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ABSTRACT

Context. Many problems in astrophysics feature flows which are close to hydrostatic equilibrium. However, standard numerical
schemes for compressible hydrodynamics may be deficient in approximating this stationary state, where the pressure gradient is
nearly balanced by gravitational forces.
Aims. We aim to develop a second-order well-balanced scheme for the Euler equations. The scheme is designed to mimic a discrete
version of the hydrostatic balance. It therefore can resolve a discrete hydrostatic equilibrium exactly (up to machine precision) and
propagate perturbations, on top of this equilibrium, very accurately.
Methods. A local second-order hydrostatic equilibrium preserving pressure reconstruction is developed. Combined with a standard
central gravitational source term discretization and numerical fluxes that resolve stationary contact discontinuities exactly, the well-
balanced property is achieved.
Results. The resulting well-balanced scheme is robust and simple enough to be very easily implemented within any existing computer
code that solves time explicitly or implicitly the compressible hydrodynamics equations. We demonstrate the performance of the
well-balanced scheme for several astrophysically relevant applications: wave propagation in stellar atmospheres, a toy model for
core-collapse supernovae, convection in carbon shell burning, and a realistic proto-neutron star.
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1. Introduction

Many interesting astrophysical phenomena can be modeled by
the Euler equations with gravitational source terms. They ex-
press the conservation of mass, momentum, and total energy, as
given by

∂ρ

∂t
+ ∇ · (ρ�) = 0 (1)

∂ρ�

∂t
+ ∇ · (�ρ�) + ∇p = −ρ∇φ (2)

∂E
∂t
+ ∇ · [(E + p) �

]
= −ρ� · ∇φ. (3)

Here, ρ is the mass density, � the velocity, and E = ρe + ρ2 �
2,

where the total energy is the sum of internal and kinetic energy.
The pressure p is related to the specific internal energy and the
density through an equation of state p = p(ρ, e).

The source terms on the right-hand side of the momentum
and energy equations model the effect of the gravitational forces
on the fluid. They are proportional to the gradient of the gravita-
tional potential φ, which can either be a given function or in the
case of self-gravity, it can be determined by the Poisson equation

∇2φ = 4πGρ. (4)

In many situations one has to deal with flows close to hydrostatic
equilibrium

∇p = −ρ∇φ. (5)

Here, the interest relies in robust and accurate resolution of flows
close to hydrostatic equilibrium. The numerical approximation
of near steady flows is challenging for standard finite volume
schemes because they do not necessarily satisfy a discrete equiv-
alent of the balance of pressure gradient and gravitational forces,
represented by Eq. (5). As a result, equilibrium states are not pre-
served exactly but are approximated with an error proportional to
the truncation error. If one is interested in the simulation of small
perturbations on top of the equilibrium, the numerical resolution
has to be increased to the point that the truncation errors do not
obscure the phenomena of interest. This need in resolution may
become prohibitively large (especially in multiple dimensions).

Many remedies have been proposed to overcome the afore-
mentioned difficulties. The simplest solution consists of sub-
tracting the (assumed known) stationary state at each time step.
In this way the truncation errors are exactly canceled (see, e.g.,
Dedner et al. 2001). However, this requires that the station-
ary state is known a priori. Another approach in the finite vol-
ume methodology is to introduce the effect of gravity into the
Riemann solver. The idea is that the Riemann solver should rec-
ognize pressure differences induced by gravity and prevent the
propagation of resulting waves. Perhaps, the earliest approach
of this type, was already presented in the original description of
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the piecewise parabolic method of Colella & Woodward (1984):
the influence of the gravity source term was incorporated into
the characteristic evolution step. For Rusanov or local Lax-
Friedrichs type Riemann solvers, Käppeli et al. (2011) have sub-
tracted the gradients induced by gravity in the dissipative flux
terms. Yet another strategy for finite volume schemes is to in-
troduce a subgrid model which incorporates the stationary state
into the reconstruction process, see, e.g., Freytag et al. (2012),
Mellema et al. (1991), Zingale et al. (2002).

Greenberg & Leroux (1996) introduced the concept of a
well-balanced scheme, i.e., a scheme which satisfies exactly a
discrete equivalent of an underlying stationary state. Many well-
balanced schemes have been designed, especially for the shallow
water equations with non-trivial bottom topography, see, e.g.,
Lefloch & Thanh (2003), LeVeque (1998), Audusse et al. (2004)
and references therein.

Well-balanced schemes for certain classes of hydrostatic
equilibrium have been presented by LeVeque (1998, 2011),
Botta et al. (2004), Fuchs et al. (2010), Xing & Shu
(2013), Desveaux et al. (2014), Käppeli & Mishra (2014),
Chandrashekar & Klingenberg (2015), Li & Xing (2015).
However, Eq. (5) only specifies a mechanical equilibrium. All
the afore mentioned well-balanced schemes need to assume a
certain thermal equilibrium in order to uniquely determine the
stationary state. For instance, Käppeli & Mishra (2014) have de-
signed a well-balanced scheme under the further assumption of
isentropic (isothermal) conditions. Then Eq. (5) can be explicitly
integrated to h + φ = const. (g + φ = const.), where h is the spe-
cific enthalpy (g the Gibbs free energy). These expressions can
then be used to build a well-balanced scheme for the isentropic
(isothermal) case.

In this paper, we design well-balanced first- and second-
order accurate finite volume schemes for approximating the
Euler equations with gravitation without any assumption of a
thermal equilibrium. The main ingredient of our scheme is the
use of a straightforward discretization of hydrostatic equilibrium
Eq. (5) as basis for the pressure reconstruction. The schemes are
well-balanced for any consistent Riemann solver capable of re-
solving a stationary contact discontinuity. Moreover, the scheme
allows for any explicit or implicit time integration.

The rest of the paper is organized as follows: the well-
balanced finite volume scheme is presented in Sect. 2. Numerical
results are presented in Sect. 3 and discussion and conclusions
are provided in Sect. 4.

2. Numerical method

2.1. One-dimensional Cartesian case

We first consider the Euler equations with gravitation (1)−(3) in
one space dimension and write them in the compact form:

∂u
∂t
+
∂F
∂x
= S (6)

with

u =

⎡⎢⎢⎢⎢⎢⎢⎣
ρ
ρ�x
E

⎤⎥⎥⎥⎥⎥⎥⎦ , F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ρ�x
ρ�2x + p

(E + p)�x

⎤⎥⎥⎥⎥⎥⎥⎥⎦ and S = −
⎡⎢⎢⎢⎢⎢⎢⎣

0
ρ
ρ�x

⎤⎥⎥⎥⎥⎥⎥⎦ ∂φ∂x
, (7)

where u, F and S are the vectors of conserved variables, fluxes
and source terms. Moreover, we denote the primitive variables
by w = [ρ, �x, p]T . The system is closed by an equation of state
(EoS) p = p(ρ, e) which relates the pressure p to density ρ and

specific internal energy e (or any other related thermodynamic
quantity such as temperature or specific entropy). The form of
the EoS does not matter for the methods presented. Several types
of EoSs are employed in the applications described later in the
paper, including ideal, hybrid (polytropic and ideal) and tabu-
lated EoSs.

For the numerical approximation of Eq. (6), the spatial do-
main is discretized by cells or finite volumes Ii = [xi−1/2, xi+1/2]
of regular size Δx = xi+1/2 − xi−1/2. Varying cell sizes can easily
be accommodated for (see Appendix A). By integrating Eq. (6)
over a cell Ii we obtain a semi-discrete finite volume scheme for
the evolution of the cell-averaged conserved variables ui

dui

dt
= − 1
Δx

(
Fi+1/2 − Fi−1/2

)
+ Si, (8)

where Fi+1/2, j is the numerical flux at cell interface and Si is the
gravity source term.

The numerical flux is obtained by solving (approximately)
the Riemann problem at cell interfaces

Fi+1/2 = F (wi+1/2−,wi+1/2+), (9)

where the wi+1/2− and wi+1/2+ are the cell interface extrapolated
primitive variables. The only requirement on the numerical flux
for the hydrostatic equilibrium preserving scheme elaborated be-
low is, that it is capable of resolving stationary contact disconti-
nuities, i.e.,

F
(
[ρL, 0, p]T , [ρR, 0, p]T

)
= [0, p, 0]T , (10)

where ρL (ρR) is the density on the left (right) side of the con-
tact discontinuity and p the constant pressure. For example the
HLLC (Toro et al. 1994) and Roe (Roe 1981) approximate
Riemann solvers have this property. In the following, we use the
HLLC Riemann solver with wave speed estimates according to
Batten et al. (1997).

