1 ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 Dwingeloo, The Netherlands
e-mail: leeuwen@astron.nl
2 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 Amsterdam, The Netherlands
3 SKA Organisation, Jodrell Bank Observatory, Lower Withington, Macclesfield, Cheshire SK11 9DL, UK
4 Astro Space Center of the Lebedev Physical Institute, Profsoyuznaya Str. 84/32, Moscow 117997, Russia
5 Department of Physics, McGill University, 3600 Rue University, Montréal, QC H3A 2T8, Canada
6 McGill Space Institute, McGill University, 3550 Rue University, Montréal, QC H3A 2A7, Canada
7 Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK

Received 5 November 2019 / Accepted 25 November 2019

ABSTRACT

Bright short radio bursts are emitted by sources at a wide range of distances: from the nearby Crab pulsar to remote fast radio bursts (FRBs). FRBs are likely to originate from distant neutron stars, but our knowledge of the radio pulsar population has been limited to the Galaxy and the Magellanic Clouds. In an attempt to increase our understanding of extragalactic pulsar populations and their giant-pulse emission, we employed the low-frequency radio telescope LOFAR to search the Andromeda galaxy (M 31) for radio bursts emitted by young Crab-like pulsars. For direct comparison we also present a LOFAR study on the low-frequency giant pulses from the Crab pulsar; their fluence distribution follows a power law with slope 3.04 ± 0.03. A number of candidate signals were detected from M 31, but none proved persistent. FRBs are sometimes thought of as Crab-like pulsars with exceedingly bright giant pulses; based on our sensitivity, we can rule out that M 31 hosts pulsars that are more than an order of magnitude brighter than the Crab pulsar if their pulse scattering follows that of the known FRBs.

Key words. pulsars: general – pulsars: individual: B0531+21 – galaxies: individual: M 31

1. Introduction

Millisecond-duration radio signals map out an ever-increasing volume of our Universe. Already based on the first pulsar, Hewish et al. (1968) deduced a distance of ~65 pc from the interstellar dispersion. The distance scale next stepped through three more prefixes: 60 kpc for Small Magellanic Cloud pulsars (McConnell et al. 1991), 972 Mpc for FRB121102 (luminosity distance; Tendulkar et al. 2017), and ~17 Gpc for FRB160102 (Bhandari et al. 2018). In this way, pulsars chart out the densities of our Galaxy, and fast radio bursts (FRBs) cover the Universe.

A gap remains around the 1 Mpc mark, however. Targeted pulsar and fast-transient observations of our neighbor galaxy M 31, at 785 ± 25 kpc (McConnachie et al. 2005), may provide these lacking insights. Advantages of an M 31 search are the relative proximity, together with a sight line away from both the Galactic and M 31 plane, suggesting modest dispersion measures (DMs). The star formation rate over the last 10^7 yr is only about half that of the Milky Way for M 31 (Yin et al. 2009), which is less favorable.

In addition to measuring electron densities, extragalactic pulsar detections could sample the intergalactic magnetic field, reveal the most luminous part of the extragalactic population, and enable comparisons of pulsar populations between galaxies. These necessarily bright pulsars could also fill in the currently existing luminosity gap, which spans ten orders of magnitude, between known pulsars and FRBs, about which very little is known. For these reasons, nearby galaxies were previously searched for fast transients and pulsars (see Mikhailov & van Leeuwen 2016, and references therein).

None of these searches were successful; but for M 31, Rubio-Herrera et al. (2013) carried out a search with the Westerbork Synthesis Radio Telescope (WSRT) at 328 MHz and discovered six bursts at the same DM of 54.7 pc cm^{-3}. To be firmly associated with Andromeda, the source needs a DM that exceeds the sum of the foreground Galactic and intergalactic medium (IGM) DMs. Using an IGM density of n_{IGM} = 0.16 m^{-3} (Yao et al. 2017) the IGM between the Milky Way and M 31 would contribute only 0.13 pc cm^{-3}, which would not significantly influence the total. The model designed by Yao et al. (2017) to simulate the Galactic electron density predicts that the maximum Milky Way contribution in this line of sight is 61 pc cm^{-3}. The model of Cordes & Lazio (2002) expects 68 pc cm^{-3}. The uncertainties in these models, however, especially at high Galactic latitudes, can exceed a factor of 2 (Deller et al. 2019). Thus the source may be at the outer edge of the Milky Way or at the outer edge of M 31; and following it up was a main motivation for our work here.

