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ABSTRACT

Context. The interpretation of polarised radiation emerging from a planetary atmosphere must rely on solutions to the vector radiative
transport equation (VRTE). Monte Carlo integration of the VRTE is a valuable approach for its flexible treatment of complex viewing
and/or illumination geometries, and it can intuitively incorporate elaborate physics.
Aims. We present a novel pre-conditioned backward Monte Carlo (PBMC) algorithm for solving the VRTE and apply it to planetary
atmospheres irradiated from above. As classical BMC methods, our PBMC algorithm builds the solution by simulating the photon
trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements.
Methods. We show that the neglect of polarisation in the sampling of photon propagation directions in classical BMC algorithms
leads to unstable and biased solutions for conservative, optically-thick, strongly polarising media such as Rayleigh atmospheres. The
numerical difficulty is avoided by pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the
BMC integration order) photon collisions. Pre-conditioning introduces a sense of history in the photon polarisation states through the
simulated trajectories.
Results. The PBMC algorithm is robust, and its accuracy is extensively demonstrated via comparisons with examples drawn from the
literature for scattering in diverse media. Since the convergence rate for MC integration is independent of the integral’s dimension, the
scheme is a valuable option for estimating the disk-integrated signal of stellar radiation reflected from planets. Such a tool is relevant
in the prospective investigation of exoplanetary phase curves. We lay out two frameworks for disk integration and, as an application,
explore the impact of atmospheric stratification on planetary phase curves for large star-planet-observer phase angles. By construction,
backward integration provides a better control than forward integration over the planet region contributing to the solution, and this
presents a clear advantage when estimating the disk-integrated signal at moderate and large phase angles.
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1. Introduction

The gases and aerosols that make up a planetary atmosphere
leave characteristic signatures on the radiation emitted and/or
reflected from the planet. The technique of polarimetry utilises
the polarisation state of emergent radiation to investigate the
planet’s atmospheric optical properties. Polarimetry is rele-
vant in the remote sensing of planetary atmospheres both as a
stand-alone technique and in combination with photometry. In
the solar system, polarimetric observations made from space-
borne and ground-based telescopes have yielded insight into the
gas and aerosol envelopes of Earth (Dollfus 1957; Hansen &
Travis 1974), Venus (Coffeen 1969; Hansen & Hovenier 1974),
Mars (Santer et al. 1985), Jupiter and Saturn (Morozhenko &
Yanovitskii 1973; Schmid et al. 2011; West et al. 1983), Titan
(Veverka 1973; West & Smith 1991), and Neptune and Uranus

� A one-slab, plane-parallel version of the PBMC algorithm is
available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr
(130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A72

(Joos & Schmid 2007; Michalsky & Stokes 1977; Schmid et al.
2006).

Various spacecraft for Earth (ADEOS I and II, PARASOL)
and solar system exploration (e.g. Voyager, Galileo, Cassini)
carried instrumentation with (limited) polarimetric capabilities.
Most modern ground-based observatories are equipped with po-
larimeters for either spectroscopy or imaging. Ground-based
observations of the outer planets, however, only have partial
coverage of the Sun-target-Earth phase angle, which limits the
possible physical insight from polarimetric investigations. For
the above reasons, it is generally agreed that polarimetry’s po-
tential for characterising the atmospheres of Earth and the rest of
the solar system planets remains underexploited. Interestingly,
the discovery of planets orbiting stars other than our Sun has
caused a renewed interest in polarimetry both as a detection and
a characterisation technique. The key idea behind this new in-
terest is that stars are typically unpolarised or weakly polarised,
whereas planets may be partially polarised, which presents an
advantage for separating the planet from the glare of its host star
(e.g. Seager et al. 2000; Stam et al. 2004).
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The new born field of exoplanet research is prompting
significant effort in the development of polarimetric facilities,
as demonstrated by proposed space missions such as ESA’s
SPICES (Boccaletti et al. 2012), dedicated instrumentation for
Gemini (Macintosh et al. 2006), or ESO’s Very Large Telescope
and European-Extremely Large Telescope (Beuzit et al. 2008;
Kasper et al. 2008). Correspondingly, on the theoretical front,
there has been work to investigate polarimetry’s potential for
identifying planets’ orbital parameters, as well as for character-
ising their main atmospheric and surface features (e.g. Bailey
2007; Fluri & Berdyugina 2010; Seager et al. 2000; Stam
and collaborators 2004, 2008, but also Karalidi & Stam 2012,
Karalidi et al., 2011, 2012, 2013; Williams & Gaidos 2008;
Zugger et al. 2010, 2011). Since the number of exoplanets al-
ready surpasses the number of solar system planets, theoreti-
cal investigations that explore gas, cloud, and surface properties,
possibly in the framework of a new generation of general circu-
lation models, will continue to play a key role in the prediction
and prospective characterisation of exoplanetary observables.