The gravitational source term is evaluated by standard spa-
tially second-order accurate centered differences

Si = −
⎡⎢⎢⎢⎢⎢⎢⎣

0
ρi

(ρ�x)i

⎤⎥⎥⎥⎥⎥⎥⎦ φi+1 − φi−1

2Δx
, (11)

where the φi are the cell-centered values of the gravitational po-
tential. This is a common choice in astrophysical simulations.
Moreover, note that the above expression is exact for a linear
gravitational potential, i.e., a constant gravitational acceleration.

The cell interface extrapolated values of the primitive vari-
ables wi−1/2+ and wi+1/2− are obtained by a reconstruction pro-
cedure from the cell-averaged conserved variables. The simplest
reconstruction assumes a piecewise constant distribution of the
conserved variables within the cell. This results in Godunov’s
(Godunov 1959) method, which is first-order accurate in space.
Spatial accuracy is increased by higher-order non-oscillatory
polynomial reconstructions (Laney 1998; LeVeque 2002; Toro
1997). Prominent choices are piecewise linear (e.g., MUSCL
van Leer 1979) and piecewise parabolic (PPM, Colella &
Woodward 1984) reconstructions.

However, standard reconstructions will not preserve a dis-
crete hydrostatic equilibrium. In the next section, we present
a novel reconstruction which can preserve a discrete hydro-
static equilibrium up to machine precision, i.e., a well-balanced
reconstruction.

A fully discrete scheme is obtained by choosing an integrator
for the system of ordinary differential Eq. (8). This is discussed
in Sect. 2.2.

A94, page 2 of 16



R. Käppeli and S. Mishra: A well-balanced finite volume scheme for the Euler equations with gravitation

2.1.1. Well-balanced local hydrostatic pressure
reconstruction

A standard finite volume scheme (8) may not preserve a discrete
equivalent of a hydrostatic equilibrium

∂p
∂x
= −ρ∂φ

∂x
· (12)

This deficiency is most obvious for a first-order scheme. The
piecewise constant reconstruction is indeed incompatible with
the pressure stratification induced by gravity. The pressure dif-
ference at cell interfaces is interpreted as a propagating wave by
the Riemann solver. Hence, the equilibrium is destroyed.

Higher-order reconstructions, such as piecewise linear (e.g.,
MUSCL), parabolic (e.g., PPM) or polynomials of even higher
degree, will reduce the pressure difference at the cell interface
and therefore improve the situation. However, the pressure pro-
file resulting from gravitational stratification is in general not a
simple polynomial function. Hence, the pressure jump at cell in-
terfaces will be proportional to the reconstruction’s truncation
error. Piece-wise polynomial reconstructions are thus inappro-
priate to represent a hydrostatic equilibrium.

In the following we construct a finite volume scheme that ex-
actly (or up to machine precision) preserves a discrete version of
hydrostatic equilibrium Eq. (12). We reconstruct the equilibrium
pressure within the ith cell according the hydrostatic equilibrium
as follows

p0,i(x) = pi −
∫ x

xi

ρ
∂φ

∂x
dx, x ∈ Ii. (13)

To evaluate explicitly the above integral, we need to find a re-
construction of the density and the gradient of the gravitational
potential. We assume a constant density distribution within the
cell, i.e.,

ρ0,i(x) = ρi, x ∈ Ii. (14)

Similarly, we assume the gravitational potential to be piecewise
linear, i.e, linear over each staggered cell Ii+1/2 = [xi, xi+1]

φi+1/2(x) =
1
2

(φi + φi+1) +
φi+1 − φi

Δx
(
x − xi+1/2

)
, x ∈ Ii+1/2.

(15)

This results in a piecewise constant distribution of (∂φ/∂x)i+1/2
over Ii+1/2.

Now the hydrostatic pressure reconstruction (13) can be ex-
plicitly evaluated and at cell interfaces we obtain

p0,i(xi−1/2) = pi + ρi
φi − φi−1

Δx
Δx
2

p0,i(xi+1/2) = pi − ρi
φi+1 − φi

Δx
Δx
2
· (16)

Note that this reconstruction is consistent with the central dis-
cretization of the momentum source term (11), i.e.,

p0,i(xi+1/2) − p0,i(xi−1/2)

Δx
= −ρn

i
φi+1 − φi−1

2Δx
· (17)

Consider now the reconstructed pressure at the left side of the
interface p0,i(xi+1/2), i.e., extrapolated from cell i, and at the
right side of the interface p0,i+1(xi+1/2), i.e., extrapolated from
cell i + 1. If we have pressure equilibrium at the interface, i.e.,
p0,i(xi+1/2) = p0,i+1(xi+1/2), we find that

pi+1 − pi

Δx
= −ρi + ρi+1

2
φi+1 − φi

Δx
(18)

holds. This is the discrete hydrostatic equilibrium, which is pre-
served by our hydrostatic pressure reconstruction. As can be
shown easily (by Taylor expansions), Eq. (18) is a spatially
second-order accurate approximation of Eq. (12).

It should be noted that Eq. (12) represents only a mechani-
cal equilibrium. No thermal equilibrium is implied and the hy-
drostatic equilibrium may be physically unstable to convection,
for instance. Similarly, the discrete hydrostatic equilibrium (18),
which is preserved by our reconstruction, represents only a me-
chanical equilibrium. No assumption is made on a thermal equi-
librium; that is, no explicit temperature or entropy profile has
to be assumed for the hydrostatic reconstruction. Therefore, our
reconstruction preserves discrete hydrostatic equilibria with ar-
bitrary temperature or entropy stratification. This represents a
substantial generalization of the reconstruction advocated by
Käppeli & Mishra (2014).

2.1.2. First-order scheme

It is now straightforward to assemble a spatially first-order accu-
rate well-balanced scheme. The density and velocity are recon-
structed in a piecewise constant manner (the corresponding cell
averages are used). The pressure is reconstructed with the hydro-
static reconstruction. In summary, the cell interface extrapolated
variables read

wi∓1/2± =

⎡⎢⎢⎢⎢⎢⎢⎣
ρi

�x,i
p0,i(xi∓1/2)

⎤⎥⎥⎥⎥⎥⎥⎦ , (19)

where the p0,i(xi±1/2) are given by Eq. (16).
Suppose we are given initial data fulfilling the discrete equi-

librium (18) and �x = 0. It is then easy to check, that the semi-
discrete finite volume scheme (8) with the above reconstruction
of the primitive variables, a numerical flux with property (10)
and the source term discretization (11) leads to ,

dui

dt
= 0, (20)

i.e., the discrete hydrostatic initial data is preserved exactly (or
up to machine precision). Thus, the scheme is well-balanced.

2.1.3. Second-order scheme

Although the scheme derived in the previous section is capable
to resolve a spatially second-order accurate discrete hydrostatic
equilibrium (Eq. (18)), any perturbation on top of the equilib-
rium is only resolved with spatial first-order accuracy. Therefore
a higher-order extension is desirable for practical applications.
In the following, we design a spatially second-order accurate ex-
tension of our well-balanced scheme.

Spatial second-order accuracy is achieved with a piecewise
linear reconstruction of the primitive variables. A standard non-
oscillatory piecewise linear reconstruction for some state vari-
able q is given by

qi(x) = qi + Dqi(x − xi), x ∈ Ii, (21)

where Dqi denotes a (limited) slope. A simple choice for the
slope is the so-called generalized minmod limiter (see, e.g.,
Kurganov & Tadmor 2000)

Dqi = minmod
(
θ

qi − qi−1

Δx
,

qi+1 − qi−1

2Δx
, θ

qi+1 − qi

Δx

)
, (22)
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where the minmod function is defined by

minmod(a1, a2, ...) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min j

{
a j

}
if a j > 0 ∀ j

max j

{
a j

}
if a j < 0 ∀ j

0 otherwise.

(23)

For θ = 1 (θ = 2), this yields the traditional minmod (mono-
tonized centered) limiter. In all numerical experiments presented
below we set θ = 2. Applying the standard reconstruction (21)
and (22) to density, velocity and pressure results in spatially
second-order accurate interface values.

