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ABSTRACT

Context. Large spectroscopic surveys open the way to explore our Galaxy. In order to use the data from these surveys to understand
the Galactic stellar population, we need to be sure that stars contained in a survey are a representative sub-set of the underlying
population. Without the selection function taken into account, the results might reflect the properties of the selection function rather
than those of the underlying stellar population.
Aims. In this work, we introduce a method to estimate the selection function for a given spectroscopic survey. We aim to apply this
method to a large sample of public spectroscopic surveys.
Methods. We have applied a median division binning algorithm to bin observed stars in the colour–magnitude space. This approach
produces lower uncertainties and lower biases of the selection function estimate as compared to traditionally used 2D-histograms. We
ran a set of simulations to verify the method and calibrate the one free parameter it contains. These simulations allow us to test the
precision and accuracy of the method.
Results. We produce and publish estimated values and uncertainties of selection functions for a large sample of public spectroscopic
surveys. We publicly release the code used to produce the selection function estimates.
Conclusions. The effect of the selection function on distance modulus and metallicity distributions of stars in surveys is important
for surveys with small and largely inhomogeneous spatial coverage. For surveys with contiguous spatial coverage the effect of the
selection function is almost negligible.
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1. Introduction

Large stellar spectroscopic surveys aim at probing the stellar
population properties throughout the Galaxy. With the aid of
modern technology it is possible to perform spectroscopic sur-
veys observing millions of stars. Depending on the goals and the
used instrument, surveys can differ in depth, spatial coverage and
can select different kinds of stars for observations. Moreover, it
is only feasible to observe a tiny fraction of all stars that are
observable in our Galaxy, even if we consider only stars bright
enough to be observed with modern instruments. To probe the
underlying stellar populations we have to know what fraction
of stars was observed, in order to correct for possible selection
biases or to prove an absence thereof.

There are several possible questions we might want to
answer, regarding a given spectroscopic survey:
1. What is the fraction of stars in the footprint of each plate or

field of view in a survey that was observed compared to the
number of stars available for observations in the same area;

2. What is the fraction of stars in the selected area on the sky
that was observed compared to the number of stars available
for observations in the same area;

3. What is the fraction of stars in the selected area on the sky
that was observed compared to the total number of stars in
the same area.

The first two questions can be answered by comparing stellar
number counts for a spectroscopic survey with stellar number
counts for some photometric survey. The photometric survey has

to be chosen such that it is complete at least down to the faintest
stars in the spectroscopic survey. Best results can be achieved
if the target allocation strategy for the spectroscopic survey can
be directly converted to the selection function. This, however, is
not always possible due to proprietary nature of the photometric
survey used and complexity in target allocation strategy. Another
difficulty arises from the fact that not for all targets observed
within a survey spectroscopic parameters have been measured,
due to the limitations of the model spectra grids, low signal-to-
noise ratios (S/Ns) and other problems.

The derivation of the selection function by comparison of
a spectroscopic survey to a photometric one produces useful
results only when observed stars are a representative sub-set of
the stellar population at a given area on the sky. This is true when
only broad-band photometry was used for the target allocation
process, as such photometry is almost insensitive to the popula-
tion properties. In that case we can assume that the selection
function depends exclusively on photometric magnitudes and
colours. This should hold generally even if targets were selected
from a photometric survey that is different from the one used to
estimate the selection function. However, this assumption breaks
down when additional data are used or if some specific fields
are observed. For example, the Gaia-ESO survey (Gilmore et al.
2012) contains a large set of fields that are positioned at open
clusters, with possible cluster members selected as spectroscopic
targets. For these fields selection functions cannot be reliably
estimated by comparing spectroscopic and photometric surveys.
This is because cluster members are often selected by means
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other than photometry, for example, using proper motions and
parallaxes. In that case, we cannot any more assume that stars
observed in a given range of magnitudes and colours are rep-
resentative sub-sample of all stars in that range. Another exam-
ple for which the assumption that the observed sample of stars
is representative sub-sample of the stellar population breaks, is
the APOGEE survey (Majewski et al. 2017). There, additional
narrow-band photometry was used to select giant stars over
main-sequence dwarfs (Zasowski et al. 2013). Ignoring this fact
will lead to erroneous results for the selection function.

Calculation of the selection function on plate-by-plate basis
is more straightforward and potentially more precise than doing
that for arbitrary sky regions. The reason for that is that in that
case we compare the observed sample with the exactly the same
photometric set of stars that was used in the target allocation
process. So limiting ourselves to the plate area only, we can
expect to reconstruct the selection function with higher preci-
sion. Another argument for this strategy is that the target allo-
cation strategy could change between plates, even if they cover
the same region on the sky. Thus a selection function for a com-
bination of plates might be more complex than that for a single
plate.

On the other hand, dealing with sky areas has its own advan-
tages. Firstly, choosing sky areas that are larger than a single field
of the survey can substantially increase the source statistics and
with that reduce the uncertainty of the selection function esti-
mate. Secondly, the choice of sky areas can be advantageous for
further analysis (like fitting a galactic model) and comparison
of results from different surveys with overlapping footprints. It
is also possible to take overlapping plates and repeated observa-
tions of same targets into account – this can be accounted for
before the selection function is calculated, and each star will
enter the analysis only once no matter how many times it was
observed. The drawback of this approach is that observations
might cover only a fraction of the selected area, and thus are not
representative for the stellar population of this area.

In recent works by Stonkutė et al. (2016), Wojno et al.
(2017), Nandakumar et al. (2017) and Chen et al. (2018), selec-
tion functions for a set of spectroscopic surveys are studied.
Using the derived selection function, these authors tested if there
are any selection biases in the studied spectroscopic survey. The
most common approach is to process a survey in a plate-by-plate
manner.

