First detection of \([^{13}\text{C}]\) in the Large Magellanic Cloud

Yoko Okada (岡田陽子), Ronan Higgins, Volker Ossenkopf-Okada, Cristian Guevara, Jürgen Stutzki, and Marc Mertens

I. Physikalisches Institut der Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
e-mail: okada@ph1.uni-koeln.de

Received 12 September 2019 / Accepted 22 October 2019

ABSTRACT

Context. \([^{13}\text{C}]\) observations in several Galactic sources show that the fine-structure \([^{13}\text{C}]\) emission is often optically thick (the optical depths around 1 to a few).

Aims. Our goal was to test whether this also affects the \([^{13}\text{C}]\) emission from nearby galaxies like the Large Magellanic Cloud (LMC).

Methods. We observed three star-forming regions in the LMC with upGREAT on board SOFIA at the frequency of the \([\text{C}\,\text{II}]\) line. The 4 GHz bandwidth covers all three hyperfine lines of \([^{13}\text{C}]\) simultaneously. For the analysis, we combined the \([^{13}\text{C}]\) \(F = 1–0\) and \(F = 1–1\) hyperfine components as they do not overlap with the \([^{12}\text{C}]\) line in velocity.

Results. Three positions in N159 and N160 show an enhancement of \([^{13}\text{C}]\) compared to the abundance-ratio-scaled \([^{12}\text{C}]\) profile.

This is likely due to the \([^{12}\text{C}]\) line being optically thick, supported by the fact that the \([^{13}\text{C}]\) line profile is narrower than \([^{12}\text{C}]\), the enhancement varies with velocity, and the peak velocity of \([^{13}\text{C}]\) matches the \([\text{OI}]\) 63 \(\mu\text{m}\) self-absorption. The \([^{12}\text{C}]\) line profile is broader than expected from a simple optical depth broadening of the \([^{13}\text{C}]\) line, supporting the scenario of several PDR components in one beam having varying \([^{13}\text{C}]\) optical depths. The derived \([^{13}\text{C}]\) optical depth at three positions (beam size of 14\(\prime\)) correspond to a \([^{13}\text{C}]\) optical depth of up to 1 on the PDR surface, which corresponds to a \([\text{C}\,\text{II}]\) optical depth of around unity (Ossenkopf et al. 2013). In order to quantify the optical depth of \([^{13}\text{C}]\), we need to compare it with an optically thin line. This is naturally given by the \([^{13}\text{C}]\) lines. Because the \([^{13}\text{C}]\) \(2^{3}\text{P}_{3/2}^{2}2^{1}\text{P}_{1/2}\) transition splits into three hyperfine components and they are within 65 km s\(^{-1}\) of the \([^{12}\text{C}]\) line (Cooksy et al. 1986), high resolution spectroscopy with a good sensitivity is needed to detect \([^{13}\text{C}]\). After detections of the \([^{13}\text{C}]\) hyperfine components in M42 (Boreiko et al. 1988; Stacey et al. 1991; Boreiko & Betz 1996), the Heterodyne Instrument for the Far-Infrared (HIFF) on Herschel and the German REceiver for Astronomy at Terahertz Frequencies (GREAT) on board the Stratospheric Observatory for Infrared Astronomy (SOFIA) enable us to detect the \([^{13}\text{C}]\) lines in more Galactic sources (Graf et al. 2012; Ossenkopf et al. 2013; Goicoechea et al. 2015; Guevara et al. 2019). Guevara et al. (2019) showed that a uniform excitation temperature model gives an optical depth of 2 to 7 in four Galactic sources, as a lower limit of the optical depth due to the limited signal-to-noise ratio (S/N) of the \([^{13}\text{C}]\) spectra and the high excitation temperature assumption. A multi-layer model including an absorption layer requires higher optical depths. In this Letter, we report the first detection of \([^{13}\text{C}]\) emission from the Large Magellanic Cloud (LMC).

