LETTER TO THE EDITOR

On the radiation driven alignment of dust grains: Detection of the polarization hole in a starless core (Corrigendum)

F. O. Alves¹, P. Frau²,³, J. M. Girart⁴, G. A. P. Franco⁵, F. P. Santos⁶, and H. Wiesemeyer⁷

¹ Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany
² Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
³ Observatorio Astronómico Nacional, Alfonso XII 3, 28014 Madrid, Spain
⁴ Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5 par 2ª, 08193 Bellaterra, Catalunya, Spain
⁵ Departamento de Física – ICEX – UFMG, Caixa Postal 702, 30.123-970 Belo Horizonte, Brazil
⁶ Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
⁷ Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany

Key words. stars: formation – ISM: magnetic fields – techniques: polarimetric – ISM: individual objects: Core 109 – errata, addenda

Figure 2 in the original manuscript displays the polarization efficiency for the optical, near infrared and sub-millimeter (submm) polarimetric data as \(P/A_V \), where \(P \) is the polarization degree and \(A_V \) is the visual extinction traced by the data. However, the polarization efficiency for the submm data should be simply \(P \). By dividing \(P \) by \(A_V \), we obtain a steeper and wrong slope for the decrease in polarization efficiency. The suitable form for Fig. 2 of the original document is exhibited in Fig. 1 of the present corrigendum. The submm polarization efficiency decreases as \(\sim -1.0 \) with respect to \(A_V \), instead of the originally published \(\sim -2.0 \).

Although the decrease in polarization efficiency at the submm regime is shallower than originally proposed, our modelling of the polarization degree with respect to the relative intensity, \(I/I_{max} \), still predicts the detection of a polarization hole (Sect. 3 of the published manuscript). Therefore, the main conclusions are unchanged.

![Fig. 1. Polarization efficiency of the optical and near-IR data (P/A_V) and the submm data (P_SMM).](image-url)