This paper is devoted to numerical modelling of radiation
scattered by planetary atmospheres. Our approach relies on
backward Monte Carlo (BMC) integration of the vector radiative
transport equation (VRTE). Special attention is paid to the sam-
pling of propagation directions in polarising media. We show
that in classical BMC integration, failing to account for polari-
sation in the sampling of propagation directions may destabilise
and bias the numerical solution in conservative, optically thick,
strongly polarising media. We propose a pre-conditioned BMC
(PBMC) algorithm and show that pre-conditioning the scatter-
ing matrix with information from prior collisions (in the order of
backward integration) eliminates the numerical difficulties. Pre-
conditioning is equivalent to providing information about the
history and polarisation state of photons through their simulated
trajectories. We describe in detail the algorithm and its perfor-
mance. Because it consistently delivers precisions of 10−4 when
compared to solutions that are accurate to at least that level,
the algorithm may be considered “exact” (in the de Haan et al.
1987 sense) or nearly so. This paper is part of an ongoing effort
to build a tool for efficiently simulating the radiation emerging
from both disk-resolved and disk-integrated realistic planetary
atmospheres. In its scalar form, the algorithm has already been
used without description (García Muñoz & Pallé 2011; García
Muñoz & Mills 2012; García Muñoz et al. 2011, 2012, 2014).
The cases investigated here focus on Rayleigh and Mie scatter-
ing, for which the scattering matrix is easy to obtain. The theory
is more general than that and should also apply to scattering par-
ticles with different scattering matrices.

The paper is structured as follows. In Sect. 2, we note some
of the differences between forward and backward integration.
BMC algorithms are very selective with the planet regions that
they probe, and this is a clear advantage, for instance, when pro-
ducing the disk-integrated signal from a planet at a specified
phase angle. We review the fundamentals of BMC algorithms
and discuss the sampling of photon propagation directions in
classical BMC algorithms and in our PBMC approach. We also
present two different schemes for integrating the net radiation
reflected from a spherical-shell planet. In Sect. 3, we assess
the performance of the classical and pre-conditioned algorithms
with test cases for plane parallel configurations. In Sect. 4, we
predict a number of planetary phase curves. The extensive suite
of test cases considered will hopefully help guide the decision
of potential users of the PBMC algorithm. Finally, in Sect. 5
we summarise the main conclusions and comment on follow-up
work.

2. The BMC algorithm

MC algorithms for radiative transport fall within the general
class of Markov chain methods for the statistical simulation of
photon collisions in scattering media (Cashwell & Everett 1959;
Marchuk et al. 1980). By using appropriate statistical estimators,
MC algorithms can estimate the radiation within and emerging
from a medium.

MC algorithms are classified as forward or backward (FMC
and BMC, respectively), depending on whether the solution is
built by simulating the photon trajectories from the radiation
source towards the observer or vice versa. FMC algorithms eas-
ily account for the photon’s polarisation state in the sampling
of the photon propagation direction following a collision (e.g.
Bartel & Hielscher 2000; Bianchi et al. 1996; Cornet et al. 2010;
Fischer et al. 1994; Hopcraft et al. 2000; Kastner 1966; Schmid
1992; Whitney 2011). That is not immediately possible in BMC
algorithms because the scattering events are treated in the re-
verse order that they actually occur. BMC algorithms generally
treat the sampling of propagation directions by omitting the radi-
ation’s polarisation state and correcting subsequently for the bias
introduced (Collins et al. 1972 and works thereafter; e.g. Emde
et al. 2010; Gay et al. 2010; Oikarinen 2001). As shown below,
that approach may fail to render accurate solutions in conditions
for which the scattering directions of the photons are strongly
influenced by their polarisation states.