2. Observation and data reduction

We observed \([^{12}\text{C}]\) and the \([^{13}\text{C}]\) hyperfine lines at selected positions in N159, 30 Dor, and N160 with upGREAT (Risacher et al. 2016; Heyminck et al. 2012) on board SOFIA (Young et al. 2012) in June 2018, as part of the guaranteed time in cycle 6 observations during two flights. The two polarizations of the Low Frequency Array (LFAH and LFAV) were tuned to the \([\text{C}\,\text{II}]\) line at 1900.5369 GHz. The bandwidth of 4 GHz allows us to observe all three \([^{13}\text{C}]\) hyperfine emission lines simultaneously. In all positions, the strongest \([^{13}\text{C}]\) line \((F = 2–1)\) is blended with the \([^{12}\text{C}]\) line, so that we ignored this line in the analysis. In parallel, the High Frequency Array (HFAV) was tuned to the \([\text{OI}]\) 63 \(\mu\text{m}\) line. Each array has seven pixels in a hexagonal configuration. The beam size is 14\(\prime\) for \([\text{C}\,\text{II}]\) and 6.3\(\prime\) for \([\text{OI}]\), and the pixel separation in the hexagonal configuration is scaled by the beam size in the two frequency arrays,
Fig. 1. Spectra of \(^{12}\text{C}\text{II}\), \(^{13}\text{C}\text{II}\), and \([\text{O}\text{I}]\) at selected positions in the LMC. Left: \(^{12}\text{C}\text{II}\) spectra (blue) and \([\text{O}\text{I}]\) 63\,μm spectra when available (green). The vertical lines aid the comparison of the velocities of the line profiles. Middle two panels: \(^{13}\text{C}\text{II}\) $F=1\rightarrow0$ and $F=1\rightarrow1$ spectra (red) and \([\text{C}\text{II}]\) spectra (blue) scaled for optically thin emission and \(^{13}\text{C}\text{II}/^{12}\text{C}\text{II}\) = 49. The horizontal lines indicate the rms noise of the baseline. Right: combined \(^{13}\text{C}\text{II}\) spectra (red) and the scaled \([\text{C}\text{II}]\) spectra (blue). See text for the formula of the combined \(^{13}\text{C}\text{II}\) spectra and the scaled \([\text{C}\text{II}]\) spectra.

Table 1. Summary of the pointed observations for the \(^{13}\text{C}\text{II}\) line.

<table>
<thead>
<tr>
<th>Position ID</th>
<th>Region</th>
<th>Pixels</th>
<th>Position (J2000)</th>
<th>t_{ON} (a) [min]</th>
<th>(\sigma_{\text{rms}}) (b) [K]</th>
<th>(T_{\text{mb},12}/T_{\text{mb},13,\text{tot}}) (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N159</td>
<td></td>
<td>05:39:37.8</td>
<td>69:46:09.9</td>
<td>28.9</td>
<td>0.06</td>
</tr>
<tr>
<td>2</td>
<td>N159</td>
<td></td>
<td>05:39:36.9</td>
<td>69:45:03.8</td>
<td>28.9</td>
<td>0.07</td>
</tr>
<tr>
<td>3</td>
<td>30Dor</td>
<td></td>
<td>05:38:48.8</td>
<td>69:04:03.0</td>
<td>10.8</td>
<td>0.11</td>
</tr>
<tr>
<td>4</td>
<td>N160</td>
<td></td>
<td>05:39:39.2</td>
<td>69:39:06.7</td>
<td>59.5</td>
<td>0.04</td>
</tr>
<tr>
<td>5</td>
<td>N160</td>
<td></td>
<td>05:39:43.8</td>
<td>69:38:41.6</td>
<td>59.5</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Notes. (a) The on-source integration time, same as the OFF integration time. (b) The velocity range used to derive \(\sigma_{\text{rms}}\) is 130–145 km s$^{-1}$, 195–210 km s$^{-1}$, 260–273 km s$^{-1}$, and 323–338 km s$^{-1}$ for N159; 125–145 km s$^{-1}$ and 323–343 km s$^{-1}$ for 30 Dor; and 115–135 km s$^{-1}$ and 333–353 km s$^{-1}$ for N160. (c) At the velocity of the \(^{13}\text{C}\text{II}\) peak. (d) \(T_{\text{mb},13,\text{tot}}\) peak is less than 3\(\sigma_{\text{rms}}\) of the combined spectra. (e) Possibly affected by the wing of the \(^{12}\text{C}\text{II}\) line.

sharing the position of the center pixels. The central pixels of LFAH and LFAV are aligned within $\sim2^\prime$, and the central pixel of HFAV is about 3^\prime away from the LFA central pixels. In the first flight we started to observe N160 with single-phase chopped observations, and switched to the double beam switch mode later to have a better baseline in some of the pixels. In the second flight we observed N159, together with a short observation of 30Dor in double beam switch mode. The position in 30Dor had a lower priority because its \(^{12}\text{C}\text{II}\) line profile is very broad and it overlaps with the \(^{13}\text{C}\text{II}\) $F=1\rightarrow0$ line (see Fig. 1; the 30Dor spectrum at >270 km s$^{-1}$ in \(^{12}\text{C}\text{II}\) $F=1\rightarrow0$ shows a wing of \(^{12}\text{C}\text{II}\)).