We report on an M 31 search, for which we used LOFAR (van Haarlem et al. 2013). LOFAR searches benefit from the high sensitivity and an observing frequency that covers the pulsar flux density peak (Stappers et al. 2011). M 31 is the highest ranked extragalactic-search candidate for LOFAR (van Leeuwen & Stappers 2010). We compare our M 31 single-pulse results with those for a Galactic giant-pulse emitter, the Crab pulsar1. Section 2 covers observations and data analysis and Sect. 3 the search results. In Sect. 4 we compare the required

1 The comparison is additionally fitting given the mythological struggle involving Andromeda and the sea monster as told by Ovidius (2008).
inclination limits the dispersion caused in M 31 itself: DMs of about several hundred pc cm$^{-3}$ are expected (cf. Sect. 5.2).

The 2011 observations were searched from 0–1000 pc cm$^{-3}$ in 30 000 trials with increasing spacing of 0.01–0.1 pc cm$^{-3}$. For our observing setup, the intra-channel dispersion smearing for DM $= 1000$ pc cm$^{-3}$ is about 30 ms (M18), and for DMs above this, the signal-to-noise ratio (S/N) of narrow bursts increases further. Following the discovery of high-DM FRBs, the 2014 data were searched up to 2500 pc cm$^{-3}$ in 45 000 trials. For the limited computing time, we retain sensitivity to very bright high-DM events there, caused by uncertainties in the DM contributions of the IGM and M 31 itself, or from background FRBs unrelated to M 31 (cf. FRB131104; Ravi et al. 2015). While earlier searches for FRBs with LOFAR and the MWA have not been successful (cf. Karastergiou et al. 2015; Sokolowski et al. 2018; ter Veen et al. 2019), FRBs have been detected down to 400 MHz (CHIME/FRB Collaboration 2019), where some are narrow and unscattered even at the bottom of the band. This suggests that a detection at LOFAR frequencies could be possible, and would inform us further on the FRB emission properties.

The 2011 data were initially searched for single-pulse emission on the Hydra cluster in Manchester. Data were transferred there from the LOFAR LTA over a bandwidth-on-demand 1–10 Gbps network. Search output data were partially inspected. All 2011 and 2014 data were transferred to the Dutch national supercomputer Cartesius3. There, we performed dedispersion and periodicity and single-pulse searches using PRESTO (Ransom 2001) over the course of about 325 000 core-hours of Cartesius computing time4. All periodic candidates that were relatively slow ($P > 20$ ms) and of high significance (PRESTO-reported reduced $\chi^2 > 2$) were inspected by eye. There were ~ 25 000. We also inspected all ~ 20 000 single-pulse candidates of pulse width $W < 100$ ms and with an S/N higher than 10σ.

3. Search results

3.1. 2011 observations

The DM $= 54.7$ pc cm$^{-3}$ bursts identified in Rubio-Herrera et al. (2013) were recorded in a wide-field WSRT mode called 8gr8 (Janssen et al. 2009). This created eight tied-array beams, each offset within the grating response of the linear WSRT array. This allows for searches over the full field of view of the primary beams of the 25m dish. The method could only localize this intermittent source to several bands on the sky, as shown in blue in Fig. 1, and reports the two most likely regions at (RA, Dec) $= (00^\circ 46^m 29^s, +41^\circ 26')$ and $(00^\circ 44^m 46^s, +41^\circ 41')$. In our 2011 setup these two locations fall in beams 21 and 68.

All data were blindly searched on the Dutch supercomputer Cartesius. We used the LOTAAS single-pulse search pipeline (Sanidas et al. 2019), which is based on PRESTO, to remove RFI and identify individual pulses up to widths of 100 ms. We inspected the single-pulse and periodic output both by eye and with the LOTAAS single-pulse (Michilli & Hessels 2018; Michilli et al. 2018) and periodic (Lyon et al. 2016) machine-learning classifiers.