MC algorithms are exact in the sense (de Haan et al. 1987)
that their accuracy is in principle only limited by the number
of photon trajectory simulations. Thus, MC algorithms are often
used as standards in the validation of other methods, particularly
in cases that involve complex viewing and/or illumination ge-
ometries (Loughman et al. 2004; Postylyakov 2004).

BMC algorithms are better suited for problems with small
detectors and large radiation sources, and the opposite is true
for FMC algorithms (Modest 2003). This important distinction
means that BMC integration turns out to be the appropriate
choice for numerous applications in investigating planetary at-
mospheres. By tracing the photon trajectories from the detector
towards the planet (or towards a part of the planet that is known
to be illuminated), BMC algorithms offer a more efficient ap-
proach to achieving the desired accuracy. This is not directly
possible in the FMC framework because there is no previous
knowledge about the directions the photons will take to exit the
medium. In FMC algorithms, moreover, estimating the emergent
radiation typically requires averaging over a range of exiting di-
rections. (Alternatively, variance reduction techniques such as
the next-event point-estimator can be utilised, e.g. Kaplan et al.
2001 and Lux & Koblinger 1985; their efficiency however is
strongly dependent on the detector’s acceptance angle.) These
characteristics penalise the computational efficiency of FMC al-
gorithms, especially when only a specified number of viewing
geometries with narrow acceptance angles are of interest.

Additional properties that make FMC/BMC algorithms ap-
pealing in their application to planetary atmospheres include:

– They are easy to implement and debug. Their description
can indeed be accomplished in less than one page (see
Appendix A).

– Implementing the scattering matrix does not require a series
expansion of the matrix elements.

– Curvature and twilight effects are naturally accounted
for. Limb-viewing geometries do not require any special
treatment.
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– It is easy to separate the contributions from the atmosphere
and surface, from different atmospheric layers, or from vari-
ous orders of scattering.

– Scattering by large particles, which lead to highly asymmet-
ric scattering phase functions, can be treated without signifi-
cant computational penalty.

– The computational cost for solving the VRTE and its scalar
counterpart are comparable.

– The accuracy of the solution depends on the number of pho-
ton trajectory simulations. Moderately accurate solutions can
be obtained at low computational costs.

– In BMC algorithms, each photon collision can be utilised to
estimate the contribution to the detector from various inci-
dent directions of the illuminating source.

Our implementation of the algorithm follows the basic layout by
O’Brien (1992, 1998), which we have extended to include po-
larisation. The implementation makes use of variance reduction
techniques, which logically arise from the mathematical elabo-
ration of the integrals that occur in the formal solution to the
VRTE. O’Brien (1992, 1998) provides an excellent introduction
to these ideas, and we follow the nomenclature in those works to
a large extent.

2.1. Fundamentals

Our interest lies in the VRTE for a scattering and absorbing
medium without volume or surface emission sources:

s ·∇I(x, s) = −γ(x)I(x, s)+β(x)
∫
Ω

dΩ(s′)P(x, s, s′)I(x, s′), (1)

where x and s are vectors of position and direction, β(x) and γ(x)
are the scattering and extinction coefficients of the medium (in-
dependent of direction), and dΩ(s′) is the differential solid angle
about direction s′. The ratio �(x) = β(x)/γ(x) is the local single
scattering albedo of the medium. In terms of the θ and φ angles
at the top of Fig. 1, dΩ(s′) = sin θdθdφ. I(x, s) = [I,Q,U,V]T

is the Stokes vector that describes the polarisation state of ra-
diation, and P(x, s, s′) is a 4 × 4 matrix for deflection of radia-
tion from the incident direction s′ to the emergent direction s.
P(x, s, s′) = L(π − i) M(x, s, s′) L(−i′), and L(π − i) and L(−i′)
are rotation matrices for the conversion of the Stokes vector from
the meridional plane (the plane formed by the z axis of a user-
defined rest reference frame and the direction of photon propaga-
tion) to the scattering plane and vice versa. The rotation matrix is