The data were calibrated by the standard GREAT pipeline (Guan et al. 2012), which converts the observed counts to the main beam temperature scale (T_{mb}). For the N160 data, we confirmed that the baseline structures in the single-phase observations match those in the spectra of the same phase (phase A) extracted from the double beam switch observations. Therefore, we averaged the spectra of the other phase (phase B) from the double beam switch observations, and added them to the single-phase observations to obtain better baselines in a few pixels. Although the S/N of the result is limited by the integration time of the phase B observations, we still gain S/N compared to ignoring the single phase data. We subtracted linear baselines and spectrally resampled the data to 0.5 km s$^{-1}$ channel width. We then averaged the spectra at each position and each pixel weighting them by the baseline noise. In Table 1, the final baseline noise and the total integration times are listed for positions where \(^{13}\text{C}\text{II}\) is detected. Figures A.1–A.3 present the observed positions.
3. Combined 13C II spectra and the [C II] optical depth

The left panels in Fig. 1 show the 12C II spectra (blue) for positions where the 13C II emission is detected (Table 1). For positions 1, 3, and 4, where the HFAV center pixel is observed at the same positions, we also show the obtained [O I] 63 μm spectra. We note that the beam size of [O I] is smaller by a factor of 2.2 (6.3″). In the middle two columns, the 13C II $F=1–0$ and $F=1–1$ spectra are represented as red lines. The right panels show the combined 13C II spectra following Guevara et al. (2019):

$$T_{mb,13,10}(v) = \frac{\Sigma_{F,F'} w_{FF'} \tau_{mb,13}(v + \delta v_{FF'})}{\Sigma_{F,F'} w_{FF'}},$$

(1)

$$w_{F,F'} = \frac{s_{F,F'} \exp(-v^2 \sigma^2_{rms})}{\sqrt{2 \pi} \sigma^2_{rms}},$$

(2)

Here $\delta v_{FF'}$ is the velocity offset of the 13C II lines relative to the 12C II line, and $s_{F,F'}$ are the relative intensities of the hyperfine components ($\Sigma_{F,F'} s_{F,F'} = 1$ when using all three hyperfine components). We use $\delta v_{13} = -65.2 \text{ km s}^{-1}$, $\delta v_{11} = 63.2 \text{ km s}^{-1}$, $s_{13} = 0.25$, and $s_{11} = 0.125$ (Ossenkopf et al. 2013). We composed the 13C II spectra only from the 13C II $F=1–0$ and $F=1–1$ spectra because $F=2–1$ is blended with the 13C II line for all sources. The equation scales up the sum of the detected hyperfine components to represent the full 13C II emission, taking into account that the $F=2–1$ line should contribute 62.5%.

For optically thin 13C II emission, the expected spectrum for the combined 13C II is scaled as $T_{mb,13,10}(v) = T_{mb,12}(v)/\alpha^*$ (blue lines in the right panels of Fig. 1). We assume that the isotopic ratio of carbon ions $\alpha^* = ^{12}$C$/^{13}$C equals the elemental abundance of 12C/13C $= 49$ (Wang et al. 2009) for the LMC (see Sect. 4.2). The expected spectrum of individual 13C II hyperfine line is scaled by $s_{F,F'} \exp(-v^2 \sigma^2_{rms})$.

We derived the 12C II optical depth assuming that the excitation temperature of the 13C II and 12C II is the same (Ossenkopf et al. 2013; Guevara et al. 2019):

$$T_{mb,13,10}(v) = 1 - \exp(-\tau_{13}(v)),$$

$$T_{mb,12}(v) = 1 - \exp(-\tau_{12}(v)).$$

(3)

Here τ_{12} and τ_{13} are the optical depth of 12C II and 13C II, respectively, and $\tau_{12} = \alpha^* \tau_{13}$. We use the combined 13C II spectra and derived 13C II optical depth in each velocity bin. Figure 2 shows the derived optical depth (τ_{12}) with the error bars.