Stonkutė et al. (2016) derive the selection function for a sub-
set of the Gaia-ESO survey, using the available information on
target allocation strategy. A number of Gaia-ESO fields is dedi-
cated to open cluster studies and is therefore excluded from the
analysis. In Stonkutė et al. (2016), 2MASS and VHS photom-
etry are used to derive the selection function. The number of
observed stars is compared to the number of stars in the photo-
metric survey for each 0.m05 × 0.m5 bin of the colour–magnitude
space. Figure 19 in Stonkutė et al. (2016) shows that the selec-
tion function has a large effect at least for the metallicity distribu-
tion function (MDF) of the survey. A table containing selection
function values for almost 10 000 stars was published.

Wojno et al. (2017) study the selection function of the RAVE
survey and its effects on kinematic and chemical biases. Selec-
tion functions were calculated both on a plate-by-plate basis and
for 5th order HEALPix sky cells (see Sect. 2.1 below). In both
cases, the selection function was calculated as a ratio of the num-
ber of observed stars in an I-band magnitude bin to the num-
ber of 2MASS stars in the same bin. The I-band magnitude
for 2MASS stars was calculated using colour-dependent cor-
rection of 2MASS J-band photometry. I-band magnitude bins

with a width of 0.m1 were used. On top of the photometry-
based selection, a pipeline selection function was calculated to
account for stars observed by RAVE for which no stellar param-
eters were derived. Using simulations of the RAVE survey with
Galaxia (Sharma et al. 2011), Wojno et al. (2017) conclude that
the selection function of RAVE survey does not have an effect
on observed kinematic and chemical distributions. A table con-
taining data on the selection as a function of I-band magnitude
is available on the RAVE web page1.

Nandakumar et al. (2017) studied the effect of the selection
function on the MDF in APOGEE (Majewski et al. 2017), LAM-
OST (Luo et al. 2015), RAVE and Gaia-ESO surveys. This is
done by building a histogram in colour–magnitude space for
sources observed in each field and comparing it to a similar
histogram for sources from a photometric survey in the same
area. Photometry was taken from different sources to match
the depth and target allocation strategy of each survey. The bin
sizes for the histogram in colour–magnitude space were 0.m05 in
colour and 0.m3 in magnitude for all surveys. Nandakumar et al.
(2017) study the effect of the selection function using Galaxia
(Sharma et al. 2011) and TRILEGAL (Girardi et al. 2012). The
comparison is focused on the MDF for sources in a range of
Galactic coordinates with and without the effect of the selec-
tion function (see their Fig. 10). Nandakumar et al. (2017) con-
clude that the selection function has almost no effect on the
MDF and observed metallicity gradients. They note, however,
that the selection function effect is largest for Gaia-ESO survey,
which they attribute to the Poisson noise. Moreover, discrepan-
cies are also visible for APOGEE survey. Notably, differences in
the MDF between APOGEE and Gaia-ESO surveys and corre-
sponding models are larger than those for RAVE and LAMOST.
Derived values of the selection function were not published.

Chen et al. (2018) calculated the selection function for LAM-
OST Galactic anti-centre survey (LAMOST-GAC) data release 2
(Xiang et al. 2017). As in Nandakumar et al. (2017), a ratio of
two histograms (one for spectroscopic sources, one for photomet-
ric ones) was used to estimate the selection function. Photome-
try was taken from XSTPS-GAC or APASS (Henden et al. 2015).
Histograms were made in the space of g − r colour and r mag-
nitude with bin sizes of 0.m25 in colour and 0.m2 in r magnitude.
Similarly to Wojno et al. (2017), an additional term was added to
the estimate of the selection function to accommodate for sources
for which no stellar parameters were derived. They also confirm
the result of Nandakumar et al. (2017) that the selection has little
effect on the MDF for LAMOST. Derived values of the selection
function were not published.

Overall, the trend is that the selection function is more
important for surveys with less homogeneous sky coverage, like
APOGEE and Gaia-ESO. At the same time, the selection func-
tion effect is almost negligible for surveys with contiguous foot-
print, like RAVE and LAMOST.

Answers to the third question regarding the number of
observed stars with respect to the total number of stars, are
model dependent and involve assumptions on stellar evolution
and stellar luminosity functions. Generally, we need to predict
how many faint stars correspond in a given population to a
given number of observed brighter stars. This can be done, for
example, by modelling the complete stellar population, having
the observed age and metallicity distributions and then calculat-
ing the fraction of this population that falls into the observed
range of colours and magnitudes. In the case of SEGUE it was
possible to use a simplified approach (Bovy et al. 2012), given

1 https://www.rave-survey.org/downloads
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Fig. 1. Illustration of the 2MASS star density variation across the sky.
Each fifth order HEALPix cell (see Sect. 2.1) is colour-coded by the
fractional standard deviation of stellar density within that cell.

that for main sequence stars observed by that survey colours and
magnitudes have little dependence on age. In a general case, we
need to know the distribution of stars in distance, metallicity
and age to estimate the number of unobserved stars. This task
is beyond the scope of this study.

The aim of this work is to set up a method of obtaining unbi-
ased estimates of the selection function for an arbitrary survey.
We also produce the estimated uncertainties, which are impor-
tant if we want to analyse the significance of the selection func-
tion effect. The derived method is applied to public spectroscopic
surveys, including those for which no study on the selection
function was published so far (like LAMOST and GALAH).

2. Photometric selection function

The most basic definition of a selection function is the ratio of
the number of spectroscopically observed stars to the total num-
ber of stars with similar properties (for example, location on the
sky, visible magnitudes and colours). Hence, in order to estimate
a selection function we need to bin the data in sky coordinates,
visible magnitudes and colours and count the number of spec-
troscopically observed stars and the total number of stars. In this
section, we describe how this division is done and how the selec-
tion function is then estimated in each bin.