L(κ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0
0 cos 2κ sin 2κ 0
0 − sin 2κ cos 2κ 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

with κ either π − i or −i′, angles i′ and i defined as sketched in
(Fig. 1, top), and M(x, s, s′) is the scattering matrix, for which
we assumeM(x, s, s′) = M(x, s · s′) = M(x, cos θ). The normal-
isation ofM(x, s · s′) verifies∫
Ω

dΩ(s′)M1,1(x, s · s′) = 1. (3)

In Mie scattering theory for spherical particles, the matrix is
fully prescribed by means of four elements (Mishchenko et al.
2002):

M(x, cos θ) =
1

4π

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1(x, θ) b1(x, θ) 0 0
b1(x, θ) a1(x, θ) 0 0

0 0 a3(x, θ) b2(x, θ)
0 0 −b2(x, θ) a3(x, θ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4)
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Fig. 1. Top: definition of the incident, s′, and emergent, s, photon di-
rections at a scattering event within the atmosphere. The xyz axes form
a rest reference frame fixed to the planet. The differential solid angle
dΩ(s′) = sin θdθdφ is defined with s serving as polar axis. Angles
θ ∈ [0, π] and φ ∈[0, 2π]. In the backtracing of photons of BMC al-
gorithms, s is known at each collision and s′ must be sampled from
the relevant scattering phase function. Angles i′ and i, both ∈[0, π], are
needed for consistent referencing of the Stokes vector throughout the
scattering process. Vectors {e′

1
, e′

2
and e′

3
} and {e1, e2 and e3} define

right-handed coordinate systems at the meridional planes of the inci-
dent and emergent photon directions, respectively. Bottom: definition of
the incident, s′, and emergent, s, photon directions at a reflection event
at the local surface (plane x̂ŷ). Here, n is the inward-pointing normal
vector at the surface, and ẑ is oriented along −n. The differential solid
angle dΩ(s′) = sin θdθdφ is defined with ẑ serving as polar axis.

In the Rayleigh limit for particle sizes that are much smaller than
the radiation wavelength, the four elements take on analytical
expressions that, neglecting anisotropy effects, are a1 = 3(1 +
cos2 θ)/4, b1 = 3(−1 + cos2 θ)/4, a3 = 3 cos θ/2, and b2 = 0.

Equation (1) admits the formal solution for the Stokes vector
at {xk, sk}:

I(xk, sk) = t(xk, xkb)I(xkb, sk) +
∫ xk

xkb

d
kat(xk, xka)β(xka)

×
∫
Ω

dΩ(ska)P(xka, sk, ska)I(xka, ska). (5)

On the right-hand side, the first term stands for radiation re-
flected from a point xkb at the boundary of the integration
domain into direction sk, whereas the second term represents
the radiation scattered within the medium from {xka, ska} to
{xk, sk}. Each term may include both diffuse and unscattered
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radiation components, defined as the contributions from photons
that have undergone at least one and zero prior scattering colli-
sions, respectively, and d
ka stands for the arc-length along the
path joining xkb and xk. The transmittance between xka and xk is

t(xk, xka) = exp

[
−

∫ xk

xka

d
′γ(x′)
]
, (6)

and t(xk, xkb) is defined analogously.
It is useful to introduce the dimensionless variables

εka =
t(xk, xka) − t(xk, xkb)

1 − t(xk, xkb)
, (7)

a(xk, xkb) = 1 − t(xk, xkb), and �(xka) = β(xka)/γ(xka), that, by
construction, range from 0 to 1, so that the formal solution to
Eq. (1) becomes

