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ABSTRACT

Context. Cometary dust particles are subjected to various forces after being lifted off the nucleus. These forces define the dynamics
of dust, trajectories, alignment, and fragmentation, which, in turn, have a significant effect on the particle distribution in the coma.
Aims. We develop a numerical thermophysical model that is applicable to icy cometary dust to study the forces attributed to the
sublimation of ice.
Methods. We extended the recently introduced synoptic model for ice-free dust particles to ice-containing dust. We introduced an
additional source term to the energy balance equation accounting for the heat of sublimation and condensation. We use the direct
simulation Monte Carlo approach with the dusty gas model to solve the mass balance equation and the energy balance equation
simultaneously.
Results. The numerical tests show that the proposed method can be applied for dust particles covering the size range from tens of
microns to centimetres with a moderate computational cost. We predict that for an assumed ice volume fraction of 0.05, particles with
a radius, r � 1 mm, at 1.35 AU, may disintegrate into mm-sized fragments due to internal pressure build-up. Particles with r < 1 cm
lose their ice content within minutes. Hence, we expect that only particles with r > 1 cm may demonstrate sustained sublimation and
the resulting outgassing forces.
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1. Introduction

As comets approach the Sun, they start to eject gas and dust
from their nuclei. The ejection of dust is mainly driven by the
sublimation of volatile ices. Thermal modelling suggests that
the sublimation of volatiles such as CO and CO2 ices can lift
large particles containing water ice off the surface, whereas sub-
limation of water ice can only lift smaller, ice-free particles
(Gundlach et al. 2020). In addition, other mechanisms, such as
the crystallization of amorphous ices and impacts, may be capa-
ble of ejecting smaller icy particles. The ice-containing particles
ejected from the surface may behave like mini-comets whose
trajectories are affected by the recoil force due to anisotropic
outgassing of water vapour. Indeed, particles whose trajectories
cannot solely be explained by gravity, gas drag, and radiation
pressure have been detected for the comets 103P/Hartley 2
(Kelley et al. 2013, 2015) and 67P/Churyumov-Gerasimenko
(Agarwal et al. 2016). Furthermore, the sublimation of ices can
build up pressure in the interior of a particle, which may lead
to their disintegration while they are travelling from the inner to
outer coma.

Understanding the outgassing of dust particles requires rig-
orous multiphysical modelling. Typical thermophysical models
applied to the cometary nuclei, however, introduce various
simplifications which make them inapplicable to small dust par-
ticles. More specifically, the models are often one dimensional,
they assume wavelength-independent surface absorption and
emission of electromagnetic radiation, the radiative heat transfer
is treated as a one-dimensional transport by defining an effec-
tive heat transfer coefficient, and the gas flow is treated as the

Knudsen flow (Huebner et al. 2006; Prialnik 2004; Gundlach
et al. 2020). For small particles, these approximations may intro-
duce significant errors. The thermal evolution of small cometary
dust particles is often modelled by assuming isothermal spheri-
cal particles and using the analytical Lorenz-Mie solution for the
absorbed and emitted radiation and assuming that the sublima-
tion only occurs on the surface of the particle (Lichtenegger &
Kömle 1991; Gicquel et al. 2012, 2016). This is a valid assump-
tion for small compact particles, but inside porous particles
larger than tens of micrometres, temperature and pressure gra-
dients may occur in a typical coma environment. Thus, a more
realistic numerical model is needed to bridge the gap between
small and very large particles.

We recently introduced a numerical method for analysing
the thermal properties of ice-free particles by treating the radia-
tive heat transfer with the radiative transfer with the reciprocal
transactions framework (Markkanen & Agarwal 2019). Here, we
extend the method for ice-containing particles by introducing
an additional source term to the energy equation that accounts
for the latent heat of sublimation and condensation. Because
this term depends on the temperature and pressure, we solve
the energy balance equation simultaneously with the mass bal-
ance equation. We apply the finite-element method (FEM) for the
energy balance equation and the direct simulation Monte Carlo
(DSMC) method with the dusty gas model for the mass transport.

