Studying the ISM at \sim 10 pc scale in NGC 7793 with MUSE

I. Data description and properties of the ionised gas (Corrigendum)

Lorenza Della Bruna\(^1\), Angela Adamo\(^1\), Arjan Bik\(^1\), Michele Fumagalli\(^2,3,4\), Rene Walterbos\(^5\), Göran Östlin\(^1\), Gustavo Bruzual\(^6\), Daniela Calzetti\(^7\), Stephane Charlot\(^8\), Kathryn Grasha\(^9\), Linda J. Smith\(^10\), David Thilker\(^11\), and Aida Wofford\(^12\)

\(^1\) Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, 106 91 Stockholm, Sweden
e-mail: lorenza.dellabruna@astro.su.se
\(^2\) Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE, UK
\(^3\) Centre for Extragalactic Astronomy, Durham University, South Road, Durham DH1 3LE, UK
\(^4\) Dipartimento di Fisica G. Occhialini, Università degli Studi di Milano Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
\(^5\) Department of Astronomy, New Mexico State University, Las Cruces, NM 88001, USA
\(^6\) Instituto de Radioastronomía y Astrofísica, UNAM, Campus Morelia, Michoacan CP 58089, Mexico
\(^7\) Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA
\(^8\) Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris, 75014 Paris, France
\(^9\) Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia
\(^10\) Space Telescope Science Institute and European Space Agency, 3700 San Martin Drive, Baltimore, MD 2121, USA
\(^11\) Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
\(^12\) Instituto de Astronomía, Universidad Nacional Autónoma de México, Unidad Académica en Ensenada, Km 103 Carr. Tijuana-Ensenada, Ensenada 22860, Mexico

Key words. galaxies: ISM – HII regions – galaxies: individual: NGC 7793 – ISM: structure – errata, addenda

The parametrisation of the MUSE line spread function (LSF) provided in the original paper refers to the instrumental full width at half maximum (FWHM) and not to \(\sigma\), as mentioned in the text and erroneously assumed when fitting the H\(\alpha\) line. Figure 1 shows the revised H\(\alpha\) velocity dispersion map. Figures 2 and 3 illustrate the updated ‘BPT-\(\sigma\)’ line ratio diagram and \(\sigma_{H\alpha}\) distribution. For the latter distribution, we now recover median values (±first, third quartiles) of \(\sigma_{H\alpha,\text{HII}} = 18.8^{+5.2}_{-6.1}\) km s\(^{-1}\) and \(\sigma_{H\alpha,\text{DIG}} = 26.1^{+5.4}_{-5.3}\) km s\(^{-1}\). The general trends stated in the original paper remain unchanged.

In the original manuscript there has also been a mistake in the computation of the fraction of diffuse ionised gas (\(f_{\text{DIG}}\)). The corrected fractions are the following: \(f_{\text{DIG}} \sim 15\% (21\%)\) for the H\(\alpha\) sample and \(f_{\text{DIG}} \sim 21\% (27\%)\) for the H\(\alpha/\text{[SII]}\) sample, where we have indicated the values prior to reddening correction in parenthesis.

![Fig. 1. Revised version of Fig. 3 from the original paper.](...)

A&A 635, A134 (2020), https://doi.org/10.1051/0004-6361/201937173
Fig. 2. Revised version of Fig. 18 from the original paper.
Fig. 3. Revised version of Fig. 19 from the original paper.