I(xk, sk) = (1 − a(xk, xkb))I(xkb, sk) + a(xk, xkb)
∫ 1

0
dεka�(xka)

×
∫
Ω

dΩ(ska)P(xka, sk, ska)I(xka, ska). (8)

To evaluate Eq. (8), boundary conditions at the top and bot-
tom of the atmosphere are needed. We consider here that the
only source of illumination is stellar radiation from direc-
tion s�, for which the unimpeded, unpolarised irradiance is F� =
π[1, 0, 0, 0]Tδ(s′ − s�), with

∫
dΩ(s′)δ(s′ − s�) ≡ 1. Tacitly, the

given F� assumes that the stellar size subtended from the planet
is small so that the radiation incident on the planet is oriented in
a single direction s�. We furthermore assume Lambert reflection
with albedo rg at the atmospheric bottom (the planet’s surface)
and a transparent atmospheric top for outgoing radiation.

The surface reflectance properties relate I(xkb, sk) to the in-
cident Stokes vector at the boundary I(xkb, skb). For Lambert re-
flection at the atmospheric bottom,

I(xkb, sk) =
rg(xkb)

π

∫
Ω,skb � s�

dΩ(skb)n(xkb) · skbDI(xkb, skb)

+
rg(xkb)

π
n(xkb) · s�t(xkb, x�)F�. (9)

Here, n(xkb) is the inwards-pointing normal vector at the sur-
face, D is the four-by-four depolarizing matrix with D1,1 = 1 as
the only non-zero entry, and I(xkb, skb) is the Stokes vector for
diffuse radiation reaching the surface. The lower panel of Fig. 1
sketches the relevant geometrical parameters for photon colli-
sions at the surface. The two terms of Eq. (9) are the separate
contributions to I(xkb, sk) from both diffuse radiation and from
unscattered stellar radiation reaching the surface. From the def-
inition of the transparent atmospheric top, I(xkb, sk) ≡ 0 for xkb
at the top of the atmosphere.

Similarly, it is convenient to separate the diffuse and unscat-
tered radiation within the atmospheric medium:∫
Ω

dΩ(ska)P(xka, sk, ska)I(xka, ska)→
∫
Ω,ska � s�

dΩ(ska)

× P(xka, sk, ska)I(xka, ska) + P(xka, sk, s�)t(xka, x�)F�.(10)

In both Eqs. (9) and (10), x� is the intersection at the top bound-
ary of the rays traced in the −s� direction from xkb and xka, re-
spectively. Clearly, t(xkb, x�) and t(xka, x�) ≡ 0 if the stellar disk
is not visible from either xkb and xka, respectively.

With the above considerations, Eq. (8) is now expressed as

I(xk, sk) = (1 − a(xk, xkb))(LB(xk, sk) + BI(xkb, skb)) (11)

+ a(xk, xkb)(LA(xk, sk) +AI(xka, ska))

where

LB(xk, sk) =
r(xkb)
π

n(xkb) · s�t(xkb, x�)F� (12)

LA(xk, sk) =
∫ 1

0
dεka�(xka)t(xka, x�)P(xka, sk, s�)F� (13)

and

BI(xkb, skb) =
rg(xkb)

π

×
∫
Ω,skb�s�

dΩ(skb)n(xkb) · skbDI(xkb, skb), (14)

AI(xka, ska) =
∫ 1

0
dεka�(xka)

×
∫
Ω,ska�s�

dΩ(ska)P(xka, sk, ska)I(xka, ska). (15)

In Eq. (11), only the term preceded by a(xk, xkb) occurs for xkb
at the atmospheric top, but for generality, we retain both of them.
Both theLB andLA terms can be evaluated based on the optical
properties of the medium, whereas the B and A terms need ad-
ditional information in the form of the diffuse radiation vectors
I(xkb, skb) and I(xka, ska).