However, a standard piecewise linear reconstruction of the
pressure will not preserve the discrete hydrostatic equilib-
rium (18). To design an equilibrium preserving pressure recon-
struction within the ith cell pi(x), we decompose it into an equi-
librium p0,i(x) and a perturbation p1,i(x) part (Botta et al. 2004;
Käppeli & Mishra 2014):

pi(x) = p0,i(x) + p1,i(x), x ∈ Ii. (24)

We stress that the perturbation part is not assumed to be small.
The equilibrium pressure reconstruction p0,i(x) is simply given
by Eq. (13). Note that no special equilibrium preserving recon-
struction needs to be applied to the density, on account of the
assumed piecewise constant equilibrium distribution (14).

The data for the reconstruction of the pressure perturbation
p1,i(x) is obtained by extrapolating the equilibrium pressure re-
construction p0,i(x) of the ith cell to the neighboring cells i − 1
and i + 1:

p1,i(xi−1) = pi−1 − p0,i(xi−1)

p1,i(xi+1) = pi+1 − p0,i(xi+1),
(25)

where the equilibrium pressure reconstruction p0,i(x) is given by
Eq. (13):

p0,i(xi−1) = pi +
ρi−1 + ρi

2
φi − φi−1

Δx
Δx

p0,i(xi+1) = pi − ρi + ρi+1

2
φi+1 − φi

Δx
Δx. (26)

Note that p1,i(xi) = pi − p0,i(xi) = 0 holds, i.e., the equilibrium
reconstruction equals the cell average pi at the cell center. Now,
a piecewise linear reconstruction (21) and (22) can be applied
to the pressure perturbation in a straightforward manner. The re-
construction is sketched in Fig. 1.

In summary, the cell interface extrapolated variables read

wi∓1/2± =

⎡⎢⎢⎢⎢⎢⎢⎣
ρi(xi∓1/2)
�x,i(xi∓1/2)

p0,i(xi∓1/2) + p1,i(xi∓1/2)

⎤⎥⎥⎥⎥⎥⎥⎦ , (27)

where p0,i(xi±1/2) is given by Eq. (16).
Note that if we are given data fulfilling the discrete hy-

drostatic equilibrium (18), then the reconstruction preserves
the equilibrium exactly (or up to machine precision) since in
this case the pressure perturbation vanishes by design, i.e.,
p1,i(x) = 0. Hence, the scheme is still well-balanced. But now,
thanks to the piecewise linear reconstruction of the equilibrium
perturbation, the scheme is also spatially second-order accurate
for perturbations of the equilibrium.

x
xi−1 xi xi+1xi−1/2 xi+1/2

p(x)

p0,i(x)

pi−1

pi

pi+1

Fig. 1. Piecewise linear well-balanced reconstruction of the pressure.
The pressure profile (black line) within the ith cell is decomposed into
an equilibrium (blue line) and a perturbation part p(x) = p0,i(x)+ p1,i(x).
The equilibrium pressure p0,i(x) is simply given by Eq. (13). The point
values of the perturbation are then computed at neighboring cell cen-
ters xi±1 by extrapolation of the equilibrium pressure reconstruction
p0,i(xi±1). A piecewise linear monotonicity preserving reconstruction
can then be applied to the pressure perturbation data, i.e., p1,i(xi±1) =
pi±1 − p0,i(xi±1) and p1,i(xi) = 0.

2.2. Time integration

The temporal domain is discretized into time steps Δtn =
tn+1 − tn where the superscript n labels the different time lev-
els. The system of ordinary differential equations (ODE) (8) can
then be integrated in time with a suitable explicit or implicit in-
tegrator (see, e.g., Gottlieb et al. 2001).

For instance, a fully discrete first-order scheme results with
the simple explicit Euler time integration

un+1
i = un

i + Δtn L(un), (28)

where L stands for the right hand side of Eq. (8) with the gravi-
tational source term Eq. (11) and the spatially first-order hydro-
static reconstruction Eq. (19).

For full second-order accuracy, we use the second-order
strong stability preserving (SSP) Runge-Kutta time stepping
(Gottlieb et al. 2001)

u(1)
i = un

i + Δtn L(un),

u(2)
i = u(1)

i + Δtn L(u(1)),

un+1
i =

1
2

(
u(1)

i + u(2)
i

)
, (29)

where now the spatially second-order hydrostatic equilibrium re-
construction Eq. (27) is used.

We emphasize, that implicit time integrators could also be
used. Though, for our convenience, we only present results com-
puted with the above explicit time integrators.

2.3. Multi-dimensional extension

We now describe the extension of the above schemes for hydro-
static equilibrium to the multi-dimensional case. Unfortunately,
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the resulting scheme is only exact, i.e., well-balanced, if the di-
rection of the gravitational force is exactly aligned with one co-
ordinate axis or the fluid has constant density. However, as we
demonstrate in Sect. 3.4, the scheme also considerably improves
the preservation of hydrostatic equilibrium in this suboptimal
case.

For the sake of simplicity of presentation, we treat the
two-dimensional Cartesian case explicitly and the extension to
other geometries and three dimensions is analogous. The two-
dimensional Euler equations with gravity in Cartesian coordi-
nates are given by

∂u
∂t
+
∂F
∂x
+
∂G
∂y
= S (30)

with

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρ
ρ�x
ρ�y
E

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρ�x
ρ�2x + p
ρ�y�x

(E + p)�x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρ�y
ρ�x�y
ρ�2y + p

(E + p)�y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (31)

and

S = Sx + Sy = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
ρ
0
ρ�x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∂φ

∂x
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
ρ
ρ�y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∂φ

∂y
. (32)

The primitive variables are given by w = [ρ, �x, �y, p]T .
Space is discretized into cells or finite volumes Ii, j =

[xi−1/2, xi+1/2] × [y j−1/2, y j+1/2] of uniform (for simplicity) size
Δx = xi+1/2 − xi−1/2 and Δy = y j+1/2 − y j−1/2. By integrating (30)
over a cell Ii, j we obtain a semi-discrete scheme for the evolution
of the cell-averaged conserved quantities ui, j

dui, j

dt
= − 1
Δx

(
Fi+1/2, j − Fi−1/2, j

)

− 1
Δy

(
Gi, j+1/2 − Gi, j−1/2

)
+ Si, j,

(33)

where Fi+1/2, j = F (wi+1/2−, j,wi+1/2+, j) and Gi, j+1/2 =
G(wi, j+1/2−,wi, j+1/2+) are the numerical fluxes in the respective
direction and Si, j is the gravity source term. The wi+1/2±, j and
wi, j+1/2± are the cell interface extrapolated primitive variables.

The discrete gravitational source term is evaluated by stan-
dard spatially second-oder accurate centered differences:

Si, j = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
ρi, j

0
(ρ�x)i, j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
φi+1, j − φi−1, j

2Δx
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
ρi, j

(ρ�y)i, j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
φi, j+1 − φi, j−1

2Δy
· (34)

The hydrostatic reconstruction of Sects. 2.1.1–2.1.3 can then by
applied in x- and y-direction independently:

wi∓1/2±, j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρi, j(xi∓1/2, y j)
�x,i, j(xi∓1/2, y j)
�y,i, j(xi∓1/2, y j)

p0,i, j(xi∓1/2, y j) + p1,i, j(xi∓1/2, y j)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (35)

and

wi, j∓1/2± =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρi, j(xi, y j∓1/2)
�x,i, j(xi, y j∓1/2)
�y,i, j(xi, y j∓1/2)

p0,i, j(xi, y j∓1/2) + p1,i, j(xi, y j∓1/2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (36)

where the density and the velocity are reconstructed piecewise
linearly in a standard way.

As in the one-dimensional case, the pressure reconstruction
proceeds in two steps. First the equilibrium pressure is recon-
structed to cell interfaces p0,i, j(xi∓1/2, y j) and p0,i, j(xi, y j∓1/2) by
applying Eq. (16) in a straightforward dimension-by-dimension
manner

p0,i, j(xi−1/2, y j) = pi, j + ρi, j
φi , j − φi−1, j

Δx
Δx
2

p0,i, j(xi+1/2, y j) = pi, j − ρi, j
φi+1, j − φi , j

Δx
Δx
2

p0,i, j(xi, y j−1/2) = pi, j + ρi, j
φi, j − φi, j−1

Δy

Δy

2

p0,i, j(xi, y j+1/2) = pi, j − ρi, j
φi, j+1 − φi, j

Δy

Δy

2
·

(37)

The equilibrium perturbations at cell interface p1,i, j(xi∓1/2, y j)
and p1,i, j(xi, y j∓1/2) are also obtained by applying the procedure
outlined in Sect. 2.1.3 in a dimension-by-dimension manner.