The article is organized as follows. In Sect. 2, we present the
governing equations describing the physics of the problem. The
numerical methods we used are explained in Sect. 3. Section 4
introduces the particle model. In Sect. 5, we present the valida-
tion of the developed method against the continuous gas flow
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model and apply the method to study thermal properties of
icy cometary dust particles at 1.35 AU. Finally, we present our
conclusions in Sect. 6.

2. Governing equations

Recently, we introduced a thermal model for the aggregated ice-
free particles composed of submicrometre-sized dust grains in
Markkanen & Agarwal (2019). Here, we will extend the method
for dust particles containing ice inclusions. We assume that the
dust and ice grains are intimately mixed in the microscopic scale.
We also assume local equilibrium, in the case of which the solid
and gas phases have the same temperature locally and the energy
exchange between the solid and gas phases is neglected.

2.1. Energy balance

The energy balance equation for the solid phase is written as

cpρs
∂T
∂t
− ∇ · κ∇T = Qr + Ql, (1)

where cp is the specific heat capacity, ρs is the density, T is the
temperature, and κ is the conductive heat transfer coefficient.
The right-hand side includes the volumetric source terms, the
absorbed solar and thermally emitted and reabsorbed radiation
Qr, and the latent heat of sublimation and condensation of ices
Ql. The above values are macroscopic, that is, they are averaged
over a small volume element larger than the microstructure of
dust and ice grains. We also assume that the density and specific
heat capacity of gas are many orders of magnitude lower than
those of the solid phase and ignore the heat transport in the gas
phase.

On the particle surface, we impose the Neumann boundary
condition for the conductive flux as n · κ∇T = 0, where n is the
outer unit normal vector. Thus, only the radiative heat flow can
cross the boundary as the convective flow is neglected.

Energy related to the sublimation and condensation pro-
cesses can be written as

Ql = qH, (2)

where q is the sublimation rate and H is the latent heat. By
defining the saturation vapour pressure as

Psat = Ae−B/T (3)

and using the experimentally obtained coefficients, A and B
(Fanale & Salvail 1984), the heat of sublimation is obtained via
the Clausius-Clapeyron relation and given by

H = B
Rg

µ
, (4)

in which Rg is the universal gas constant and µ is the molar mass
of the gas.

The production rate is obtained via the Hertz–Knudsen
formula as

q = S (Psat − P)
√

µ

2πRgT
, (5)

where S is the surface-to-volume ratio in the microscale, and P
is the pressure in the micropores.

2.2. Mass balance

The mass balance equation for the gas and solid phases is written
as

∂ρg

∂t
+ ∇ · J = q, (6)

∂ρs

∂t
=−q, (7)

where ρg and ρs are the gas and solid phase densities, respec-
tively, and J is the gas flux density. The macroscopic thermody-
namic properties of gas such as the density, velocity, pressure,
and flux emerge from the stochastic microscopic description of
the state of gas given by the Boltzmann equation:

∂ f
∂t

+ u · ∇r f = C( f , f ) + fq, (8)

where f (t, r, u) is the time (t) position (r) and velocity (u) depen-
dent distribution density function, fq is the source function, and
C( f , f ) is the collision operator. Formally, the collision operator
reads

C( f , f ) =

∫ ∫
|u − u∗|( f ′∗ f ′ − f∗ f )σ(Ω) dΩ du∗, (9)

where σ is the kernel that describes scattering, the primed
functions are the post collision distribution densities, and the
subscript * denotes the other particle in the collision pair.

The macroscopic number density n can be computed by inte-
grating the distribution density function over the velocity space
as

n(t, r) =

∫
f (t, r, u) du, (10)

and the gas flux as

J(t, r) =

∫
u f (t, r, u) du. (11)

We apply the DSMC method to solve Eq. (8), as described in
Sect. 3.