Starting from {x0, s0}, which determines the position of and
entry direction into the detector, recurrent use of Eq. (11), com-
plemented by Eqs. (12)–(15), leads to an expression for I(x0, s0)
as an infinite summation series of integrals of increasingly
higher dimensions (O’Brien 1992, 1998). Physically, higher di-
mension integrals account for additional orders of scattering of
the simulated photons. Figure 2 shows the definition of the pairs
{x0a, s0a}, {x0b, s0b}, {x0aa, s0aa}, {x0ab, s0ab}, {x0ba, s0ba}, and
so forth, which appear in the recurrence law. The series is con-
vergent (and thus amenable to truncation) provided that the op-
tical thickness of the medium is finite and/or the medium is not
fully conservative (i.e. either � or rg ≤ 1). The recurrence law
builds the solution for I(x0, s0) by splitting each summation into
a double summation involving new B and A integrals at each
step.

Appendix A spells out the first few terms in the summa-
tion series and summarises the practical implementation in the
PBMC algorithm. Rewriting the integrals that appear in the sum-
mation in terms of appropriately normalised variables leads to
improved convergence rates, an approach that is equivalent to
so-called variance reduction techniques (O’Brien 1992). In what
follows, we address the integration in solid angle and the sig-
nificance of polarisation in the sampling of photon propagation
directions, which is the feature unique to our PBMC algorithm
with respect to other BMC schemes.

2.2. Monte Carlo integration

The essence of MC integration is to estimate multi-dimensional
integrals through evaluation of the integrand at properly selected
values of the integration variables:∫ 1

0

∫ 1

0
...

∫ 1

0
f (u1, u2, ..., ud)du1du2...dud ≈

1
N

N∑
j=1

f (u[ j]
1 , u

[ j]
2 , ..., u

[ j]
d ) + O

(
1√
N

)
· (16)
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Fig. 2. In black, sketch demonstrating the construction of the {xk, sk}
pairs starting from {x0, s0} as the photon is traced back from the de-
tector through the medium. Vectors are pointed in the direction of pho-
ton propagation, which is the reverse of the direction of integration in
the BMC algorithm. In principle, a {xk, sk} pair can lead to two new
{xka, ska} and {xkb, skb} pairs. In the MC implementation of the algo-
rithm, a scheme based on the coefficients of the LB+B and LA+A op-
erators, Eq. (11), determines whether the photon’s next move occurs
within the atmospheric medium or whether the photon moves onto the
planet’s surface. In blue, one specific photon trajectory within the fam-
ily of possible trajectories. For this specific trajectory, the red arrows
denote the direction of the unscattered stellar photons.

Here, each j represents a random draw from the uniform dis-
tribution functions uk∈[0, 1]. Importantly, MC integration con-
verges to the exact value at a rate that depends on the number of
realisations, N, but not on the dimension of the integral, d.

In a BMC framework, the evaluation of the summation series
for I(x0, s0) is interpretable in terms of photons whose trajecto-
ries are simulated in the backwards direction, i.e. from the de-
tector through the medium, finally reaching the radiation source.
Thus, we regularly refer to the determination of the {xk, sk} pairs
as simulated photon trajectories made up of collision events at
x0a, x0b, x0aa, x0ab, x0ba, etc. Ultimately, the solution to the VRTE
is built by simulating a number nph (=N in Eq. (16)) of photon
trajectories.

2.3. Integration in solid angle

The summation series for I(x0, s0) obtained from recurrent use
of Eq. (11) contains multi-dimensional integrals in solid angles:
∫ ∫ ∫ ∫

dΩ(s0a)P(s0, s0a)
{
dΩ(s0aa)P(s0a, s0aa)

×
{
dΩ(s0aaa)P(s0aa, s0aaa)

{
dΩ(s0aaaa)P(s0aaa, s0aaaa)...

}}}
, (17)

for collisions within the atmospheric medium. For simplicity in
the notation, we removed all references to x0k within the Pmatri-
ces. The treatment of collisions at the bottom boundary is anal-
ogous. In a BMC framework, dΩ(s′) integration at a particu-
lar collision event entails selecting an incident s′ direction for a
given emergent s direction (see Fig. 1), according to an appro-
priate probability density function.