2.1. HEALPix grid

2.1.1. Grid construction

Considering arguments discussed in Sect. 1, we chose to calcu-
late the selection function using fixed sky areas that will be the
same for all surveys rather than to work with single fields in each
survey. To divide the sky into equal area parts, we use the Hier-
archical Equal Area iso-Latitude Pixelization (HEALPix) tool
(Góski et al. 2005). We used three orders of this pixelization (3,
4, and 5), with areas approximately 53.7, 13.43, and 3.36 square
degree. This allows us to find a balance between the number of
spectroscopically observed stars in the HEALPix cell and the
variations of the background across the sky within that cell.
Galactic coordinates were used for the pixelization, as it natu-
rally groups HEALPix sky cells in galactic latitudes, which can
be useful in further analysis.

2.1.2. Variation of background in HEALPix cell

When we use the colour–magnitude distribution of background
stars for a given HEALPix area, we have to be aware of the

Fig. 2. Illustration of the effect of binning on the selection function esti-
mate. Black dots illustrate foreground sources, circles are background
sources. For small bins (filled with red), S = 1, for four times larger
bins (filled with blue) S = 1/4, while for the even larger bin (full grid)
S = 2/36.

variations of the stellar number density within this area. In Fig. 1
we give an illustration of an amplitude of this variation for
2MASS sources. In this figure, each fifth order HEALPix cell C5
is colour-coded by the fractional standard deviation of the stel-
lar number density, calculated from four sixth order cells within
C5. These fractional standard deviations are highest around the
Galactic centre, Magellanic Clouds and large clusters and can be
as high as 79%. Outside of the galactic disc standard deviations
are much smaller – of the order of one percent or less.

2.2. Colour-magnitude diagram binning

2.2.1. Histogram binning

The common approach in estimating the selection function is
to build histograms of the source distribution in the colour–
magnitude space for a selected area on the sky. Then one has
to count the number of background (those from the photometric
survey) sources Nbg and the number of foreground sources (for
which spectra were obtained) Nfg in each bin of the histogram.
The ratio S = Nfg/Nbg will produce an estimate of the selection
function in this bin. The main drawback of this approach is that
the result depends on the bin size. For larger bins, information
about the selection function variation within the bin is lost. In
the extreme case of a just one large bin containing all sources, S
is equal to the ratio of the number of stars in the spectroscopic
survey to the number of stars in the photometric survey. This
value is a general property of the spectroscopic survey and can-
not be used to infer the effect of the selection on a star-by-star
basis. On the other hand, for smaller bins the statistic can be too
low for a reliable estimation. Most importantly, there is a trend to
overestimate the selection function, if not all bins are populated
with foreground sources. This is illustrated in Fig. 2: depending
on the chosen bin size, selection function varies by a factor of
18 between 1 and 2/36. The problem is caused by the fact that
the selection function is evaluated only at bins where foreground
sources are found, which produces a systematic bias in the esti-
mates.

In order to mitigate the problems described above, we need
to find a way to increase the resolution of the selection function
estimate while keeping the number of stars used to derive the
value of S in each point above a certain minimum number, which
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provides lower uncertainty. We therefore introduce the median
division binning.

2.2.2. Median division binning

In order to mitigate problems arising when histograms in colour–
magnitude space are used to estimate the selection function, we
used a “median division” scheme, similar to the one described
in Sharma & Steinmetz (2006) and implemented in the EnBiD
code (Sharma & Steinmetz 2011). We aim at dividing a colour–
magnitude plane into rectangular cells (not to be confused with
HEALPix sky-cells) in such a way that each cell contains at
least Ncritical foreground sources. Let (xi, yi) be the coordinates
of points on the plane. We then considered a rectangular cell
with lower left corner at (xmin, ymin) and upper right corner at
(xmax, ymax). We calculated the Shannon entropy H along each
axis:

H = −
∑

i

Pi log Pi, (1)

where Pi are the values of the histogram build for x or y values.
We then selected for the next division the axis (x or y) for which
this entropy is smallest. If we assume that the x axis has the lower
entropy. We take the median value xm =< xi > and divide the cell
into two sub-cells for which x ≤ xm and x > xm. This process
is repeated recursively for each of the resulting two cells. Recur-
sion stops, when cells contain less than Nmin = 2 × Ncritical num-
ber of points. No further divisions are applied, as these would
produce two cells with at least one of them having less than
Nmin/2 = Ncritical points. Hence each cell contain between Ncritical
and Nmin = 2 × Ncritical points. The result of this process is illus-
trated in Fig. 3.

We applied median division binning in the colour–magnitude
space for the set of foreground stars in each HEALPix sky-
cell. For each colour–magnitude cell produced by median divi-
sion binning we obtain a number of foreground stars in that
cell Nfg and a number of background star in the same cell
Nbg. For the background we used the distribution in the J ver-
sus J − Ks plane of 2MASS stars from the same HEALPix
sky-cell. This was represented as a two-dimensional histogram,
with bin size of 0.m05 × 0.m05. The bin size was chosen to be
approximately twice the mean 2MASS photometric uncertainty.
Photometric uncertainty will smear out all variations of the
selection function S on scales smaller than 0.m05, so choosing
a smaller bin size will not change our results. Choosing larger
bins, however, might cause the loss of information on varia-
tions of S . Median binning cell borders were forced to align
with photometric histogram bin edges. This sets a lower limit
on the cell size – a cell cannot be smaller than one histogram
bin.

The only free parameter of this method is Ncritical. In Sect. 3
we explore how Ncritical influences the precision and accuracy of
our estimates and propose a method of choosing its value.

2.3. Uncertainty of selection function estimation

An important parameter of the selection function estimation is
the uncertainty of the result. In this work we produce a for-
mal uncertainty along with the selection function value. It is
important to know the uncertainty of the selection function:
if we are to build further conclusions on selection-corrected
samples, we need to know the uncertainties of the corrected
values.

Fig. 3. Illustration of the median division algorithm output. Colours are
used only to separate cells visually. For this plot, Ncritical = 25 was taken.
Numbers indicate the number of points in each cell, and are by construc-
tion between Ncritical and 2 × Ncritical. For smaller cells numbers are not
shown for visual purpose.