3. Numerical solution

We discretize the domain of interest Ω with tetrahedral elements.
Then we employ the FEM for the spatial dimension of the energy
balance Eq. (1) with the nodal testing wn and basis functions
um. For the temporal dimension we will use the central finite
difference formula

∂T
∂t

∣∣∣∣∣
t+ 1

2

≈ Tt+1 − Tt

τ
= Lt+ 1

2
(12)

and interpolate the other terms at t + 1
2 as

Lt+ 1
2
≈ Lt+1 + Lt

2
. (13)

This results into the Crank–Nickolson scheme for the unknown
coefficient vector xt+1 given by

xt+1 =

(
M +

τ

2
S
)−1 (

Mxt +
τ

2
Fxt − τ2S xt + Fxt+1

)
, (14)
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where the mass and the stiffness matrices are defined as

M = ρscp

∫

Ω

wnum dV, (15)

S =

∫

Ω

∇wn · κ∇um dV, (16)

and the force vector as

F =

∫

Ω

wn(Qr + Ql) dV. (17)

Equation (14) is strongly non-linear because of the force term.
Hence, we use an iterative method with under-relaxation to solve
the unknown coefficient vector, xt+1.

We compute the absorbed solar and thermally emitted radi-
ation, Qr, by using the radiative transfer with reciprocal transac-
tions framework, as described by Markkanen & Agarwal (2019).
Energy related to sublimation and condensation requires eval-
uation of the gas production rate, q, which depends on the
temperature, T, and pressure, P. Thus, we need to solve the mass
balance equation simultaneously with the energy balance equa-
tion. We apply the DSMC method, and its solution thus satisfies
the Boltzmann equation, to solve the gas flow by assuming that
the flow is a free molecular flow, that is, the mean free path of
molecule-molecule collisions is much larger than the mean free
path of molecule-grain collisions. The grains are assumed to be
much heavier than the gas molecules and, thus, they are station-
ary, giving us the so-called dusty gas model. We consider the
molecule-grain collisions stochastically, as in Ahmadian et al.
(2019).

To compute the source function fq in the DSMC, we intro-
duce new (or remove the existing) DSMC molecules for each
tetrahedral element with the index, n, based on the production
rate, qn, at any given time step, ∆tDSMC, with weight, qn∆tDSMC.
The velocity of the new DSMC molecule is drawn from the local
solid-phase temperature-dependent Maxwell-Boltzmann distri-
bution. Then the trajectories of the DSMC molecules are traced
within a time step. To account for the collision operator, C, the
molecule-grain scattering distance is drawn from the exponential
distribution with the mean free path, lDSMC, and a new velocity
for the gas molecule is drawn the Maxwell-Boltzmann distribu-
tion defined by the local temperature. Finally, the macroscopic
thermodynamical properties, for instance, density, pressure, and
flux are sampled by summing up the DSMC molecules in each
tetrahedron and averaging them over the time frame. The process
is repeated until the steady state or the energy equation time step
is reached.

The characteristic time scales for energy and mass trans-
port can be very different. This means that we need to use
different time steps (τ,∆tDSMC) for the energy and mass trans-
port to get a sufficiently fast numerical method. The DSMC
time step, ∆tDSMC, must be small enough such that the DSMC
molecules cannot travel across a finite cell within a single time
step, whereas τ is limited by the non-linearity and the conver-
gence of the iterative method used to solve the energy balance
equation. In practice, for cometary dust applications, the DSMC
time step must be many orders of magnitudes smaller than the
energy balance equation time step. Often, the gas flow reaches
the steady state within the energy balance equation time step. In
such a case, we stop the DSMC simulation and extrapolate the
total gas production rate and the remaining ice mass at t + τ. The
extrapolation does not conserve ice and gas mass exactly when a
tetrahedron runs out of ice within the time step τ as the ice mass

cannot be negative. To avoid the problem, we run the DSMC
again by setting the ice mass to zero for the tetrahedron that has
run out of ice and calculate the production rates using the total
mass loss at the given tetrahedron as

qt+1 =
mt

τ
, (18)

where mt is the ice mass at time t.

4. Particle model

We used a particle microstructure model derived by fitting the
phase function of the coma of 67P/Churyumov-Gerasimenko in
Markkanen et al. (2018). The heat conduction coefficient was
derived by fitting the superheating phase function of the same
comet in Markkanen & Agarwal (2019).