2.3.1. The classical sampling scheme

In classical BMC algorithms (Collins et al. 1972, and thereafter),
evaluation of Eq. (17) proceeds by separating it into
{ ∫

dΩ(s0a)P(s0, s0a)
}{ ∫

dΩ(s0aa)P(s0a, s0aa)
}{
... (18)

and, subsequently, sampling the θ and φ angles in each integral
from the local M1,1 function and from a uniform distribution
between 0 and 2π, respectively. Tacitly, the sampling scheme
assumes that the relative orientations between s and s′ must
depend on the local properties of the medium but not on the
propagation history of the photons, or that any bias introduced
by proceeding that way can be subsequently corrected for by
dividing by the sampled M1,1. The assumption is exact in the
treatment of the scalar RTE, but is fundamentally erroneous in
polarising media. We refer to the simplified approach based on
Eq. (18) as the classical sampling scheme for photon propaga-
tion directions.

2.3.2. The pre-conditioned sampling scheme

A more appropriate approach to the evaluation of Eq. (17) is to
sample

s0a from [P(s0, s0a)]1,1dΩ(s0a)

s0aa from [P(s0, s0a)P(s0a, s0aa)]1,1dΩ(s0aa) (19)

s0aaa from [P(s0, s0a)P(s0a, s0aa)P(s0aa, s0aaa)]1,1dΩ(s0aaa),

and so on.

By proceeding sequentially, at each step all the involved photon
propagation directions but the one being sampled are known.
The scheme derives directly from Eq. (17), and preserves the
history of the simulated photon trajectories through the ordered
arrangement of the products of P matrices. At each collision
event, the matricesH(s0, s0a) = U (≡unity matrix),H(s0a, s0aa) =
P(s0, s0a), H(s0aa, s0aaa) = P(s0, s0a)P(s0a, s0aa), ..., effectively
pre-condition the local P matrix, and in turn, the probability that
scattering occurs in any of the possible s0a, s0aa, s0aaa, ..., incident
directions. The pre-conditioning matrix evolves as the photon
trajectory is being backtraced, and in this way, the photon his-
tory is preserved throughout the simulation. Hereafter, we term
this approach the pre-conditioned sampling scheme for photon
propagation directions. This scheme is at the core of our PBMC
algorithm.

Expanding Eq. (19) yields insight into the pre-conditioned
sampling scheme. For an arbitrary HP(s, s′)dΩ(s′) = HL(π −
i)M(x, θ)L(−i′) dΩ(θ, φ), the (1, 1) entry leads to an expression
proportional to f (θ, φ)dθdφ=

(
a1(θ) + b1(θ)

[
q cos (2φ) − u sin (2φ)

]) sin (θ)dθdφ
4π

, (20)

where we defined q = H1,2/H1,1 and u = H1,3/H1,1. In the deriva-
tion of Eq. (20), we used the geometrical relation between i
and φ, for φ locally defined with respect to the meridian plane
(see Fig. 1, Top). Angle i′ is evaluated once both θ and φ are
determined.

Two important properties apply to f (θ, φ), namely: [1] it
is ≥0 for θ∈[0, π] and φ∈[0, 2π]; and [2] its integral over the
θ–φ domain is equal to one, which is straightforward for con-
firming from the normalisation of Eq. (3). Since a1(θ) ≥ 0
and |b1| ≤ |a1| (Mishchenko et al. 2002), property [1] requires
that |q cos (2φ) − u sin (2φ)| ≤ 1. To prove that condition, it
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suffices to show that the first row of H, [H1,1,H1,2,H1,3,H1,4]
(=H1,1[1, q, u, v] in our own notation), forms from

[1, 0, 0, 0]P(s0, s0a)P(s0a, s0aa)P(s0aa, s0aaa)... (21)

The vector resulting from Eq. (21) is indeed the transpose of

...PT(−s0aaa,−s0aa)PT(−s0aa,−s0a)T
P

T(−s0a,−s0)[1, 0, 0, 0]T,

(22)

which is the Stokes vector for an associated direct problem of
photons propagating onwards from the detector. In this direct
problem, the relevant scattering matrix is MT. For Mie scatter-
ing, Eq. (4), the matrix satisfies MT(b2) = M(−b2), which sug-
gests a connection with the adjoint formulation based on vector
Green’s functions proposed by Carter et al. (1978). From the
association of the backward problem with its direct counterpart
of scattering matrix MT, it becomes apparent that q and u are
relative linear polarisations and v is the corresponding relative
circular polarisation. As a result, |q cos (2φ) − u sin (2φ)| ≤ 1.

