot}) in rings with a width of 0.1 kpc as a function of galactocentric distance. We used a Salpeter IMF with $\alpha = 2.35$ and the SFR from the middle panel of Fig. 4 in Kubryk et al. (2015). Bottom panel: number of VMS in a disk around the Sun as a function of the maximum distance to the Sun, following the same method.
Pleintinger, M. M. M. 2020, PhD Thesis, Max Planck Institute for Extraterrestrial Physics, Germany
Appendix A: Table

Table A.1 presents the stellar 26Al yields from winds obtained in this work as a function of the initial mass and metallicity for non-rotating models and for models that rotate at $V/V_c = 0.4$.

Table A.1.

26Al wind yields (calculated using Eq. 2) in M_\odot units. The VMS models at $Z = 0.006$ and $Z = 0.014$ are from Martinet et al. (in prep.) probing initial masses of 180, 250 and 300 M_\odot, while the models at $Z = 0.020$ are from Yusof et al. (2022), with VMS models computed only for 150 and 300 M_\odot. More details on the massive stars models at $Z = 0.006$ can be found in Eggenberger et al. (2021) and in Ekström et al. (2012) for the ones at $Z = 0.014$. Dashes indicate where the models were not computed.

<table>
<thead>
<tr>
<th>Mass (M_\odot)</th>
<th>$Z=0.006$</th>
<th>$Z=0.014$</th>
<th>$Z=0.020$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-rotating</td>
<td>$V/V_c=0.4$</td>
<td>Non-rotating</td>
</tr>
<tr>
<td>12</td>
<td>4.63E-13</td>
<td>3.85E-11</td>
<td>1.01E-09</td>
</tr>
<tr>
<td>15</td>
<td>1.94E-12</td>
<td>7.73E-10</td>
<td>1.48E-10</td>
</tr>
<tr>
<td>20</td>
<td>1.12E-09</td>
<td>4.87E-07</td>
<td>5.57E-07</td>
</tr>
<tr>
<td>25</td>
<td>1.89E-06</td>
<td>1.06E-05</td>
<td>9.50E-06</td>
</tr>
<tr>
<td>32</td>
<td>1.67E-05</td>
<td>1.24E-05</td>
<td>2.04E-05</td>
</tr>
<tr>
<td>40</td>
<td>2.32E-05</td>
<td>1.53E-05</td>
<td>3.82E-05</td>
</tr>
<tr>
<td>60</td>
<td>7.70E-05</td>
<td>2.24E-05</td>
<td>5.33E-05</td>
</tr>
<tr>
<td>85</td>
<td>4.25E-05</td>
<td>5.17E-05</td>
<td>1.67E-04</td>
</tr>
<tr>
<td>120</td>
<td>9.57E-05</td>
<td>1.39E-04</td>
<td>3.64E-04</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>180</td>
<td>1.70E-04</td>
<td>3.37E-04</td>
<td>8.37E-04</td>
</tr>
<tr>
<td>250</td>
<td>3.67E-04</td>
<td>6.51E-04</td>
<td>1.93E-03</td>
</tr>
<tr>
<td>300</td>
<td>5.39E-04</td>
<td>8.97E-04</td>
<td>3.03E-03</td>
</tr>
</tbody>
</table>