No single pulses were found that appeared in both the initial search of the 50–60 pc cm$^{-3}$ dispersion-measure range and in the full search. Of the noteworthy periodic candidates seen in the

3 https://userinfo.surfsara.nl/systems/cartesius

A3, page 2 of 6
2011 data (cf. M18), none were redetected in the 2014 observations. Overall, no significant single-pulse or periodic candidates were identified.

3.2. 2014 Observations

A similar blind search through the 2014 data found no convincing pulsar signals from M 31, M 32, or M 110. A close inspection of even low-significance single-pulse detections around DM = 54.7 pc cm$^{-3}$ was unable to confirm the Rubio-Herrera et al. (2013) candidate.

We derive the LOFAR upper limits following from these non-detections using the radiometer-equation based method described in Sect. 3.2 of Kondratiev et al. (2016) and detailed in M18. Our sky noise estimate includes the continuum contribution from M 31 itself. For the periodicity search (ps), our estimated sensitivity $S_{\text{min,ps}}$ reached in the full four hours for an $S/N = 10\sigma$ event, assuming a 10% pulse duty cycle, is 1.3±0.7 mJy; where we followed Kondratiev et al. (2016) in estimating the uncertainty of LOFAR flux density measurements at 50%.

We derive the single-pulse search flux density limit using Eq. (3) from Mikhailov & van Leeuwen (2016), based on Cordes & McLaughlin (2003). For a short single pulse of width $w = 1$ ms, the minimum detectable flux density $S_{\text{min,sp}}$ is 15 ± 8 Jy. Our minimum detectable fluence for a pulse of width w is thus $F_{\text{min}}(w) = 15 \sqrt{\frac{w}{1 \text{ ms}}} \text{ Jy ms}$.

4. Comparison of giant pulses from the Crab pulsar to the M 31 search

Based on this sensitivity, could we detect bright giant pulses (GPs) from young neutron stars in the Andromeda galaxy? To determine this, we compare our results against the brightest known specimen, the Crab pulsar. Below we derive its LOFAR fluence distributions. This is relevant for determining the odds of detecting bright super-giant pulses (Cordes 2004; Cordes & Wasserman 2016) in our searches of M 31.

4.1. Crab pulsar at LOFAR frequencies

Earlier multi-frequency studies of Crab GPs spanned the radio spectrum from 20 MHz with the LWA to 15 GHz with the Effelsberg telescope (for an overview, see M18). The 430 MHz Arecibo Crab observations by McLaughlin & Cordes (2003) suggest that one GP/h could be seen out to 1 Mpc. M 31 is closer than this, but is outside the Arecibo declination range.

To determine whether LOFAR could detect Crab-like GPs from M 31, we used it to observe the Crab pulsar5. The setup was similar to Sect. 2, but with 21 core stations in “complex voltage” mode (Stappers et al. 2011) and using coherent dispersion with CDMT (Bassa et al. 2017a).

We flux calibrated the data following Bilous et al. (2016). The contribution from the nebula to the station-beam noise was included through the Haslam et al. (1982) 408 MHz map. Furthermore, because our tied-array beam covers ~about one-fourth of the Crab Nebula, we added one-fourth of $S_{\text{Crab}} \approx 955 \text{ Jy} \nu^{-0.27}$ (Bietenholz et al. 1997) to the background noise budget.

Using this approach, we determined the peak flux density and fluence of all single pulses in our hour of data. Over a down-sampling range of 5–500 ms, we identified 4000 pulses whose pulse-integrated S/Ns exceeded 5σ (a fluence of ~250 Jy ms). Figure 2 shows an example of the occurrence of multiple pulses within a 1 s window.

The distribution of GP fluence, between our lower limit of 250 Jy ms and the brightest detected pulse of 1.1×10^7 Jy ms, versus rate is shown in Fig. 3. We estimated the slope with

5 Data publicly available under account at the LTA: https://lta.lofar.eu/Lofar?project=ALL&mode=query_result_page&product=UnspecifiedDataProduct&pipeline_object_id=EE400E4EC5D1358CE043C416A9C36F15
the maximum likelihood, following Crawford et al. (1970). For this power-law fit, the index $\alpha = 3.04 \pm 0.03$. We note that this is the fit to the differential energy distribution (as plotted in Fig. 3), not to the cumulative distribution, which is equally often reported in the literature. Thus, $\alpha = 3.04 \pm 0.03$ describes the slope of the probability density function $p(F) \propto F^{-\alpha}$ as in Karuppusamy et al. (2012), not for the index we shall here call β, which describes the probability distribution $P(F > F_0) \propto F_0^\beta$ as in Sallmen et al. (1999); the relation between the two is that $\beta = \alpha - 1 = 2.04$. This measurement falls within the range of determinations of the power-law index α at other frequencies (see Karuppusamy et al. 2012 and Table 4.2 in M18).