2.3.1. Counts statistics

We assumed that in the process of target selection sources are
randomly picked from Nbg sources in a given colour–magnitude
cell with a probability S . Hence we can assume that the num-
ber of selected targets Nfg follows a binomial distribution with a
mean Nbg × S and variance Nbg × S (1− S ). We used the number
of foreground Nfg and background Nbg stars to estimate S and its
uncertainty σS . Here, we take the estimate of the standard devi-
ation of the binomial distribution for the uncertainty σS . This is
done using the method developed by Agresti & Coull (1998):

S =
Nfg + 1/2
Nbg + 1

(2)

σS =

√
S (1 − S )
Nbg + 1

· (3)

In the limit of large Nfg and Nbg, as well as S � 1, constants
(1/2 and 1) can be dropped and Eqs. (2) and (3) turns into:

S approx =
Nfg

Nbg
(4)

σS ,approx =

√
Nfg

Nbg
· (5)

So the fractional uncertainty decreases approximately as N−1/2
fg ,

which is similar to Poisson statistics.

2.3.2. Background variation within the bin

Both background and foreground densities can vary substantially
within each colour–magnitude cell that we build. This affects
the difference between the estimate of the selection function and
its true value, and we took it into account calculating uncertain-
ties in the following manner. For a given median binning cell,
we took fore- and background source counts for each photo-
metric histogram bin in that cell. We then used standard devi-
ations of these counts σfg and σbg as measures of fore- and
background source density variations. Hence, instead of Eq. (3)
we used for the uncertainty of the selection function the
following expression:
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Fig. 4. Shrinking and interpolation illustration. Blue points show a
random distribution of points to which the median division binning
was applied. Grey and black lines show cell borders before and after
shrinking is applied, respectively. Red arrows illustrate the direction of
shrinking for the uppermost cell. Red points illustrate the placement of
interpolation nodes (at the centre of mass of each cell).

σS = S

√
(1 − S )

S (Nbg + 1)
+

(
σfg

Nfg

)2

+

(
σbg

Nbg

)2

· (6)

The smallest median division binning cell size is just one bin, so
σbg = σfg = 0, and no correction is added.

2.4. Improvements for median division binning

We introduce several improvements of the median division bin-
ning algorithm to increase its precision and reduce bias. These
are described below.

2.4.1. Cell shrinking

We used the assumption that sources at the edges of the area in
the colour–magnitude space covered by foreground sources rep-
resent real edges beyond which no sources were targeted, and
thus S ≡ 0 outside this area. At the end of the median binning
process, outer bins will extend to the edges of the initial dis-
tribution of the foreground stars, as illustrated in Fig. 4, which
might include areas in the colour–magnitude space that were not
included in the survey. To mitigate this problem, we applied a
“shrinking” procedure, shifting outer borders to the location of
the outermost foreground star in each cell. Only outer border
were shifted to make sure that the area covered by cells does not
contain gaps.

2.4.2. Interpolation

In order to further improve the selection function estimate, we
performed an interpolation between colour–magnitude cells pro-
duced by median binning to obtain values of the selection func-
tion and its uncertainty at locations of each spectroscopic source
in the colour–magnitude diagram. We used the mean positions of
foreground stars in each cell as interpolation nodes, as illustrated
in Fig. 4. The interpolation was performed by applying Delaunay
triangulation to the set of nodes and fitting a plane through each
triangle (simplex), as it is implemented in SciPy2. For points

2 See scipy.interpolate.LinearNDInterpolator, Jones et al.
(2001)

outside of the polygon containing all interpolation nodes (convex
polygon), extrapolation was used. To extrapolate to a given posi-
tion on the colour–magnitude diagram, we fit a plane through ten
nodes nearest to that point, and used the value predicted by that
plane at a given position.

We used linear interpolation in the logarithmic scale to
obtain values of log Nfg and log Nbg at the location of each
star on the colour–magnitude diagram and then produced esti-
mates of the selection function S and its uncertainty σS using
Eqs. (2) and (6). The logarithmic scale for the interpolation is
beneficial for our task, as it naturally avoids negative values. We
have verified that calculating S and σS in each cell and then
interpolating them gives only a marginal difference in the result.
We also tested if the interpolation improves the estimate for his-
togram binning and found only a marginal improvement.

3. Testing on simulated data

3.1. Simulation set-up

We test our method by applying it to simulated data, where the
selection function is known. We chose three different “input”
selection functions (ISF). First function is defined analytically
as

S (J, J − K) =

{
s1, if 8.m5 < J < 12m

0, otherwise , (7)

where s1 is a constant. We refer to it as a “constant” ISF. Second
and third functions are produced from estimates of the selec-
tion functions in three HEALPix cells for Gaia-ESO, RAVE and
LAMOST surveys, multiplied by constants s2, s3 and s4. In this
way we simulated “realistic” selection functions. The shapes of
the four ISFs used are shown in Fig. 5.

For every ISF we used a number of stars to be sampled as
“observed” Nobs. This fixes the scaling constants s1,2,3,4, such that
Nobs =

∫ ∫
S (J, J − K)Nbg(J, J − K)dJ d(J − K). In each simu-

lation we sample Nobs stars from the background Nbg(J, J − K)
using the assumed selection function. The 2MASS background
is taken from an arbitrary HEALPix cell. We have verified, that
the result of the simulation depends much more on the param-
eters (Nobs and Ncritical) and adopted ISF than on the choice of
HEALPix cell. To increase the statistics, we run up to n = 500
simulations with different random samplings for each value of
Nobs. We then estimated the selection function S̃ (using Eq. (2))
for each simulated star and compare it with the “true” value S .
We are interested in several parameters that will indicate the
accuracy and the precision of the estimate. The first parameter
we measure is the fractional uncertainty U =

〈
σ̃S /S̃

〉
, where

σ̃S is the uncertainty of S̃ . Angle brackets stand for mean or
median taken over all stars in all n simulations. The fractional
uncertainty is a measure of the precision of the method, while
the accuracy is measured by the relative bias:

B =

〈
S̃ − S
σ̃S

〉
· (8)

It is also important to know if our uncertainty is realistic. This
can be verified by testing the standard deviation of the relative
difference:

D =

√√∑(
S̃−S
σ̃S
− B

)2

nNobs
· (9)

A17, page 5 of 12

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834256&pdf_id=4


A&A 621, A17 (2019)

Fig. 5. Input selection functions values (S ) used in this work. This plot illustrates the function shape, hence the scale of S is arbitrary here.