It follows from a simple calculation (analogue to the deriva-
tion of Eq. (18)), that the two-dimensional equilibrium preserved
by the hydrostatic reconstruction would be

pi+1, j − pi, j

Δx
= −ρi, j + ρi+1, j

2

φi+1, j − φi, j

Δx
pi, j+1 − pi, j

Δy
= −ρi, j + ρi, j+1

2

φi, j+1 − φi, j

Δy
·

At first sight, the latter two expressions seem to be suitable dis-
cretizations of hydrostatic equilibrium (5) in two dimensions.
However, it turns out that this is only true if a discrete curl
operator applied to the right-hand-side of the above equations
vanishes, i.e., the integrability condition for (5) is fulfilled in a
discrete sense. This is in general not the case and therefore our
scheme is in general not mathematically well-balanced in the
multidimensional case. However, we repeat that the scheme is
well-balanced if the direction of the gravitational force is exactly
aligned with a coordinate axis.

3. Numerical tests

In this section we present a series of numerical experiments to
demonstrate the applicability and performance of the proposed
well-balanced scheme. For comparison, we also present results
obtained with a standard (unbalanced) base scheme, i.e., without
hydrostatic reconstruction. Moreover, given the limited resolu-
tion and utility of first-order schemes, only results obtained with
the second-order schemes are shown.

To specify a timescale on which a model reacts to perturba-
tions of its hydrostatic equilibrium, we set the sound crossing
time as

τsound = 2
∫ x1

x0

dx
cs
, (38)

where cs is the speed of sound and the integral has to be taken
over the extent of the stationary state of interest.

In some test cases, we also quantify the accuracy of the nu-
merically obtained solutions by computing the errors as

Err = ‖qi − qref
i ‖1, (39)

with ‖.‖1 denotes the L1-norm. Here q is a selected quantity of
interest (e.g., density, pressure, ...) and qref is a reference solu-
tion, i.e., the stationary state to be maintained discretely or an
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interpolated numerically obtained reference solution on a very
fine mesh.

In all simulations presented below, we have employed a CFL
number of CCFL = 0.9.

3.1. Hydrostatic atmospheres

As a first numerical experiment, we consider the very simple set-
ting of a one-dimensional hydrostatic atmosphere in a constant
gravitational field

∂p
∂x
= −ρg, (40)

where g is the constant gravitational acceleration. Then, the
gravitational potential is a simple linear function φ(x) = gx.
This type of setup is relevant for the simulation of wave prop-
agation in stellar atmospheres (e.g., Bogdan et al. 2003; Fuchs
et al. 2010).

To explicitly integrate (40) an assumption on a thermody-
namic variable (e.g., entropy or temperature) profile has to be
made. We consider two idealized cases: isentropic and isother-
mal profiles. Note that we use the scheme proposed in this paper.
This has to be contrasted with the scheme of Käppeli & Mishra
(2014), which could handle either the isentropic or the isother-
mal case at a time. Arbitrary entropy/temperature stratifications
are considered in the astrophysical applications below.

For this example, we assume a monoatomic ideal gas EoS

p = RρT = es/cvργ = (γ − 1)ρe, (41)

where we set R = 1, cv = 3R/2 and γ = 5/3.
The computational domain is set to [0, L], where L = 2, and

is uniformly discretized by N cells, i.e., we set the cell size Δx =
L/N, the cell interfaces xi+1/2 = Δxi, i = 0, ...,N, and the cell
centers xi = (xi−1/2 + xi+1/2)/2, i = 1, ...,N. We choose N =
32, 64, 128, 256, 512, 1024, 2048 for the resolution, respectively.

The density and pressure are then initialized by solving the
discrete hydrostatic equilibrium

p(ρi+1,Θi+1) − p(ρi,Θi)
Δx

= −ρi + ρi+1

2
φi+1 − φi

Δx
(42)

numerically with a Newton-Raphson method. HereΘ is assumed
to be given and stands for either specific entropy s or tempera-
ture T .

The boundaries are treated as follows. As demanded by a
second-order scheme, we specify two ghost cells at each end
of the physical domain. For the density ρ, velocity �x and the
thermodynamic variable Θ we apply very simple transmissive
boundary conditions with zero-order extrapolation:

q0 = q1, q−1 = q1 and qN+1 = qN , qN+2 = qN , (43)

where q = ρ, �x,Θ. The pressure is extrapolated according
the discrete hydrostatic equilibrium, i.e., by numerically solv-
ing Eq. (42) for the ghost cells starting from the pressure of the
last cell of the physical domain.

For the isentropic atmosphere, we set the density and pres-
sure to ρ0 = 1 and p0 = 1 at the base, i.e., at x = 0. This results in
an entropy s0 = R/(γ− 1) ln(p0/ρ

γ
0), which is put over the whole

domain. The hydrostatic atmosphere is then initialized by solv-
ing numerically Eq. (42) with the EoS (41) and s0. The resulting
isentropic atmosphere has a sound crossing time of τsound ≈ 4.4.

Similarly for the isothermal atmosphere, we set the density
and pressure to ρ0 = 1 and p0 = 1 at the base. This yields a tem-
perature of T0 = p/Rρ = 1 over the whole domain. The hydro-
static atmosphere is then initialized numerically. The resulting
isothermal atmosphere has a sound crossing time of τsound ≈ 3.2.

Fig. 2. L1-norm of the difference between the initial and final pressure
for the isentropic (solid and dashed blue lines) and isothermal (solid and
dashed red lines) atmospheres. The solid and dashed lines represent the
simulation performed with the standard and the well-balanced (WB)
schemes, respectively. The apparent third-order superconvergence of
the standard scheme is explained in the text.

3.1.1. Well-balanced property

We begin by numerically verifying the well-balancing properties
of the scheme. To this end we evolve the isentropic and isother-
mal atmospheres with the well-balanced and a standard second-
order scheme for two sound crossing times, i.e., tf = 2τsound. At
the end of the simulation, we compute the L1-norm of the dif-
ference (39) between the initial and the final state. This reflects
how well a discrete hydrostatic state can be preserved by the
corresponding scheme.

The results for the isentropic and isothermal atmospheres are
shown in Fig. 2 for the pressure. The results for the density are
similar and are not displayed. From the figure it is clear that
the well-balanced scheme is able to maintain the discrete equi-
librium up to machine precision. The standard scheme is not
able to preserve the discrete hydrostatic equilibrium exactly. The
committed error is proportional to the scheme’s truncation error,
which scales as a certain power l of the mesh width Δxl.

From the figure, it appears that the standard scheme con-
verges to the discrete hydrostatic atmosphere, i.e., the initial
state, with roughly the third power of the mesh width. At first
sight, this superconvergence may seem surprising since the
schemes are only of second-order accuracy. However, such a
superconvergence has been observed before and has been at-
tributed to the fact that the base scheme may be asymptotically
high order, i.e, it has a higher order of accuracy at a steady state,
compared to its designed order of accuracy, see Fjordholm et al.
(2011).

3.1.2. Wave propagation

Next we test the ability of the well-balanced and the standard
schemes to propagate waves on top of the hydrostatic atmo-
spheres. For brevity, only the results for the isentropic atmo-
sphere are shown. The results for the isothermal atmosphere are
analog. We impose a periodic velocity perturbation at the bottom
of the atmosphere

vnx,m = A sin

(
6

2πtn

tf

)
,
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Fig. 3. L1-norm error between the numerical and reference (N = 8192)
velocity for the isentropic atmosphere. The blue, red and green line cor-
respond to the wave amplitudes A = 10−8, 10−6, 10−1, respectively. The
solid and dashed lines represent the simulation performed with the stan-
dard and the well-balanced (WB) schemes, respectively.

where m = −1, 0 is the boundary cell index. The amplitude A
is varied in order to compare the ability of the schemes for the
propagation of small (A = 10−8), intermediate (A = 10−6) and
large (A = 10−1) waves. The simulation is stopped at tf = 1.8,
shortly before the waves reach the upper boundary.