4. Discussion

4.1. Line profiles and optical depth

At the N159 W [C II] peak (position 1), N160 CO peak (position 4), and possibly N160 A (position 5) the 13C II spectra show an enhancement over the scaled 12C II spectra (Fig. 1), which indicates that either the 12C II line is optically thick or the isotopic ratio is lower than 49. As discussed in the following, the former is more likely because (1) the enhancement varies over different velocity bins, while it is reasonable to assume that different velocity components have the same isotopic ratio; (2) the [O I] 63 μm profile indicates self-absorption at the velocity where 13C II shows an enhancement (position 1 and 4); or (3) the peak velocity of the 13C II profile is consistent with the peak velocity of the [C II] 492 GHz and 13CO(3–2) lines (position 5).

At the N159 W [C II] peak (position 1) there are two velocity components in the 13C II spectra (around 231 km s$^{-1}$ and 240 km s$^{-1}$). For the stronger component around 231 km s$^{-1}$, the 13C II intensity is larger than the scaled 12C II intensity, while the second velocity component around 240 km s$^{-1}$ does not indicate an enhanced 13C II emission; the peak intensity of the scaled [C II] intensity for this velocity component is consistent with the noise level of 13C II. Since a variation of 13C/12C within a physical scale of a few pc (14″ of the beam size corresponds to 3.4 pc at the distance of the LMC; 50 kpc) has not been reported, we assume that the two velocity components have the same isotopic ratio, and attribute the difference in the 13C II/12C II ratios between the two velocity components to the difference in their optical depths. The [O I] 63 μm emission indicates self-absorption around 231 km s$^{-1}$, but none around 240 km s$^{-1}$.

The 13C II profile is narrower than the 12C II line for the velocity component around 231 km s$^{-1}$. A single Gaussian fit gives a width of 3.6 km s$^{-1}$ for 13C II and 6.8 km s$^{-1}$ for 12C II. This difference is larger than expected from the
optical depth broadening. For a Gaussian velocity distribution and a line-center optical depth of \(\tau < 10 \), the increase in the line width can be approximated as \(1 + 0.115\tau \) (Ossenkopf et al. 2013). For \(\tau = 1.8 \), the optical depth broadens the line only by 20\%. The excess of the measured \([12\text{C}\,\text{II}]\) broadening compared to the optical depth broadening is consistent with the picture in Okada et al. (2019); our beam includes several PDR components that are spatially separated and/or are in different physical phases, and each component contributes to a certain velocity range in the observed line profiles depending on their dynamics.

Individual components have different \([\text{C}\,\text{II}]\) optical depths, and we see the enhancement of \([13\text{C}\,\text{II}]\) only for the components with a significant \([\text{C}\,\text{II}]\) optical depth. Thus, \([13\text{C}\,\text{II}]\) is much narrower than \([12\text{C}\,\text{II}]\). From the dataset presented in Okada et al. (2019), we extracted the \([\text{C}\,\text{II}]\) 492 GHz, CO(4–3), and \(^{13}\text{CO}(3–2)\) spectra at this position with 0.5 km s\(^{-1}\) velocity resolution and 20\'' (for \(^{13}\text{CO}(3–2)\)) or 16\'' (for two other lines) spatial resolution, and confirm that the line widths are also similar to that of \([13\text{C}\,\text{II}]\) (Fig. A.4).

At the N160 CO peak (position 4) the \([13\text{C}\,\text{II}]\) intensity is also higher than the scaled \([12\text{C}\,\text{II}]\) intensity, and the \([\text{O}\,\text{I}]\) 63 \(\mu\)m profile indicates a large optical depth at the peak velocity of the \([12\text{C}\,\text{II}]\) line, although it is less clear than position 1. The derived \(\tau_{\text{II}}\) at a few velocity bins around the peak is around unity. At N160 A (position 5) we do not see a clear enhancement of \([^{13}\text{C}\,\text{II}]\) compared to the scaled \([12\text{C}\,\text{II}]\) at the peak velocity of \([12\text{C}\,\text{II}]\), but one might be present around 235–237 km s\(^{-1}\). When fitting a single Gaussian, the central velocity is at 238.5 km s\(^{-1}\) for \([12\text{C}\,\text{II}]\) and 237.4 km s\(^{-1}\) for \([13\text{C}\,\text{II}]\), and the fit to \([\text{C}\,\text{II}]\) 492 GHz and \(^{13}\text{CO}(3–2)\) gives a closer central velocity (237.5 km s\(^{-1}\)) and 237.9 km s\(^{-1}\), respectively; see also Fig. A.4. This supports the suggestion that the \([13\text{C}\,\text{II}]\) enhancement around 235–237 km s\(^{-1}\) is real. Figure 2 shows that the velocity bins around the \([\text{C}\,\text{II}]\) peak indicates an optically thin \([\text{C}\,\text{II}]\) emission, but \(\tau_{\text{II}}\) of 1 to 4 is suggested at the blue wing (around 235 km s\(^{-1}\)). At the other two positions (2 and 3), \([13\text{C}\,\text{II}]\) is marginally detected, and it is consistent with optically thin \([\text{C}\,\text{II}]\) emission within the noise level.