The microstructure consists of submicrometre-sized organic
monomers and micrometre-sized silicate monomers randomly
deposited inside a particle with the porosity, Φ = 0.6. The effec-
tive heat capacity, cp = 750 J kg−1 K−1, and the effective density,
ρs = 1000 kg m−3, are estimated from the porosity Φ and the
silicate-to-organic volumetric ratio of 1/5. The size distribu-
tions of monomers follow a differential power law with the
index of −3, and the minimum and maximum cutoff limits are
amin = 65 nm and amax = 125 nm for the organic and amin = 0.6 µm
and amax = 1.3 µm for the silicate monomers. The refractive
index for the organic monomers is approximated to be the same
as amorphous carbon and is taken from Jäger et al. (1998).
For the silicate monomers, the refractive index is taken from
Dorschner et al. (1995). Here, we assume that ice is uniformly
deposited in the micropores and the amount of ice is so low
that it does not have an effect on the scattering properties.
The microstructure model gives rise to the incoherent scattering
properties of the volume elements which are used to evalu-
ate the radiative part of the energy equation as described by
Markkanen & Agarwal (2019). In addition, the gas mean free
path, lDSMC, and the surface to volume ratio, S , are derived from
the microstructure model. The parameters used in the model are
presented in Table 1.

The macrostructure is described by the tetrahedral mesh in
which each tetrahedron can be assigned to different microstruc-
ture, effective material properties cp, ρs, κ, and ice content. To
generate the macrostructure model, we applied the hierarchical
Voronoi partitioning algorithm with the parameters, N1 = 100,
N2 = 1000, Prm

1 = 1, and Prm
2 = 0.4, from Markkanen et al. (2015).

This creates particles with the macroporosity of 0.6 and the
mean unit Voronoi cell size of one tenth of the particle size.
Figure 1 shows an example computational mesh generated by
the two-level hierarchical Voronoi algorithm. In the remainder
of the paper, the size of the particle refers to the radius, r, of the
smallest sphere containing the particle if not defined otherwise.

5. Results

5.1. Validation

To validate the DSMC implementation, we compared the results
with the continuous gas flow model in porous media. The Fick’s
law states that the gas flux J is proportional to the gas density ρg
gradient as

J =−D∇ρg, (19)

where D is the diffusion coefficient. Here, the gas density ρg is
defined as the gas mass per total volume including dust grains.
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Table 1. Simulation parameters.

Parameter Symbol Value

Density ρs 1000 kg m−3

Specific heat capacity cp 750 J kg−1 K−1

Heat conduction coefficient κ 0.00025 W m−1 K−1

Surface-to-volume ratio S 1.0× 107 m−1

Vapour pressure coefficient A 356.0× 1010 Pa
Vapour pressure coefficient B 6141.667 K
Porosity Φ 0.6
Molecule-grain mean free path lDSMC 1.0×−6 m

Fig. 1. Crosscut of an example computational mesh generated by the
two-level Voronoi partitioning. The yellow tetrahedra correspond to the
particle with a specified microstructure and the blue ones correspond to
free space.

Using the continuity equation, we have

∂ρg

∂t
− ∇ · D∇ρg = S (Psat − P)

√
µ

2πRgT
. (20)

Writing the gas density in terms of pressure inside the microp-
ores and using the ideal gas assumption,

P =
ρgRgT
µΦ

(21)

leads to the following equation for the gas density

∂ρg

∂t
− ∇ · D∇ρg = S

(
Psat −

ρgRgT
µΦ

) √
µ

2πRgT
. (22)

The diffusion coefficient for the random walk in three dimen-
sions with the Maxwell–Boltzmann mean velocity vth is given
by

D =
1
6

lDSMCvth =
1
6

lDSMC

√
8RgT
πµ

. (23)