4.2. GPs in M 31

Using this fluence distribution and rate, we determine whether we could have detected 1-ms wide Crab-like GPs from M 31. For a pulsar like this, our minimum detectable fluence $F_{\min} = S_w = 15$ Jy ms. The faintest possible detectable GP, from M 31 would have to be $F_{\text{Crab, M 31}} = F_{\min} \times (D_{\text{M 31}}/D_{\text{Crab}})^3 \sim 2.3 \times 10^5$ Jy ms if it were as close as the Crab. When we extrapolate the 1 h histogram in Fig. 3, the 4 h observation toward M 31 the fluence $F_{\text{Crab, 4 h}}$ of brightest detected pulse would be around $1.1 \times 10^5 \times 4^{3/2} \times 10^{-3} = 1.7 \times 10^4$ Jy ms. This is about 100× dimmer than our limiting minimum sensitivity from M 31.

The scattering medium to M 31 is much less clumped than toward the Crab pulsar, however, and possibly contains no nebula. This means intrinsically short-duration Crab-like GPs (5 µs in Sallmen et al. 1999) from M 31 might invoke little scattering. This is seen over even longer distances in FRBs (cf. Fig. 5 of Cordes et al. 2016). When we assume an average DM for sources in M 31 of 150 pc cm$^{-3}$ (cf. Sect. 5.2), this FRB relation suggests a scattering time of $\sim 10^{-3}$ ms at 1 GHz. When we scale as $\gamma^{-3.5}$, the scattering time at LOFAR frequencies is about 10 µs. For a pulsar like this to have been detected, its 10 µs GP from M 31 would have to exceed that of the Crab by a factor $F_{\text{Crab, M 31}}/F_{\text{Crab, 4 h}} \times \sqrt{0.01}$ ms/1 ms = 13. Our non-detection thus tells us that there are no pulsars in M 31 beamed at Earth that follow scattering similar to FRBs and emit GPs that are an order of magnitude brighter per unit time than the Crab pulsar.

5. Discussion

5.1. Neutron-star formation in M 31

We did not detect any astrophysical periodic or single pulses from the Andromeda galaxy. We first discuss the implications on whether neutron stars are expected there.

The total star formation rate (SFR) of M 31 has been stable over the last few tens of Myr, at $\sim 1 M_\odot$ yr$^{-1}$ (Williams 2003). This is about twice lower than the SFR in our Milky Way, which is $1.9 \pm 0.4 M_\odot$ yr$^{-1}$ (Chomiuk & Povich 2011). The SFR is important because it maps linearly to the neutron-star birth rate (cf. Eq. (6) in Keane & Kramer 2008).

The neutron-star low-mass X-ray binaries (e.g., Stiele et al. 2011; Pastor-Marazuela et al. 2019) and X-ray pulsars (Esposito et al. 2016; Rodriguez Castillo et al. 2018) in M 31 are clearly evident for the presence of neutron stars in the Andromeda galaxy. Further support is provided by its supernova remnants. In our Galaxy, 295 are known (Green 2014). A similar number, 156, are identified in M 31 (Lee & Lee 2014). Overall, the radio pulsar population in M 31 may be somewhat smaller than that in our Milky Way, but other neutron-star detections suggest that active pulsars are present.

6 v1.3.2, http://119.78.162.254/dmodel/ymw16_v1.3.2.tar.gz
M 31 dispersion are limited and are not a reason for our non-detections.

5.3. Future LOFAR work

The feasibility of detecting Crab-like pulsars from Andromeda depends on the rate and luminosity of their giant pulses (Fig. 3). For the telescope sensitivity of our current setup, we can extrapolate from this rate to the required wait-time for a detectable pulse, which is 13 times stronger than the brightest expected pulse in our 4 h observation (cf. Sect. 4.2). If the high flux-density tail of this GP distribution is described by the same overall power law, the wait would be 4 h \times 13^{1.04} \approx 1 \times 10^5 \text{ h} for a burst that is bright enough. These results strongly depend on the as-yet unknown super-giant pulse population (Cordes 2004).