In case the distribution of the difference between estimated and
true values (S̃ − S ) is normally distributed, σ̃S should be close
to the standard deviation of S̃ − S . Hence, D should be close
to unity when the uncertainties are realistic. If it is lower than
unity than we can suspect that the uncertainty is overestimated.
Likewise, values larger than unity indicate that the uncertainty
is likely underestimated. This approach works best, when the
difference between S̃ and S is normally distributed. In our simu-
lations this is however not the case. Thus, along with D, we also
used a relative median absolute deviation (MAD):

DMAD = 1.48 ·median
(
|S̃ − S |
σ̃S

− B
)
, (10)

with a constant (1.48) used to ensure that DMAD = D if S̃ − S is
normally distributed.

We test different methods to estimate the selection function
and its uncertainty (see Sect. 2.3) in each case:

– Histogram binning (Sect. 2.2.1);
– Median division binning (Sect. 2.2.2);
– Median division binning, with shrinking and interpolation

(Sect. 2.4).
For the median division binning, we also applied shrinking and
interpolation separately – this was done to study the effect of
each of them on the precision and accuracy.

When the median division binning is used, a free parame-
ter appears, namely, the minimal number of points in each cell:
Ncritical (see Sect. 2.2.2). We ran a set of simulations with differ-
ent values of Ncritical to explore the influence of this parameter on
the results.

3.2. Results of tests on simulated data

Here we discuss how different methods and simulation param-
eters affect the precision and accuracy of the selection func-
tion estimation. The results are summarised in Fig. 6 where we
explore how the precision and accuracy vary with Nobs; and in
Fig. 7 where the effect of varying Ncritical is shown. We show
here results for the constant and RAVE-based ISF. Results for
Gaia-ESO-based and LAMOST-based ISF are qualitatively very
similar to those for RAVE-based ISF.

3.2.1. Sensitivity to Nobs

Figure 6 illustrates how results for simulated data depend on the
method and on the number of observed stars Nobs. We expect
results to improve with increasing Nobs, as Nfg in Eqs. (2) and (3)
increases with Nobs, which in turn causes the fractional

uncertainty to decrease. At the same time, larger values of Nfg
reduce biases, as the colour–magnitude diagram becomes more
populated with increasing Nfg, which increases the number of
populated histogram bins and reduces the cell sizes for median
division binning. This allows us to improve the accuracy of the
selection function estimate.

Methods based on histograms show the largest fractional
uncertainties U, especially for low Nobs. This is caused by the
fact that at low values of Nobs there are many underpopulated
bins with one or few foreground sources. For such bins the uncer-
tainty is large (up to 100%), which has an impact on the mean
fractional uncertainty. Large uncertainty leads to low relative
standard deviation D, when histograms are used to estimate the
selection function, especially for low values of Nobs (see mid-
dle panels of Fig. 6). The large bias B is caused by the fact that
the selection function is being measured only at the observed
stars locations, which causes a positive bias (see Sect. 2.2.1 and
bottom panels of Fig. 6). As Nobs increases, the fractional uncer-
tainty and relative bias decrease, though remain highest among
all methods. The relative standard deviation approaches unity,
as expected. We note, that the histogram method gives similar
results for both presented ISFs. Mean and median values of U,
D, and B are also very similar.

In our simulations, median binning with Ncritical = 10 is used,
and fractional uncertainties U are smaller by about 10−1/2 ≈ 0.32
(see Eqs. (4) and (5)), compared to uncertainties produced by
histogram method. This is caused by a larger number of observed
stars Nfg in each colour–magnitude cell compared to the his-
togram method, which causes the uncertainty to decrease (see
Eqs. (3) and (5)). As Nobs increases, more and more median bin-
ning cells reach the limit of the smallest possible cell size (which
is the size of the colour–magnitude histogram bin). For such cells
the number of the observed stars Nfg will be larger than Ncritical,
which will cause the uncertainty to decrease further. At the same
time the fractional uncertainty increases if the variations in the
back- and foreground source counts within the cell are taken into
account following Sect. 2.3.2. Both effects are relatively small
and, as we will show below (in Sect. 3.2.2), the value of Ncritical
has a much larger effect on the fractional uncertainty than the
value of Nobs and the correction for variation in the back- and
foreground source counts.

For the median binning, the relative standard deviation D
and the relative bias B behaviour as a function of Nobs differs
for the constant and RAVE-based ISFs. These differences are
more prominent for mean values than for median ones. This is
a consequence of the asymmetrical distribution of relative dif-
ference S̃−S

σ̃S
for simulated stars. This asymmetry arises from the
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Fig. 6. Comparison of the performance of different methods as a func-
tion of Nobs, applied for constant input selection function (left column)
and RAVE-based ISF (right column). Results are shown as a function
of the number of observed stars Nobs. Top row: fractional uncertainty;
middle row: relative standard deviation and relative median absolute
deviation (see Eqs. (9) and (10)); bottom row: relative bias B (see
Eq. (8)). Solid lines are for mean values, dotted lines are for median
values. Ncritical = 10 is used here.

fact that the precision of the estimate depends on the number of
fore- and background sources and the size of the cell. Higher
numbers of sources give larger statistics and smaller cells thus
reducing the effect of fore- and background source density vari-
ations within the cell (see Sect. 2.3.2). Therefore, the precision
will vary from cell to cell, and the distribution of relative differ-
ence will thus be non-Gaussian, causing the differences between
mean and median values.