Furthermore, by assuming the half Maxwell-Boltzmann distribu-
tion above the particle interface, giving the normal mean veloc-
ity of vn = vth/4 (Huebner & Markiewicz 2000), the Neumann
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Fig. 2. Pressure as a function of distance from the centre of the sphere
calculated by the DSMC and FEM. The DSMC 2 solution has twice
the number of the DSMC molecules than the DSMC 1 solution to
demonstrate convergence.

boundary condition is given as

n · J = ρg

√
RgT
2πµ

. (24)

Equation (22), supplemented with the boundary condition (24)
can be solved with the FEM analogously to the FEM solution of
the energy balance Eq. (14) by changing the coefficients and the
right-hand side accordingly and introducing the boundary inte-
gral for the Neumann boundary condition (which is zero for the
energy equation).

First, we considered the simplest possible case; an isother-
mal T = 200 K spherical particle with the radius r = 0.1 mm and
S = 10 000 m−1 in a steady state. No other energy sources were
included. We solved the problem using the DSMC and the
FEM. Two different DSMC solutions were computed, namely,
DSMC 1 and DSMC 2, the latter having twice the number of the
DSMC molecules than the former. Figure 2 shows the pressure
sampled at the barycentre of each tetrahedron as a function of the
distance from the centre of the spherical particle. The solutions
are in good agreement with each other but the DSMC solu-
tions have more noise than the FEM solution. The DSMC noise
decreases with the increasing number of the DSMC molecules,
as expected.

It is interesting to note that when S is constant, Eq. (22)
is reduced to the Helmholtz equation in a steady state with the
wavenumber squared given by

k2 =−
√

RgT
2πµ

S Φ−1D−1. (25)

The fundamental solution, that is, the Green’s function for the
Helmholtz equation is written as

G(r, r′) =
eik|r−r′ |

4π|r − r′| , (26)

where r and r′ are the source and observation points, respec-
tively, and i is the imaginary unit. Thus, with the imaginary k
the solution is an exponentially decaying evanescent wave, and
the pressure drop near the surface can be very steep when S D−1

is large. This also means that in order to solve Eq. (22) with the
standard continuous Galerkin FEM, an extremely fine mesh is
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Fig. 3. Comparisons between thermal modelling results obtained by using the DSMC and FEM solutions for gas transport. The test particle has an
irregular shape, with the volume equivalent radius of 0.5 mm. The surface-to-volume ratio was set to S = 1 m−1.

needed at the sublimation front, which can make computational
time prohibitively long.

Next, we simulated an irregularly-shaped dust particle under
solar radiation at 1.35 AU. The initial temperature of the par-
ticle was 160 K and the volumetric ice content was 0.05. The
surface-to-volume ratio parameter was set to S = 1 m−1 to allow
for an efficient FEM solution. The volume equivalent radius of
the particle was 0.5 mm and it was spinning 1 rpm with the spin
axis pointing perpendicular to the direction of the Sun. The solar
illumination was switched on at t = 0 s. The time evolution of
the average temperature, gas production rate, maximum pressure
averaged over a tetrahedron inside the particle and the ice volume
fraction are plotted in Fig. 3 computed by using the DSMC and
FEM for the gas transport. We observed an excellent agreement
between the two different methods. We note, however, that the
boundary condition used in the FEM does not account for the gas
flow back to the particle, whereas it is taken into account in the
DSMC method. The gas production rate and maximum pressure
peak at t ≈ 200 s and then they decrease. This happens because
sublimation creates an insulating dry dust layer on the particle’s
surface that dampens the energy transport into the interior of the
particle.

5.2. Application to cometary dust

Next, we studied thermal properties of dust in a cometary coma
at 1.35 AU. We assumed that the ejected dust particles have tem-
perature T0 = 160 K and contain 5 vol. of water ice uniformly
distributed into the micropores at t = 0. Thus, the dust particle
was assumed to originate below the hot surface layer in order to
contain ice. Here, we do not account for the ejection mechanism
as our goal is to study the thermal evolution of icy dust particles

once they have been ejected from the nucleus and exposed to the
direct sunlight. In the simulation, we assumed that the particles
are rotating around the axis perpendicular to the solar direction
with the angular speed of 1 rpm. The results were not aver-
aged over an ensemble of particles due to computational time
restrictions.