The errors in velocity for the standard and well-balanced
schemes are shown in Fig. 3. The errors were computed on the
basis of a reference solution obtained with the well-balanced
scheme at high resolution (N = 8192).

For the small amplitude A = 10−8 case, we observe the su-
periority of the well-balanced (dashed blue) versus the standard
(solid blue) scheme, i.e., the error is orders of magnitude smaller.
The well-balanced scheme shows a rough second-order conver-
gence. Although way off, the standard schemes seems to show
third-order convergence. However, this is related to the super-
convergence already mentioned in Sect. 3.1.1. Figure 4 shows
the velocity profile for the standard (solid red) and the well-
balanced (dashed red) schemes for N = 512, together with the
reference solution (solid blue). The well-balanced scheme is able
to resolve the wave pattern very accurately. On the other hand,
the standard scheme shows spurious deviations because of its
inability to properly resolve the hydrostatic background.

For the large amplitude (A = 10−1) case, the standard and the
well-balanced schemes do equally well. Both show a rate of con-
vergence close to one. This has to be expected, because the large
amplitude waves quickly steepen into saw-tooth waves, propa-
gating up the atmosphere. The velocity profile for both schemes
and the reference solution are shown in Fig. 4. This case shows,
that the well-balanced reconstruction does not destroy the shock-
capturing properties of the base scheme.

The intermediate amplitude (A = 10−6) case is interesting.
At low resolutions (≤128), the well-balanced scheme is clearly
superior. In this regime, the standard scheme shows supercon-
vergence with roughly order three. This is the regime, where
the committed error is dominated by the hydrostatic atmosphere,
while the wave pattern is totally unresolved. At higher resolu-
tions (>128), the committed error is dominated by the wave pat-
tern and the expected second-order accuracy is recovered. The
well-balanced scheme shows a rate of convergence of roughly
two over the full resolution range.

3.2. Toy model of core-collapse

We consider a toy model of core-collapse supernova from Janka
et al. (1993). This test simulates in spherical symmetry the col-
lapse, bounce, evolution of the induced shock waves and forma-
tion of a proto-neutron star (PNS) for a simplified model of a
stellar core and EoS. The forming PNS is nearly in hydrostatic
equilibrium as it evolves very slowly on a timescale, very much
longer compared to the hydrostatic timescale (Gρ)−1/2. Since the
PNS is the result of a very dynamic process, it is interesting to
investigate how accurately the well-balanced scheme captures
the resulting near equilibrium state. Moreover, the problem also
tests the robustness of the scheme with non-ideal EoS and strong
shocks. Note that the gravitational potential is dictated by self-
gravity in this test.

The initial configuration is an equilibrium polytrope with
polytropic index n = 3 (corresponding to a polytropic γ = 4/3),
polytropic constant K = 4.897× 1014 (in cgs units) and a central
density ρc = 1010 g/cm3. This corresponds to a total mass of
M ≈ 1.44 M
 and a radius R ≈ 1.54 × 103 km.

The EoS is simple, analytic and consists of a purely poly-
tropic part and a thermal part. The total pressure and internal
energy density are given by

p = pp + pth (44)

(ρe) = (ρe)p + (ρe)th, (45)

where the subscripts refer to the respective part.
The polytropic part is given by

pp = pp(ρ) =

{
K1ρ

γ1 ρ < ρnuc

K2ρ
γ2 ρ ≥ ρnuc.

(46)

The nuclear density parameter ρnuc marks the separation from
the low density (i.e., subnuclear) regime with polytropic con-
stant K1 and exponent γ1 and the high density (i.e., supranuclear)
regime with polytropic constant K2 and exponent γ2. The poly-
tropic internal energy density is given by

(ρe)p = (ρe)p(ρ) =

{
E1ρ

γ1 ρ < ρnuc

E2ρ
γ2 + E3ρ ρ ≥ ρnuc,

(47)

where E1, E2 and E3 are constants. The constants follow from
requiring continuity of pressure and internal energy at ρnuc once
the parameters ρnuc, K1, γ1 and γ2 have been fixed:

E1 =
K1

γ1 − 1
, E2 =

γ1 − 1
γ2 − 1

E1ρ
γ1−γ2
nuc , E3 =

γ2 − γ1

γ2 − 1
E1ρ

γ1−1
nuc ,

K2 =
E2

γ2 − 1
·

For the polytropic constant we have used K1 = 4.897× 1014 cgs,
i.e., the same value as for computing the equilibrium polytrope.
For the subnuclear density regime we set the polytropic exponent
to γ1 = 1.325. This is slightly smaller than the equilibrium con-
figuration and leads to the collapse of the polytrope. For supranu-
clear densities we set the polytropic exponent to γ2 = 2.5. This
mimics the stiffening of the EoS due to repulsive nuclear forces
and nucleon degeneracy.

The thermal pressure pth is related to the thermal internal
energy density (ρe)th through an ideal gas relation with ratio of
specific heats γth

pth = (γth − 1)(ρe)th. (48)
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Fig. 4. Velocity profile for the small (left) and large (right) amplitude waves running down the isentropic atmosphere. The solid/dashed red lines
are the solutions obtained with the standard/well-balanced scheme with N = 512, respectively. In solid blue is also shown a reference solution
obtained with the well-balanced scheme and N = 8192.

Table 1. Characteristic data for the toy core-collapse model.

N Δr1 a − 1 tb ρb ρf

[m] [ms] [1014g/cm3] [1014g/cm3]

128 2000 2.292 × 10−2 91.27 91.79 3.52 3.66 0.28 2.91
256 1000 1.136 × 10−2 91.28 91.39 3.61 3.64 3.07 2.82
512 500 5.659 × 10−3 91.25 91.28 3.64 3.63 2.92 2.81

1024 250 2.656 × 10−3 91.19 91.25 3.60 3.65 2.83 2.82
8192 25 3.901 × 10−4 91.18 91.18 3.60 3.60 2.82 2.82

Notes. N is the resolution, Δr1 the size of the first grid cell and a the grid scaling parameter for the logarithmic grid. tb is the bounce time, ρb the
bounce density and ρf the final central density for the standard (left) and well-balanced scheme (right), respectively.

The thermal internal energy density is computed by subtracting
the polytropic internal energy density from the total one

(ρe)th = (ρe) − (ρe)p. (49)

We use the value γth = 1.5 corresponding to a mixture of rela-
tivistic and non-relativistic gases. For further details we refer to
Janka et al. (1993).

The polytrope is then set up on the radial domain [0, 1.5 ×
103] km and discretized by N = 128, 256, 512, 1024, 8192 cells
with an exponentially growing cell spacing Δri = ai−1Δr1, i =
2, ...,N. Here a ≥ 1 is the grid scaling parameter and Δr1 the size
of the first cell. See Table 1 for their resolution dependent values.
For the inner boundary we use reflective conditions. On the outer
boundary we use zeroth-order extrapolation. This avoids the use
of an artificial atmosphere (the polytrope has a finite radius), but
allows for matter in or outflow. However, we stop the simulation
before any significant matter outflow due to the explosion takes
place.

We then evolved numerically the polytrope with the standard
and the new well-balanced second-order schemes for all the res-
olutions from t = 0 up to t = 110 ms. The polytrope starts to
collapse due to the pressure deficit stemming from the lowering
of the EoS’s polytropic exponent from 4/3 to 1.325. This col-
lapse goes on until the central density exceeds ρnuc, where the
EoS stiffens. This allows the so-called inner core, i.e., the inner
part that collapses subsonically, to progressively halt the collapse
and, eventually, to find a new equilibrium configuration, i.e., the
PNS. Starting at the center of the inner core, where the density
is largest, successive mass shells are gradually stopped. Pressure

waves move out in radius and accumulate near the sonic point,
i.e., the point where the collapse velocity equals the sound ve-
locity, where they steepen into a shock wave. Due to its inertia,
the inner core overshoots its equilibrium and rebounds behind
the shock wave. This is the so-called core bounce. In the follow-
ing we define the time of bounce as the time when the average
density within the innermost 2 km reaches its maximum.

The bounce of the inner core generates outward directed ve-
locities at and somewhat below the shock. An explosion shock is
born. Schematically, the explosion shock is launched and ener-
gized by the rebounding inner core “piston” thereby gravitation-
ally unbinding a substantial amount of mass. With the chosen
parameters, the toy model of core-collapse always results in a
formidable explosion.