4.2. Isotopic ratio

The estimate of the optical depth of the \([12\text{C}\,\text{II}]\) line is based on an assumption of the isotopic ratio \(^{12}\text{C}/^{13}\text{C}\), which is not as well studied in the LMC as in our Galaxy. Wang et al. (2009) obtain \(^{12}\text{C}/^{13}\text{C} = 49 \pm 5\) in N113 in the LMC, which is presumably the most accurate carbon isotope ratio determined for the LMC because they use optically thin lines. It is consistent with previous measurements in other regions in the LMC: 50\(^{+25}_{-20}\) for N159 (Johansson et al. 1994) and 35 \(\pm 21\) for 30 Dor-10 (Heikkinälä et al. 1999). In the Galaxy the \(^{12}\text{C}/^{13}\text{C}\) ratio increases along the Galactocentric distance (Wilson & Rood 1994). The value in the LMC is lower than the value for the local ISM in the solar neighborhood and is close to the values in the inner Galaxy (Wilson & Rood 1994), which is inconsistent with a pure metallicity dependence (Wang et al. 2009). \(^{13}\text{C}\) is a secondary nuclear fusion product, which is converted from \(^{12}\text{C}\) at the red giant stage (Wilson 1999), and ejected into the ISM with a time delay. Therefore, a low \(^{12}\text{C}/^{13}\text{C}\) can be explained by old stellar populations in the LMC (Wang et al. 2009).

In Fig. 3 we estimated \(\alpha^* = ^{12}\text{C}/^{13}\text{C}\) when assuming \([12\text{C}\,\text{II}]\) is optically thin for each velocity bin at the three positions discussed in Sect. 4.1. As discussed above, we assume that \(\alpha^*\) is constant over different velocity components. At positions 1 (N159 W) and 5 (N160 A), a value of \(\alpha^*\) of 20–30 over the whole velocity range is not excluded when taking into account the noise level, but we do see a systematic trend across the velocity: a dip in the estimated \(\alpha^*\) around the \([\text{C}\,\text{II}]\) peak at position 1 and a gradient at 235–240 km s\(^{-1}\) at position 5. In addition, the estimated \(\alpha^*\) of 20–30 is lower than the measured \(^{12}\text{C}/^{13}\text{C}\) in N159 (Johansson et al. 1994). Therefore, the scenario of optically thick \([13\text{C}\,\text{II}]\) discussed in Sect. 4.1 is more likely.

4.3. Fractionation

Because the fractionation reaction from \(^{13}\text{C}^+\) to \(^{12}\text{C}^+\) is an exothermic reaction (the exothermicity is 35 K; Langer et al. 1984), \(^{13}\text{C}^+\) tends to be underabundant with respect to \(^{12}\text{C}^+\) at low temperatures, namely at higher \(A_V\) in a PDR. Röllig & Ossenkopf (2013) calculated the fractionation in the clump integrated intensity of \([13\text{C}\,\text{II}]\) and \([12\text{C}\,\text{II}]\), and showed that only models with low UV fields (\(\chi \leq 100\)) and high densities (\(n \geq 10^3\,\text{cm}^{-3}\)) trace the chemical fractionation, which would result in \(\alpha < \alpha^*\), and that the derived \([12\text{C}\,\text{II}]\) optical depth is a lower limit. On the other hand, it is unlikely that the fractionation is significant in the regions in this study because the estimated PDR properties are either low density and low UV field, or high density and high UV field (Okada et al. 2019).

4.4. Metallicity effect

Model predictions do not indicate a clear metallicity dependence of the \([\text{C}\,\text{II}]\) optical depth. For a high density PDR clump where the \(\text{C}^+\) layer consists of a thin surface, the surface brightness of the \([\text{C}\,\text{II}]\) emission is almost constant with
the metallicity (Röllig et al. 2006) because the surface brightness is proportional to the thickness of the layer and the density of C\(^+\) ions, with the former being proportional to the inverse of the metallicity due to the dust extinction and the latter being proportional to the metallicity as a first-order approximation. The derived optical depths in the LMC regions are similar to those of some Galactic regions (M43 and Horsehead measured by Guevara et al. 2019); however, this study does not provide enough statistics to conclude that we do not see a metallicity dependence in the [C\(\text{II}\)] optical depth.