Figure 4 plots the ice volume fraction as a function of time
for 0.1 mm-, 1 mm-, and 10 mm-sized particles. We observed that
the particles with r = 0.1 mm run out of ice in approximately a
few tens of seconds after the ejection, r = 1 mm in ten minutes,
and r = 10 mm particles can be extrapolated to stop subliming
after a few hours. We expect that either they run out of ice or cre-
ate an insulation surface layer, completely dumping sublimation.
The time integration was stopped after 20 days of computing
using 24 cores for the particle with r = 10 mm. The smaller par-
ticles took less than a week each with 24 CPUs to complete the
simulation. The biggest bottleneck in the simulations of large
particles is the non-linearity of Eq. (14). A very small time step τ
is required to solve the non-linear equation prohibiting long time
evolution simulations. Thus, using a more sophisticated non-
linear iterative solver or finding an efficient preconditioner would
be an interesting topic for future research. Also, the DSMC sim-
ulation becomes slower with the increasing particle size as the
diffusion time is proportional to r2. Thus, for large particles,
a continuous gas transport model would be preferred, assum-
ing that the stability problem appearing for high S due to the
exponentially decaying pressure profiles can be solved.

The sublimation of ices increases pressure inside the parti-
cles as demonstrated in Fig. 5. If the pressure is high enough,
the particle may disintegrate. An experimentally verified model
(Skorov & Blum 2012; Blum et al. 2014; Brisset et al. 2016) for
the effective tensile strength of a particle made of aggregates is
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Fig. 4. Ice volume fraction as a function of time for different particle
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given by Teff ≈ (ra/1 mm)−2/3 Pa where ra is the radius of aggre-
gates. In our particle model, these aggregates can be considered
to correspond the Voronoi cells with ra = r/10. The tensile
strengths for the particles made of aggregates with ra = 0.1 mm
and 1 mm are also presented in Fig. 5 as dashed lines. The max-
imum pressure for particles with r < 1 mm is less than 3 Pa
which is smaller than the corresponding tensile strength of the
experimental particles. Thus, it is unlikely that a particle with r <
1 mm will disintegrate into smaller pieces because of pressure.
For larger particles, the pressure can be higher. This happens
as the sublimation creates a dry hot layer on the particle’s sur-
face which helps to build up pressure at the sublimation front.
As shown in Fig. 5, for the particle with r = 10 mm, the maxi-
mum pressure can reach the tensile strength of a particle made
of aggregates with ra = 0.1 mm. This indicates that the particles
with r > 10 mm may start fragmenting into smaller pieces but we
expect the disintegration to stop at mm-sized fragments. How-
ever, a detailed investigation of the fragmentation of particles
is beyond the scope of this study and would require a detailed
structural mechanical analysis. Albeit, we note that if such frag-
mentation would occur, it would have a significant effect on the
sublimation rate as the insulating layer would be removed from
time to time, allowing heat to directly access to the icy part.

Since the particles hold temperature gradients, outgassing of
water vapour is anisotropic. This introduces a rocket force that
accelerates the particles. The acceleration due to the rocket force
is plotted in Fig. 6. The acceleration decreases with increasing
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Fig. 6. Acceleration due to outgassing as a function of time for different
particle sizes.
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due to outgassing as a function of time.

particle size. This is clear as the sublimation rate is proportional
to the illuminated area and the mass is proportional to the
volume, the acceleration roughly scales linearly with the inverse
of size. For small particles, the acceleration is high but it only
occurs for a few seconds, whereas for large particles, the accel-
eration is small but it acts for a considerable time, which may
have an effect on the particle’s trajectory. The direction of the
acceleration depends on the rotation state of the particle. For
a slowly rotating particle, the force points towards the antiso-
lar direction whereas for a fast-rotating particle the direction is
shifted towards the direction perpendicular to the rotation axis,
erot, and to the axis towards the Sun, esun, as presented in Fig. 7.