For the constant ISF, the relative standard deviation D is
close to unity, and is almost independent of Nobs. When the inter-
polation is introduced (see Sect. 2.4.2), D decreases to values
about 0.7, which indicates that the uncertainty is overestimated.
This is a consequence of the interpolation – it tends to improve
the precision and accuracy (Schlegel et al. 2012). The relative
bias B is positive, however lower than that for the histogram
method. The reason is likely the same as for the histogram
method – our method is positively biased, because the selec-
tion function is measured at locations of observed stars. This
is more important in the outer regions of the colour–magnitude
diagram, where the number of background and observed stars
is low. Shrinking (see Sect. 2.4.1) enhances this effect, fur-
ther increasing the relative bias B. Shrinking has little effect on
fractional uncertainty U and relative standard deviation D, and
it’s effect on the relative bias B seems to be small in most cases,
except small Nobs. This is because shrinking affects only outer
cells in the colour–magnitude diagram, and thus the total frac-
tion of affected stars is small. However, for this small fraction of
cells the effect can be substantial, eliminating very small values
of the selection function.

For the RAVE-based ISF, mean, and median values of the
relative standard deviation D and relative bias B are different,
because the variations of the ISF over colour–magnitude space
produce a large and asymmetric spread in differences between
true and estimated values of the selection function. Median val-
ues of D and B change little with Nobs, while mean values vary
substantially.

If no interpolation is applied, large cells produced by median
binning cannot properly trace small-scale variations of the ISF.
This results in a substantially underestimated uncertainty and
thus mean relative standard deviation values are much larger than
unity. The inability to reproduce ISF variations without inter-
polation also leads to a large negative mean bias (around −1),
though one has to keep in mind that the underestimated value
of the uncertainty leads to overestimated absolute value of the
mean relative bias.

The use of interpolation for the RAVE-based ISF reduces
both relative standard deviation D and relative bias B. As Nobs
increases, the difference between mean and median values of
D and B decreases, which means that the distribution of differ-
ences between true and estimated values of the selection function
becomes more symmetric. There is an important critical point at
which the mean relative bias becomes zero (at around Nobs =
300), which we consider as an optimal value for Ncritical = 10.
For this value of Nobs the mean relative standard deviation is also
close to unity, which indicates that the uncertainty value is cor-
rectly estimated.

3.2.2. Sensitivity to Ncritical

Figure 7 illustrates how results from the simulations depend
on the method and the minimal number of observed stars per
colour–magnitude cell Ncritical. For this set of tests we set Nobs =
1000. By definition, results for the histogram-based estimate
do not depend on Ncritical. As we increase Ncritical, the frac-
tional uncertainty of the estimate made with the median divi-
sion binning method decreases approximately as N−1/2

critical, as
expected, as Ncritical is the lower limit for the value of Nfg in
Eqs. (4) and (5). When background variations within the cell
are taken into account, we find that the fractional uncertainty
increases by about 15% (see top panel in Fig. 7) for both con-
stant and RAVE ISFs.

For the constant ISF, the relative standard deviation varies
little with Ncritical and the relative bias decreases slowly with
Ncritical. For the RAVE-based ISF the trends are very different.
The mean relative standard deviation is larger than unity for the
median binning methods without interpolation and reaches val-
ues over ten for high Ncritical. This is caused by the fact that
median binning tends to produce larger cells in the colour–
magnitude space for larger values of Ncritical, within which the
variation in the selection function is high and cannot be properly
taken into account. Interpolation reduces the effect, though does
not remove it completely.

We note that for Ncritical = 100 and the chosen value of
Nobs = 1000 we get in the best case ten cells in the colour–
magnitude diagram. With this low number of cells and hence
a low number of interpolation points, it is impossible to
properly reconstruct a two dimensional selection function of a
complex shape. Median values of the relative standard deviation
D are nonetheless between 0.5 and 2, indicating that high mean
values of D are caused by a few large offsets, while for the major-
ity of cases the uncertainty is estimated with reasonable quality.

The mean relative bias for the RAVE-based ISF varies a
lot when median binning is used, and goes from positive to
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Fig. 7. Same as Fig. 6, now as a function of Ncritical. Nobs = 1000 is used
here.

negative values as Ncritical increases. This is again caused by
large cells produced by the median binning for large values of
Ncritical. Our inability to reconstruct rapid variations of the selec-
tion function within a cell leads to large biases. This happens
only in a fraction of cells where the selection function varia-
tions are large, and thus only the mean relative bias is affected,
while the median relative bias remains between 0 and 0.5 and
varies only slowly with Ncritical. Without interpolation, only for
Ncritical = 1 the mean bias is close to zero. Interpolation improves
the mean relative bias value for Ncritical ≈ 10. Still, for large
Ncritical the mean bias decreases to below −1. The optimal point
where the mean relative bias turns zero is Ncritical ≈ 15, with
the mean relative standard deviation being close to unity at this
point, which indicates that the uncertainty value is correctly
estimated.

3.2.3. Selecting optimal parameters

We have shown in Sect. 3.2.2, that the precision and accu-
racy of the selection function estimates depend on Ncritical. For
a given number of observed stars Nobs, there exists an opti-
mal value of Ncritical that minimises the mean bias and at the
same time produces a mean relative standard deviation D (see
Eq. (9)) that is close to unity, which means that the uncertainty
is reliable. In order to find how the optimal Ncritical depends on
Nobs, we ran a set of tests for ISFs based on Gaia-ESO, RAVE
and LAMOST data, varying both Ncritical (between 3 and 100)
and Nobs (between 100 and 4000). In Fig. 8 we show the mean
relative bias as a function of Ncritical and Nobs, and indicate zero-
bias lines.