In Table 1 we have compiled the time and the density at
bounce for the standard and well-balanced schemes. The sim-
ulations with N = 8192, giving a central resolution of 25 m,
serve as references. Regarding the time of bounce, we observe
that all the simulations give results that differs from each other
only by a few tenths of ms. Similarly, the bounce density is also
somewhat scattered around 3.6 × 1014 g/cm3. But nevertheless,
we observe a slight trend that the well-balanced scheme seems
to bounce slightly later.

The PNS is slowly evolving towards an equilibrium. Its hy-
drostatic timescale, i.e., the typical time in which an equilib-
rium reacts to perturbations, is very short τhydro = (Gρ̄)−1/2 ≈
0.254 ms. Here we define ρ̄ as the average density over the re-
gion where ρ ≥ ρnuc. A measure of how well a numerical scheme
can resolve this near-equilibrium is given by the evolution of the
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Fig. 5. Central density as a function of time for the standard (left panel) and the well-balanced (right panel) scheme. In both panels the (blue)
dashed, (red) dash-dotted, (green) dotted and the (black) solid line represent the simulation with N = 128, 256, 512, 8192, respectively.

Fig. 6. Density as a function of radius for the standard and well-balanced schemes with N = 256 (left panel) and N = 512 (right panel). In both
panels the (black) solid, (blue) dashed and the (red) dash-dotted line represent the reference solution (the well-balanced with N = 8192 in both
panels), the solutions computed with standard and the well-balanced scheme, respectively. For both resolution, the well-balanced solutions are
indistinguishable from the reference.

central density. In Fig. 5 we show the central density as a func-
tion of time. The reference solutions (solid black lines) show
that after the bounce and a few following oscillations, the cen-
tral density remains nearly constant. From the figure we observe
that the standard scheme has difficulties to maintain the central
density at low resolutions N < 512. Even for N = 512 a slight
drift is visible. On the other hand, the well-balanced scheme re-
solves the equilibrium pretty well at all resolutions. The final
central density is presented in Table 1. We note that the well-
balanced scheme with N = 128 slightly overestimates the final
central density. For N > 128 the well-balanced scheme is very
close to the one of the reference solution. However, the standard
scheme seems to need a resolution of at least N = 1024 in order
to be close to the reference final central density.

In Fig. 6 we show the density profile at final time t = 110.
At this time the main shock wave, initiated during core bounce,
is very close to the outer boundary. The flow below 100 km is
nearly hydrostatic with Mach numbers MS < 0.01 at r = 100 km
and MS < 0.001 below r = 50 km. In between r = 100 km and
the main shock wave there are some secondary shock waves,
initiated through post-bounce oscillations of the PNS, running
up the polytrope. In the left (right) panel are shown the solu-
tions obtained with the standard and well-balanced scheme with

N = 256 (N = 512). In both panels the solution obtained with
the well-balanced scheme and N = 8192 serves as a reference.
We note that in both panels the solutions from the well-balanced
scheme are indistinguishable from the reference solution. On the
other hand, the solutions from the standard scheme gives a very
inaccurate density profile for N = 256. Even for N = 512 there
are still some visible deviations in the region 10 ≤ r ≤ 100 km.
Note that in this region the density varies by roughly four orders
of magnitude. The well-balanced scheme has no problems with
these steep density variations.

In Table 2 we have compiled some integrated quantities at
final time. There, Eint, Ekin and Egrav are the internal, kinetic
and gravitational energy integrated of the whole domain, respec-
tively. The error in total energy conservation is given by ΔE(t) =
Etot(t)−Etot(0), where the total energy is Etot = Eint+Ekin+Egrav.
We observe that the well-balanced scheme for N ≥ 256 results
in internal and gravitational energies that lie within a few 0.1%
from the reference values. Even for N = 128 the error is of the
order of only ≈1−2%. On the other hand, for N = 128, 256, 512
the standard scheme deviates by more than 49%, 16% and 4%,
respectively. We note that it takes a resolution of N ≥ 1024
for the standard scheme to be as accurate as the well-balanced
scheme with N = 256. The internal and gravitational energies
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Fig. 7. Energies and total energy conservation as a function of time from the standard (left) and well-balanced (right) scheme with N = 512. In
both panels, the solid (blue) line is the internal energy Eint, the dashed (green) line is the kinetic energy Ekin, the dash-dotted (red) line is minus
the gravitational energy −Egrav and the dotted (black) line is the total energy conservation ΔE.

Table 2. Integrated quantities for the toy core-collapse model at final time.

N Eint Ekin Egrav ΔE Eexpl Meject

1051[erg] 1051[erg] 1051[erg] 1051[erg] 1051[erg] [M
]
128 58.8 119.5 2.150 3.912 –55.7 –121.1 +4.236 +1.250 4.033 6.542 0.237 0.265
256 136.4 117.0 3.339 3.630 –142.8 –119.0 –3.162 +0.608 5.730 6.107 0.250 0.256
512 122.2 117.0 3.507 3.616 –126.1 –119.3 –1.507 +0.273 5.925 6.051 0.253 0.254

1024 117.9 117.2 3.551 3.588 –120.5 –119.6 –0.171 +0.097 5.971 6.009 0.254 0.254
8192 117.3 117.3 3.571 3.574 –119.8 –119.8 +0.008 +0.010 5.988 5.989 0.254 0.254

Notes. N is the resolution, Eint the internal energy, Ekin the kinetic energy, Egrav the gravitational energy, ΔE = Etot(t = 110) − Etot(t = 0), Eexpl the
explosion energy and Meject the ejected mass for the standard (left) and well-balanced scheme (right), respectively.

are captured so well by the well-balanced scheme, because the
energies are dominated by matter nearly in hydrostatic equilib-
rium, i.e., the PNS.

For the kinetic energy the differences between the standard
and the well-balanced scheme are less pronounced for resolu-
tions N ≥ 512. Both schemes show errors of roughly ≈1%. But
for N = 128, 256 the well-balanced scheme shows significantly
less deviation from the reference value.

The superior performance of the well-balanced scheme is
also reflected in the error of total energy conservation. Again
we attribute this to the fact that a large part of matter is in near
hydrostatic equilibrium, which is very well captured by the well-
balanced scheme.

In Fig. 7 we display the internal, kinetic and gravitational
energy and total energy conservation error as a function of time
for both schemes at N = 512. We note especially that the energy
conservation error grows steadily after bounce (t > tb) for the
standard scheme. The well-balanced scheme shows a roughly
constant total energy error.

We have also computed the total explosion energy and
ejected mass for both schemes and all resolutions. We define the
total explosion energy as the weighted energy integral over the
computational domain

Eexpl =

∫ R

0
ρetotχ(etot)4πr2dr, (50)

where etot = e + v2/2 + φ is the total specific energy and the
weighting function is

χ(etot) =

{
1 if etot > 0
0 else.

(51)

Similarly we define the total ejected mass as

Mejec =

∫ R

0
ρχ(etot)4πr2dr. (52)

These numbers for all the simulations at final time are given in
Table 2. There we see that the two schemes do roughly equally
well.

3.3. Three-dimensional stellar convection

Next we consider a simplified model for convective carbon shell
burning in a massive star. In recent years, the multi-dimensional
simulation of certain phases of stellar evolution has attracted
considerable attention, see, e.g., Arnett & Meakin (2011), Brun
& Palacios (2009), Meakin & Arnett (2007, 2006), Viallet et al.
(2011), Woodward et al. (2013) and references therein. As the
convective motions are realized on top of a hydrostatic state, we
believe that well-balanced schemes are ideally suited for simu-
lating such configurations. However, given the numerical focus
of this paper we apply considerable simplifications to the physi-
cal modeling for the sake of presentation.

We consider a 20 M
 star with Z = 0.02 metallicity stem-
ming from a stellar evolution NuGrid data set (Pignatari et al.
2013; Pignatari 2014, priv. comm.). Carbon shell burning ignites
when the star is ∼8.9 × 106 yr from the zero-age main sequence
and lasts for ∼15 yr. Around that time, the star shows the typical
onion skin structure. The carbon shell overlies an oxygen-neon
core and underlies helium and hydrogen burning shells.