Finally, we studied how the surface-to-volume ratio, S , in
Eq. (5) affects the results. Since sublimation requires that Psat −
P > 0 and it depends on the surface-to-volume ratio of the ice
surface, S ice,whereas condensation requires that Psat−P < 0 and
it depends on the total surface-to-volume ratio S tot = S ice + S dust,
we define

S =

{
S ice if Psat − P > 0
S tot if Psat − P < 0.

(27)

If ice fully covers the dust grains, it is clear that S ice = S tot. If the
particle is an aggregate of ice and dust grains, then S ice < S tot.
For equisized ice grains:

S ice = 3vice/rice (28)
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Fig. 8. Ice volume fraction and the maximum pressure as a function
of time computed for varying ice surface-to-volume ratios, S ice, cor-
responding to fully coated dust grains, and ice grains of sizes 0.2 µm,
2 µm, and 20 µm uniformly mixed with dust grains.

where vice is the volumetric filling factor of ice grains of
radius rice. Thus, S depends on how ice is distributed inside
the particle. We assumed that vice = 0.05 and compared four
different ice distributions. We also assumed that the ice distri-
bution does not change the scattering, absorption and emission
properties. In the first case, ice covered all the dust grains giv-
ing S ice = 1 × 107 m−1. In the second, the ice grains of radius
rice = 0.2 µm were evenly distributed inside the particle giving
S ice = 7.5 × 105 m−1. In this case, the ice grains were approx-
imately the same size as the dust grains. In the third, the
ice grains were bigger, rice = 2 µm, than the dust grains and
S ice = 7.5 × 104 m−1. In the last case, the ice grains were much
bigger than dust grains and rice = 20 µm.

Comparisons for the total ice volume fraction and the maxi-
mum pressure as a function of time are presented in Fig. 8. We
observed that when S ice is large enough, the system is saturated
and increasing S ice does not affect the results. This is because
gas diffusion gives the upper limit to the total sublimation rate.
When S ice is small enough, the total sublimation rate is smaller
and the system is no longer saturated and limited by gas diffusion
but is limited by the ice surface area. In such a case, the received
energy is used more to increase the temperature of the parti-
cle which in turn allows higher local pressure. In fact, as seen
from Eq. (22), the thickness of the sublimation front depends
on the length scale, h, and the diffusion coefficient, D, and is
proportional to the factor, hS D−1. When the factor is large, the
sublimation front is thin compared to the particle’s size and the
total sublimation rate depends on the macroscopic icy surface
area rather than the microscopic surface-to-volume ratio, S . It
is, thus, difficult to retrieve information on how the ice grains

are mixed with the dust grains in the microscopic level from the
total gas production rate.

6. Conclusions

We presented a novel thermophysical model and its numerical
solution for icy cometary dust particles. The model employs
the radiative transfer with reciprocal transactions for the radia-
tive heat transport and the Boltzmann equation together with the
Hertz-Knudsen formula for gas transport solved by the DSMC
methods. Energy changes related to absorption, thermal emis-
sion, and phase changes were incorporated as source terms into
the energy balance equation with the Fourier’s heat conduction
and solved by the FEM.

The developed method allows for thermal analysis of up
to cm-sized particles composed of submicrometre-sized grains
mixed with ice with a moderate computing power. The method
can find applications in understanding the thermal physics of
cometary dust particles and explaining experimental laboratory
measurements, and help us to develop more accurate approxi-
mate thermal modelling methods.

We also showed that water ice sublimation inside large dust
particles may generate enough pressure to reach the tensile
strength and, thus, to possibly disintegrate the particles when
comets are close to the Sun. Also, outgassing of water vapour
can play a crucial role in the dynamics of icy dust particles after
having been lifted off the comet’s nucleus. Both of these pro-
cesses should leave observable effects on the remote observables
via changes in the size and spatial distributions.

Finally, we showed that the thermal evolution of large dust
particles is quite insensitive to the microscopic mixing scale of
dust and ice, which effectively makes modelling easier. On the
other hand, getting information on the mixing scale and ratio of
dust and ice from the total gas production rate is not trivial.
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