We fitted zero-bias lines for Gaia-ESO- RAVE- and
LAMOST-based ISFs with power-laws as Ncritical = aNb

obs.
Zero-bias lines and power-law fits are shown in Fig. 9. The
three fitted functions differ by about a factor of two for a given
Nobs which means that the optimal value of Ncritical depends in

addition to Nobs also on the shape of the selection function itself.
Taking the mean parameters of the three fits, we obtain the fol-
lowing empirical relation, which we used in further study:

Ncritical = int(0.91 ∗ N0.37
obs ) + 1. (11)

We note however, that the selection function estimate quality is
not a very sensitive function of Ncritical, unless the value used is
much higher than the optimal (see Fig. 7): the absolute value of
the mean relative bias B remains lower than 0.5 even if we vary
Ncritical within 50% of the optimal value, with less variations for
higher Nobs.

4. Data preparation

We calculated the selection function for a large set of public sur-
veys: APOGEE (DR14, Majewski et al. 2017), Gaia-ESO (DR2,
Gilmore et al. 2012), GALAH (DR2, Buder et al. 2018), LAM-
OST (DR3, Luo et al. 2015), LAMOST Galactic anti-centre
project (Xiang et al. 2017), RAVE (DR5, Kunder et al. 2017),
RAVE-on (Casey et al. 2017) and SEGUE (Yanny et al. 2009).
For each survey, we process stars that satisfy the following cri-
teria:
1. Stars must have good quality 2MASS J and Ks photometry

(corresponding Rflg value is 1, 2 or 3);
2. For 2MASS magnitudes the following constraints hold:

1.m4 < J < 15m and −1.m5 < J−Ks < 2.m5 – ranges of magni-
tudes and colours covered by 2MASS, excluding extremely
red, blue and bright objects;

3. Repeated observations of the same star within the survey are
excluded (thus we only consider one observation per star in
each survey).

For some surveys, we had to apply more cuts or use additional
information, as described below.

4.1. APOGEE treatment

APOGEE survey is special in a sense that for some fields addi-
tional narrow-band photometry (using Washington M, T2 and
DDO51 filters) was used to select giant stars over dwarfs (see
Zasowski et al. 2013). This cannot be accounted for, when only
broad-band 2MASS photometry is used. To mitigate this prob-
lem, we added to our 2MASS background distribution a cor-
rection factor derived using the APOGEE photometric input
catalogue. For each HEALPix cell, we calculated this correc-
tion factor as a ratio of stars in the APOGEE photometric input
catalogue that satisfy the selection criteria for giant stars3 to the
total number of stars for this HEALPix cell in this input cata-
logue. This ratio was calculated as a function of J − Ks colour
and J magnitude on the same grid that is used for the background
distribution.

4.2. Gaia-ESO treatment

Gaia-ESO aims, among other things, on studies of open clusters
and the Milky Way in general. For fields used for open cluster
studies, target allocation for spectroscopic observations favours
possible cluster members. Therefore we could not properly cal-
culate the selection function for them, as the observed population
is not a representative sample of the stellar population in a given
field. Hence, we calculated the selection function only for Milky
Way fields.

3 wash_ddo51_giant_flag = 1 or extinction corrected colour
(J − Ks)0 > 0.5.
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Fig. 8. Mean relative bias B as a function of the number of observed stars in simulations Nobs and the minimum number of stars per median division
binning cell Ncritical. Grey lines are at Ncritical = 10 and Nobs = 1000, used in Figs. 6 and 7. Blue line indicates optimal values of Ncritical for each
Nobs, where mean relative bias is zero (see Eq. (11)).

Fig. 9. Optimal values of Ncritical as functions of Nobs for three simulated
ISFs (the dashed lines are the same lines as indicated in Fig. 8), power-
law fits (solid lines) and the accepted empirical relation (black line, see
Eq. (11)).

4.3. Selection function estimation

In the current work, we estimate selection function for each
survey over the HEALPix grid of three different orders (third,
fourth, and fifth, see Sect. 2.1). This is done to find a balance
between the background variation over the HEALPix sky-cells
(which typically increases as we increase the sky-cell size) and
the number of spectroscopic sources observed (which decreases
with decreasing sky-cell size). Only HEALPix sky-cells with at
least 50 stars were processed, to ensure that there are enough
stars for a reliable estimation of the selection function.

5. Results

We estimate the selection function values using the median bin-
ning method with all improvements as described in Sect. 2 for all
surveys mentioned in Sect. 4, and discuss the results here. The
tables containing the selection function estimates are published
at the UniDAM homepage4. An example of the results table is
shown in Table 1.

4 http://www2.mps.mpg.de/homes/mints/selection.html

In Fig. 10 we show the effect of the selection function on the
metallicity and distance modulus distributions for several sur-
veys. Distance moduli for stars were taken from UniDAM cata-
logue (Mints & Hekker 2017). Stars that do not have an entry in
the UniDAM catalogue were excluded from this analysis. Uncor-
rected distributions for value x are made by counting stars in
each bin

Funcorrected(x) =
∑

i:x−b<xi<x+b

1, (12)

where b is the bin half-width. The value of the selection func-
tion for a given star is by definition a fraction of the underlying
population represented by that star. Thus the selection-corrected
distribution is calculated as

Fcorrected(x) =
∑

i:x−b<xi<x+b

1
S i
, (13)

where S i is the value of the selection function for the i-th
star. Distributions shown in Fig. 10 are normalised so that∫

F(x) dx = 1 in order to emphasise the change in the shape
of the distributions rather than the change in scale.

The uncertainties of Fcorrected(x) can be calculated by propa-
gating the uncertainties of measurements of S i:

σF =

√√√ ∑
i:x−b<xi<x+b

σS ,i

S 2
i

2

· (14)

These uncertainties are small (of the order of one to two per-
cent) for distributions shown in Fig. 10, because of the large
number of sources in each survey and hence are not displayed
there.