A campaign that first improves the luminosity limits may be challenging, but considering the steep power law, it may be more realistic than simply waiting longer. A factor of 4 in sensitivity could be attained by coherently adding not the current 6, but all 24 LOFAR core stations. An order of magnitude more tied-array beams would have to be searched, but these could be preferentially positioned on the M 31 disk to maximize discovery potential in a given total observing time. Based on the power-law slope of 3.04, the remaining factor of 3 could be overcome through an observing campaign 3^{1.04} times longer than our current 4 hr, that is, \sim 100 h. An attempt like this could invest in more computationally-intensive semi-coherent dedispersion to limit intra-channel smearing (see, e.g., CDMT code and results, Bassa et al. 2017a,b; Maan et al. 2018). Because GPs are intrinsically of ns–μs duration, reducing the dispersive and sampling effects that dilute this signal into the background increases the search sensitivity.

5.4. Other future surveys and follow up

Because of its large angular size (the LOFAR observations were almost 4° across), attempts to more deeply search M 31 for transients are only possible with wide-field and/or high-survey-speed instruments. Apertif, the successor to the system used by Braun et al. (2009) and Rubio-Herrera et al. (2013, cf. Sect. 3.1), can encompass M 31 in a single pointing at 1.4 GHz and has a powerful time-domain search backend (Oosterloo et al. 2009; van Leeuwen 2014; Maan & van Leeuwen 2017).

In single-pulse searches of the type we focused on in this paper, the Square Kilometre Array M3d can detect Crab-like pulsars from over a Mpc (Keane et al. 2015).

Arguably, the telescope most likely to find the first pulsars in M 31 is the Five-hundred-meter Aperture Spherical Telescope (FAST; Smits et al. 2009; Li & Pan 2016). Its sensitivity is high (1250 m^2 K^{-1}; Table 1, Dewdney et al. 2013), and M 31 is one of the few galaxies of interest within its declination range.

6. Conclusions

We obtained some of the deepest pulsar search observations of M 31, but did not detect any new pulsars. We observed the Crab pulsar with the same LOFAR setup. We detected thousands of giant pulses, and measured a power-law index of the pulse-brightness probability density function of 3.04 \pm 0.03. We extrapolated this distribution to the longer observation of and larger distance to M 31. Any pulsar there that outshines the Crab by an order of magnitude, and whose single pulses are scattered the same way as FRBs, would have been detected by us. We conclude that no such super-Crab beamed at Earth exists in the Andromeda galaxy.

Acknowledgements.

We thank Marten van Kerkwijk for making available digitized sky maps, Jason Hessels and Ben Stappers for input at the proposal and observing stage, and Anya Bilous, Cees Bassa, Jean-Mathias Griefmeier and Michael Kramer for comments on the manuscript. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 617199, and from the Netherlands Research School for Astronomy (NOVA4-ARTS). D. M. is a Banting Fellow. This paper is based on data obtained with the International LOFAR Telescope (ILT) under project code LCO_035. LOFAR (van Haarlem et al. 2013) is the Low Frequency Array designed and constructed by ASTRON. It has observing, data processing, and data storage facilities in several countries, that are owned by various parties (each with their own funding sources), and that are collectively operated by the ILT foundation under a joint scientific policy. The ILT resources have benefitted from the following recent major funding sources: CNRS-INSU, Observatoire de Paris and Université d’Orléans, France; BMBF, MWF-NRW, MPG, Germany; Science Foundation Ireland (SFI), Department of Business, Enterprise and Innovation (DBEI), Ireland; NWO, The Netherlands; The Science and Technology Facilities Council, UK; Ministry of Science and Higher Education, Poland. This work was carried out on the Dutch national e-infrastructure with the support of SURF Cooperative. Computing time was provided by NWO Physical Sciences (project n. 15310).

References

Bhandari, S., Keane, E. F., Barr, E. D., et al. 2018, MNras, 475, 1427

J. van Leeuwen et al.: LOFAR radio search for single and periodic pulses from M 31

A3, page 5 of 6