As the computational domain we choose a spherical wedge
embedded in the equatorial plane. The radial extent is set to
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Fig. 8. Spherically averaged profiles at initial time of the stellar convection simulation. Left panel: density (solid line) and pressure (dashed line).
Right panel: temperature (solid line) and specific entropy (dashed line). The dotted lines represent the original profiles from the one-dimensional
stellar evolution code. The red region is where the energy source term is non-zero.

r ∈ [5′000, 40′000] km, which encompasses the convective car-
bon burning region and parts of the stably stratified oxygen-neon
core below and carbon shell above. In azimuthal and polar direc-
tion we set ϕ ∈ [0, π/3] rad and θ ∈ [π/3, 2π/3] rad, respectively.
The boundaries in radial direction are reflecting, i.e., solid wall
boundary conditions, and the azimuthal and polar directions are
periodic.

We use the stellar EoS thoroughly described in Timmes &
Swesty (2000), which includes contributions of (photon) radia-
tion, nuclei, electrons and positrons. The radiation is treated as
a blackbody in local thermodynamic equilibrium and the nuclei
are modeled by an ideal gas. The electrons and positrons are
treated in a tabular manner together with a thermodynamically
consistent interpolation procedure. We use the publicly available
version of this EoS, Timmes (2013).

Instead of solving a suitable nuclear reaction network for car-
bon burning, we impose a constant energy release in a region at
the base of the carbon shell

ε =

{
q if r ∈ [1.19, 1.35]× 104 km
0 elsewhere,

where q = 2×1011 erg/g/s. We note that this heating rate is much
stronger (∼100 times) than with a nuclear reaction network. We
nevertheless evolve as passively advected scalars the abundances
of H1, He4, C12, O16, Ne20 and Si28 to get the pressure contribu-
tions from nuclei correctly, i.e., in addition to Eqs. (1)−(3), we
evolve the following equations

∂ρXi

∂t
+ ∇ · (ρXi�) = 0,

where i = H,He,C,O,Ne, Si. The mass fractions fulfill the
constraint that their sum is equal to one. When evolving the
above equations discretely this constraint is usually violated.
Well-balancing does not help to fulfill the constraint and special
methods such as the Consistent Multi-fluid Advection (CMA) by
Plewa & Müller (1999) would have to be used. But since we are
not performing a detailed chemical evolution, we have ignored
the constraint on the mass fractions. However, our well-balanced
scheme could be combined with the CMA method in a straight-
forward manner. We further ignore the effects of radiative diffu-
sion, which may be justified by the high opacity and our short
simulation time (∼1 h of physical time).

We numerically evolve the three-dimensional equations of
hydrodynamics in spherical coordinates with a source term ρε
added to the right hand-side of the energy Eq. (3). For the ra-
dial direction we have chosen two resolutions Nr = 64 128
corresponding to uniform cell sizes of Δr ≈ 547, 273 km, re-
spectively. The azimuthal and polar directions are discretized by
Nϕ = Nθ = 64 cells, which corresponds to an angular cell extent
of Δϕ = Δθ = π/192 ≈ 1.636 × 10−2 rad.

The initial conditions are built by putting into discrete hy-
drostatic equilibrium the profiles from the one-dimensional stel-
lar evolution simulation. To this end, we solve for the pressure
in Eq. (18) using the Timmes EoS and assuming the density,
entropy, composition and gravitational potential from the stellar
evolution profile. The result of this discrete hydrostatic integra-
tion is shown in Fig. 8 for the Nr = 128 radial resolution. In the
left panel are displayed the density (solid line) and the pressure
(dashed line). The right panel of the same figure displays the
temperature (solid line) together with specific entropy (dashed
line). In both panels, the dotted lines represent the respective
quantity from the one-dimensional stellar evolution profile. The
region where the entropy is flat is the convective carbon burn-
ing region. The stably stratified regions below and above are the
oxygen-neon core and the inactive parts of the carbon shell, re-
spectively. We observe that our initial conditions and the orig-
inal stellar evolution simulation profiles are not exactly identi-
cal. However, given the change in EoS and the simplified phys-
ical modeling, we think that our initial conditions still reflect
the conditions from the stellar evolution simulation, quite well.
Moreover, the region where the heating source term is non-zero
(mimicking nuclear burning) is shown in red. We also add a ran-
dom velocity perturbation in the region r ∈ [1.2, 2.2]×104 km of
size 10−3 with respect to the local sound speed. Note that we do
not incorporate self-gravity and the spherically symmetric gravi-
tational potential is left unchanged during the simulations. Since
the gravity force is then exactly aligned with the radial axis, the
well-balanced pressure reconstruction is mathematically well-
balanced even in this three-dimensional setting.

We then evolved the setup with the standard and the well-
balanced schemes at the two radial resolutions for 3600 s of
physical time. This is indeed just a tiny fraction of the duration
of the carbon shell burning phase, but nevertheless long enough
to show the improvements due to the well-balanced reconstruc-
tion. In Fig. 9 we show the spherically averaged density/pressure
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Fig. 9. Spherically averaged profiles at the end of the simulation for the resolution Nr = 128. In each panel, the black lines are the initial profiles,
the blue lines were computed with the standard scheme and the red lines with the well-balanced scheme. Left panel: density (solid lines) and
pressure (dashed lines) profiles. Right panel: temperature (solid lines) and specific entropy (dashed lines) profiles. Note that the initial profiles are
nearly indistinguishable from the well-balanced profiles at final time.

Fig. 10. Spherically averaged kinetic energy as a function of time. The left panel was computed with the standard scheme and the right one with
the well-balanced scheme, both with radial resolution Nr = 128.

(left panel) and the temperature/specific entropy (right panel) at
final time for the high radial resolution Nr = 128 (the Nr = 64
simulation shows the same trends and is not shown for brevity).
In both panels, the blue lines stem from the standard scheme
and the red ones from the well-balanced scheme. As reference,
the black lines show the initial profiles. From the left panel we
observe that the well-balanced scheme is able to maintain the
hydrostatic structure very well. It is only at the composition in-
terface between the core and the carbon shell and at the top of
the carbon shell that the density/pressure slightly differs from
the initial profile. The same applies to the temperature/specific
entropy profiles in the right panel. The standard scheme on the
other hand shows very strong deviations, especially near the
boundaries. Especially the temperature and the specific entropy
show some spurious features. We want to stress that the same
boundary conditions have been applied to the simulations with
the standard and well-balanced schemes1.

In Fig. 10 we show the spherically averaged kinetic energy as
a function of radius and time for the Nr = 128 radial resolution.
On the left (right) is shown the simulation with the standard

1 As a matter of fact, exactly the same subroutine was used to impose
the boundary conditions.

(well-balanced) scheme. Focusing on the well-balanced results
(right panel), we see a violent onset of convection which is
triggered by the initial velocity perturbations and the initially
slightly negative gradient in specific entropy. These violent ini-
tial motions flatten the entropy gradient and then settle down,
reaching a steady state after roughly 1000 s. After 1500 s most
of the kinetic energy is contained in the convective carbon shell,
i.e., the region where the specific entropy is flat. Below the car-
bon shell no sizable motions are present as is expected due to
the absence of convection there. Above the convective region,
some wave motions are present. These waves are triggered by
convective plumes overshooting into the stably stratified layers.
The same applies for the well-balanced simulation with Nr = 64
radial resolution (not shown).

The situation is very different in the left panel of Fig. 10
showing the results from the standard scheme. There, most of
the kinetic energy is near the lower boundary. We attribute this
again to the lack of the standard scheme to resolve (a discrete)
hydrostatic equilibrium. This problem may be ameliorated by
using much higher numerical resolution, which, however, is
extremely costly in computational resources (especially in the
three-dimensional case considered here).
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Fig. 11. Density, temperature, electron abundance and radial velocity profiles. The black lines represent polar-averaged profiles of the innermost
250 km of a sophisticated axisymmetric simulation at time t = 250 ms post bounce. These profiles are then put into hydrostatic equilibrium and
used to initialize the three-dimensional simulation of the PNS. The red dots show a scatter plot of all the cells in the three-dimensional domain for
the resolution N = 50. Note that the red dots degenerate almost everywhere to a red line.

We observe that well-balancing greatly improves the simu-
lation of convective phenomena inside the evolved star consid-
ered here. Although our physical model was highly simplified,
we believe that well-balancing confers many advantages in more
physically refined models.

3.4. Three-dimensional proto-neutron star

As a final test, we simulate the hydrostatic evolution of a PNS
in three-dimensional Cartesian coordinates. As mentioned in
Sect. 2.3, the proposed scheme is only well-balanced if grav-
ity forces are aligned with one coordinate axis. This is indeed
not the case here. Hence, this test assesses the performance of
the scheme under suboptimal conditions.