4.5. Implications for the interpretation of the [C\(\text{II}\)] intensity

The impact of the optical depth effect depends strongly on the actual geometry of the sources. Most PDR models compute the [C\(\text{II}\)] intensity emerging from the surface of an externally illuminated clump or a face-on plane-parallel structure. For this geometry the radiative transfer computation takes the optical depth correctly into account. However, when the [C\(\text{II}\)] emission stems from a mixture of components including surfaces illuminated from the back (negative temperature gradient toward the observer) or an ensemble of clumps we can no longer simply sum up the intensity from all surfaces. Instead, we would have to run a full three-dimensional radiative transfer computation (e.g., Andree-Labsch et al. 2017). It makes a significant difference when many clumps overlap along the line of sight, even when the optical depth of each clump is about unity. The interpretation of the optically thick [C\(\text{II}\)] emission in terms of classical PDR model predictions will result in incorrect parameters.

To assess the impact of the optical depth on interpretations of the [C\(\text{II}\)] emission in distant galaxies, we averaged over the available large maps in Orion (Pabst et al. 2019) and M 17 (Guevara et al., in prep.) to derive an averaged optical depth of [C\(\text{II}\)]. At the distance of LMC, the map sizes of about one degree (7.2 pc at Orion) and 2.5′ (1.4 pc at M 17) would correspond to 30′′ and 6′′, respectively. The average optical depths are \(\sim 1\) and \(\sim 3\), respectively. These values are lower than the results from smaller areas (Pabst et al. 2019; Guevara et al. 2019), but still moderately optically thick. To obtain representative values for other nearby galaxies we would need to average much larger areas. These data are not yet available; however, our study indicates that the [C\(\text{II}\)] emission in distant galaxies can have an optical depth of about unity, which leads to an underestimate of the [C\(\text{II}\)] intensity by a factor two when assuming an optically thin scenario.

5. Summary

We detected [\(^{13}\text{C}\text{II}\)] \(F = 1\rightarrow 0\) and \(F = 1\rightarrow 1\) emissions in N159 and N160 in the LMC for the first time. Assuming an isotopic ratio \(^{12}\text{C}\]/[^{13}\text{C}\] of 49, the optical depth of [C\(\text{II}\)] is estimated as 1–3 at the peak velocities. Although the possibility of an optically thin [C\(\text{II}\)] emission with a lower isotopic ratio is not quantitatively excluded, the fact that two velocity components in N159 have different intensity ratios of [C\(\text{II}\)]/[O\(\text{I}\)] suggests that we do not see a metallicity dependence in the [C\(\text{II}\)] optical depth.

Acknowledgements. This work is based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. This work is carried out within the Collaborative Research Centre 956, sub-project A4 and C1, funded by the Deutsche Forschungsgemeinschaft (DFG) – project ID 184018867.

References
Appendix A: Additional figures

Fig. A.1. Footprints of the LFA seven pixels in the [13C II] observations in N159 overlaid with integrated intensities of [C II] (color) and CO(4–3) (contours) (Okada et al. 2019). The labeled numbers correspond to the position IDs in Table 1.

Fig. A.2. Same as Fig. A.1, but for 30 Dor.

Fig. A.3. Same as Fig. A.1, but for N160.

Figures A.1–A.3 present the observed positions of the LFA seven pixels overlaid on the [C II] and CO(4–3) maps in three regions.

Fig. A.4. Normalized spectra of CO(4–3), 13CO(3–2), and [C I] 492 GHz (Okada et al. 2019) together with the [12C II] and [13C II] emissions in this study at three positions with enhanced [13C II]. 13CO(3–2) has a spatial resolution of 20″, and CO(4–3) and [C I] 492 GHz have a spatial resolution of 16″.

Five positions where [13C II] is detected and discussed in this study are indicated.

Figure A.4 shows the normalized spectra of CO(4–3), 13CO(3–2), and [C I] 492 GHz obtained from the dataset presented in Okada et al. (2019) together with the [12C II] and [13C II] emissions in this study. The 13CO(3–2) spectra are extracted with the spatial resolution of 20″, the CO(4–3) and [C I] 492 GHz spectra are extracted with the spatial resolution of 16″ at individual positions where the deep [13C II] observations were executed.