The overall trend is that when the selection is corrected for
both distance modulus and metallicity distributions we find a
shift towards larger values. For the distance modulus distribution
the change in the distribution is caused by the fact that more dis-
tant stars are systematically fainter, and for fainter stars the selec-
tion function is typically lower, which means that we observe a
smaller fraction of more distant stars. The shift of the metallic-
ity distributions is caused by the fact that surveys typically have
nearly constant source density in their footprints, which means
that we observe a smaller fraction of stars closer to the galactic
plane, where stellar density is larger. At the same time, the aver-
age metallicity of thin disc stars in the galactic plane is higher
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Table 1. Example of the result table.

Id Selection_3 Selection_3_err Selection_4 Selection_4_err Selection_5 Selection_5_err Best_order

107548 0.00340 0.00143 0.01542 0.00646 – – 4
107549 0.00403 0.00155 0.01602 0.00613 0.03597 0.01136 5
107551 0.01226 0.00476 0.05289 0.02022 0.07561 0.02492 5
107554 0.00951 0.00387 0.04294 0.01720 0.07754 0.02284 5
107557 0.00235 0.00105 0.01126 0.00500 0.01276 0.00572 5
107561 0.00939 0.00376 0.04154 0.01638 0.11274 0.05250 4
107562 0.00860 0.00352 0.03501 0.01423 0.06088 0.02832 4
107564 0.00644 0.00271 0.02982 0.01237 0.06768 0.03117 4
107568 0.00725 0.00296 0.03258 0.01314 0.06622 0.01872 5
107571 0.00932 0.00372 0.04109 0.01615 0.07057 0.02147 5

Notes. The first column is an ID of a star from the spectroscopic survey. Columns 2 to 7 contain the value of the selection function and its
uncertainty calculated using third, fourth, and fifth order HEALPix sky-cells. The last column indicates which of the HEALPix orders gives the
lowest fractional uncertainty of the selection function.

Fig. 10. Normalised distributions in distance modulus (left panels) and metallicity (right panels) for APOGEE, GALAH, Gaia-ESO, LAMOST,
RAVE-on and SEGUE surveys. Red histogram shows distribution not corrected for the selection effect, blue histogram – with corrections applied.

than those high above the galactic plane. Therefore, we observe
a smaller fraction of metal-rich stars, which is reflected in the
selection function values and the selection-corrected distribution
is shifted towards higher metallicities.

The effect of the selection function is more prominent for
surveys that have a complex target allocation strategy and whose
footprint is more patchy: APOGEE, Gaia-ESO and SEGUE.
This is in line with findings of Stonkutė et al. (2016) for Gaia-
ESO and Nandakumar et al. (2017) for both APOGEE and
Gaia-ESO. For surveys with contiguous footprints, such as
GALAH, RAVE, and LAMOST, the selection function has
almost no effect, which confirms findings of Wojno et al. (2017)
and Chen et al. (2018).

Figure 11 illustrates how the selection function varies across
the sky for APOGEE and RAVE-on. The trend is that the
selection function is lower towards the galactic plane and galac-
tic centre. We emphasise that for APOGEE the selection function
seems to be much more uneven than for RAVE-on, which would

complicate any statistical analysis based on the spatial distribu-
tion of survey stars.

6. Conclusion and discussion

In this work we present a method that allows us to estimate the
selection function for a general spectroscopic survey. Precision
and accuracy of the method were verified with realistic simu-
lations. These simulations also allowed to derive an empirical
formula to estimate the only free parameter of the method,
namely, the minimal number of observed stars (Ncritical, see
Eq. (11)) per colour–magnitude cell.

Our estimates can be readily used to correct for the selection
effects in galactic archaeology studies. If a sub-set of the survey
for which the selection values are published is used, two possi-
bilities arise. We explain them using two examples.

Firstly, if the sub-set is constructed using some parame-
ter p that is not directly connected to the properties of the
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Fig. 11. Median selection function value as a function of galactic coordinates for APOGEE (left panel) and RAVE-on (right panel) surveys. We
note the different colour scales for the two plots.

stellar population, than one can build a new selection function
as S ′ = S (J, J − Ks) × F(p), where F(p) is the sub-set selection
function with respect to the complete spectroscopic survey. This
is possible, because the sub-set remains a representative part of
the full underlying population. As an example of such parameter
p we can name the S/N of the spectra.

Secondly, we consider the case when the sub-set is build using
some property of the population. An example of such sub-sets can
be high-velocity stars or metal-poor stars. In that case the sub-set
is no longer a representative part of the underlying population.
This means that with that sub-set we can only study the part of the
full stellar population that it represents. The selection function of
the complete survey can still be used to correct for the selection
effects in the sub-set. Let us consider, for example, a cell in the
colour–magnitude diagram for some field on the sky, for which
100 stars were observed spectroscopically out of 1000 stars in the
photometric catalogue (2MASS) for that cell. This gives a selec-
tion function value S = 0.1, or 10 photometric stars per 1 spec-
troscopic. If five of the spectroscopically observed stars are, for
example, extremely metal poor, we cannot assume that the selec-
tion function of them is S = 5/1000, as this would imply that all
photometric stars in that cell are in fact metal poor, which is not
true. Though we can use S = 0.1 to estimate that n = 5/S = 50
stars are metal poor out of 1000 for that cell.

We produce and make public the estimates of the selection
function values and their uncertainties for a set of public spectro-
scopic surveys. The tool to produce such estimates will be made
available on the MPS github page5.

For some surveys, such as LAMOST, GALAH, and RAVE,
the effect of the selection function is negligible, at least when the
distributions of distances and metallicities are considered. For
other surveys the effect of the selection function is visible in the
distributions of distances and metallicities. This is the case for
Gaia-ESO, SEGUE and to a larger extent for APOGEE, where
ignoring the selection effect might produce a substantial bias.

Values of the selection function calculated in this work can
be used to estimate the fraction of stars with given properties that
were observed as compared to those available for observations in
the footprint of a given survey. This is an essential step towards
calculating the fraction of all stars in the footprint of the survey
that were observed.
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