We obtain the PNS profile from a sophisticated axisymmet-
ric Newtonian simulation of the collapsing core of a 15 M
 pro-
genitor. The simulation used the Lattimer-Swesty EoS with nu-
clear compressibility K = 220 MeV (LS220) and an advanced
spectral leakage scheme for the approximate neutrino transport
treatment. For details we refer to Perego et al. (2015). Figure 11
shows the innermost 250 km of the averaged (in polar direction)
density, temperature, electron abundance and radial velocity pro-
files at t = 250 ms after bounce. At this time the supernova shock
wave is between 110 and 170 km, which is visible in the radial
velocity panel. This disparity is due to shock oscillations caused

by the standing accretion shock instability. Below ≈100 km,
matter is subsonically accreting onto the PNS and underneath
≈50 km, matter is nearly in hydrostatic equilibrium.

The initial conditions are produced by putting into hydro-
static equilibrium the averaged (in polar direction) profiles from
the axisymmetric simulation. To this end, we integrate the hy-
drostatic equilibrium Eq. (12) using the LS220 EoS and assum-
ing the temperature, electron abundance and gravitational poten-
tial averaged (in polar direction) profiles from the axisymmetric
simulation. The velocity is simply set to zero. These hydrostatic
profiles are then mapped to our three-dimensional Cartesian do-
main D = [−50, 50]3 km3. The red dots in Fig. 11 represent a
scatter plot of the hydrostatic profiles in D. As apparent from the
figure, the hydrostatic integration has barely any influence on
the density structure, i.e., the configuration is indeed very close
to hydrostatic equilibrium.

The three-dimensional hydrostatic PNS is then evolved
with the well-balanced and the standard schemes for ≈40 ms,
corresponding to twenty sound crossing times, and three differ-
ent resolutions N = Nx = Ny = Nz = 50, 100, 200. The resolu-
tions correspond to cell sizes of Δx = Δy = Δz = 2, 1, 0.5 km,
respectively. The boundary conditions are treated in the same
manner as in the hydrostatic atmospheres case, i.e., Eq. (43), but
applied in a direction-by-direction manner.
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Fig. 12. Maximum density as a function of time for resolutions Δx = Δy = Δz = 2, 1, 0.5 km represented by the solid, dashed and dotted lines,
respectively. The blue lines have been obtained with the well-balanced scheme, while the red ones with the standard scheme. The right panel
shows a close-up to distinguish the well-balanced computations.

As a first measure on how well the numerical schemes are
able to resolve the hydrostatic equilibrium, we look at the tem-
poral evolution of the maximum density. In Fig. 12 we show the
evolution of the maximum density for the different schemes and
resolutions (solid, dashed and dotted blue/red lines for the res-
olution N = 50, 100, 200 and well-balanced/ standard scheme,
respectively). From the left panel of the figure it is apparent, that
the standard scheme (red lines) has enormous problems to keep
the density close to the initial value. Even the highest resolution
with 500 m mesh size (dotted red line) shows a steady decrease
by more than 1% in the maximum density. On the other hand,
the well-balanced schemes are able to hold the maximum den-
sity very well. In the right panel of Fig. 12 a close-up on the
well-balanced simulation is shown. We observe that the well-
balanced scheme is able to keep the maximum density within
≈0.2% at all resolutions.

In Fig. 13 we show the density, temperature, electron abun-
dance and specific entropy profiles at final time for the well-
balanced/standard (blue/red dots) with resolution N = 100, i.e.,
Δx = Δy = Δz = 1 km. As a reference the initial profiles
(solid black lines) are also shown. We observe that the well-
balanced scheme is nearly indistinguishable from the reference
black lines, which implies that the hydrostatic equilibrium is re-
solved very well. The standard scheme shows large spurious de-
viations. As a matter of fact, the well-balanced scheme maintains
the hydrostatic equilibrium.

Hence, we conclude that the well-balanced scheme consider-
ably improves the resolution of general multidimensional equi-
libria, even thought, it is not mathematically well-balanced in
the three-dimensional test case presented here.

4. Conclusion

We have presented a second-order well-balanced scheme for
hydrostatic equilibrium without any assumption of a thermal
equilibrium. The scheme relies on a pressure reconstruction
which is consistent with a spatially second-order accurate dis-
crete version of the underlying hydrostatic equilibrium. Given
this discrete reconstruction no assumption has to be made con-
cerning the thermal profile, such as isothermal or isentropic, of
the equilibrium. The well-balanced reconstruction is extremely
simple and computationally efficient, since it is only (very)

marginally more expensive than any (limited) piecewise linear
reconstruction in primitive variables. The gravitational source
terms are discretized with standard central differences. Therefore
the scheme can be integrated in existing codes with minimal ef-
fort. Moreover, it can be implemented within both explicit and
implicit time stepping schemes.

We have presented several test cases of astrophysical inter-
est. The one-dimensional tests confirm that the scheme is in-
deed well-balanced and that the numerical resolution of sys-
tems close to hydrostatic equilibrium is greatly improved, par-
ticularly at coarse grid resolutions. Results for wave propagation
in a hydrostatic atmosphere has shown a significant gain in accu-
racy with the well-balanced scheme, i.e., several orders of mag-
nitude for small amplitude waves. At larger wave amplitudes,
the well-balanced scheme does as well as the standard scheme.
Moreover, the well-balanced reconstruction does not deteriorate
the robustness of the Godunov-type base scheme. As seen in
the toy core-collapse model, the well-balanced scheme works
even when regions close to hydrostatic equilibrium and highly
dynamic regions with strong shocks coexist in the simulation
domain.

The two multi-dimensional test cases show the same gain
in accuracy and even more so, in the computational efficiency,
on account of using the well-balanced reconstruction. The sim-
ulation of convective carbon shell burning has demonstrated the
drastic improvement with which the well-balanced scheme can
evolve convection within a stellar environment. Even in the sub-
optimal case, when gravitational forces are not perfectly aligned
with one grid axis, making the reconstruction not exactly well-
balanced, the well-balanced scheme greatly increases the accu-
racy. This was shown in the hydrostatic proto-neutron star test.
The tremendous gain in computational efficiency of the well-
balanced scheme, comes from the fact that numerical resolution
has only to be invested for approximating the physical phenom-
ena of interest, rather than resolving the hydrostatic equilibrium.
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Fig. 13. Density, temperature, electron abundance and specific entropy profiles. The solid black lines are the initial profiles and the blue/red dots are
the profiles at final time for the well-balanced/standard scheme with resolution N = 100, i.e., Δx = Δy = Δz = 1 km. Note that the well-balanced
results are nearly indistinguishable from the initial profiles.
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Appendix A: Non-uniform mesh

Here we list a few expressions for the case of a non-uniform
mesh. Only one-dimensional expressions are given and the
multi-dimensional ones follow easily. The gravity source (11)
then reads

Sn
i =

⎡⎢⎢⎢⎢⎢⎢⎣
0
−ρn

i−(ρ�x)n
i

⎤⎥⎥⎥⎥⎥⎥⎦
(
∂φ

∂x

)
i

, (A.1)

where the gradient of the gravitational potential is computed as
(
∂φ

∂x

)
i

= ωi−1/2+
φi − φi−1

1
2 (Δxi−1 + Δxi)

+ ωi+1/2−
φi+1 − φi

1
2 (Δxi + Δxi+1)

(A.2)

with the weights given by

ωi−1/2+ =
Δxi + Δxi+1

1
2 (Δxi−1 + 2Δxi + Δxi+1)

ωi+1/2− =
Δxi−1 + Δxi

1
2 (Δxi−1 + 2Δxi + Δxi+1)

·
(A.3)

The discrete hydrostatic pressure reconstruction to cell inter-
faces reads

pn
i−1/2+ = pn

i + ρ
n
i
φi − φi−1

1
2 (Δxi−1 + Δxi)

ωi−1/2+
Δxi

2

pn
i+1/2− = pn

i − ρn
i
φi+1 − φi

1
2 (Δxi + Δxi+1)

ωi+1/2−
Δxi

2
·

(A.4)

The hydrostatic equilibrium, which is preserved by this recon-
struction, follows then immediately as in Sect. 2.1.1.
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