Thus, f (θ, φ) is a bivariate probability density function that
can be used to sample the propagation directions in the backtrac-
ing of photons. Our pre-conditioned scheme of Eq. (19) is indeed
similar in structure to the schemes utilised in some FMC algo-
rithms (e.g. Bartel & Hielscher 2000; Bianchi et al. 1996; Cornet
et al. 2010; Fischer et al. 1994; Hopcraft et al. 2000; Kastner
1966; Schmid 1992; Whitney 2011).

In practice, the sampling is facilitated by separating f (θ, φ)=
fθ(θ) fφ|θ(φ|θ), with

fθ = a1(θ)sin (θ)/2, and (23)

fφ|θ(φ|θ) = (
1 + b1(θ)/a1(θ)

[
q cos (2φ) − u sin (2φ)

])
/2π. (24)

Here, fθ is the conventional θ-sampling function implemented
in most FMC and BMC algorithms, whether treating the scalar
or vector RTE. Function fφ|θ(φ|θ) conveys that sampling in φ is
constrained by θ and, through q and u, also by the photon po-
larisation state and history. Figure 3 explores f (θ, φ) for a few
combinations of q and u ≡ 0 in the specific case of a Rayleigh
medium. The classical sampling scheme is equivalent to drawing
the θ and φ from the probability density function f (θ, φ; q ≡ 0).
Doing so appears inappropriate in strongly polarising media
where b1(θ)/a1(θ), q and u may take absolute values close to
one through the photon simulations. The consequences of this
are investigated below.

2.4. Disk-integration schemes

We are interested in the radiation emerging from both disk-
resolved and disk-integrated planetary atmospheres. We derive
two disk-integration schemes here and describe their incorpora-
tion into the PBMC algorithm.

2.4.1. Integration over the “visible” disk

Horak (1950) laid out the expressions for evaluating the disk-
integrated radiation scattered from a planet over its “visible”
disk. In this context, “visible” refers to the disk portion that ap-
pears illuminated by single-scattered photons as viewed from the
observer’s vantage point. We refer to the sketch of Fig. 4, which
presents the relevant geometrical parameters. Provided that both
the observer and the star are sufficiently far from the planet,
Horak (1950) arrives at the expression:

F =
(
ρ

Δ

)2
∫ π

0
dηd sin2(ηd)

∫ π/2

α−π/2
dζd cos(ζd)I(ζd, ηd), (25)

Fig. 3. Probability density function f (θ, φ)= fθ(θ) fφ|θ(φ|θ) in the
pre-condioned sampling scheme of photon propagation directions,
Eqs. (23)–(24), for a Rayleigh-scattering medium. Note the changes
in f (θ, φ) with q, especially near the maximum of |b1(θ)/a1(θ)| for
θ = 90◦. By ignoring polarisation, the classical sampling scheme de-
termines the θ and φ values of the incident propagation direction from
f (θ, φ; q ≡ 0). It is apparent that the classical sampling scheme is more
likely to fail in strongly polarising media that involve high q values dur-
ing the backtracing of photons.

which we adapt to the vector case by using the Stokes vector I, in
which case F (=[FI , FQ, FU , FV]T) is the irradiance Stokes vec-
tor. Here, ρ (=Rp+hTOA for planets with a solid core of radius Rp
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Fig. 4. Geometrical parameters relevant to the integration over the
planet’s “visible” disk. For a pair of ui and vi values, N is the location
on the disk where the observer’s line of sight intercepts the atmosphere.
N is equivalent to x0 in our implementation of the PBMC algorithm.

and an atmosphere extending up to altitudes of hTOA) and Δ
are the radius of the planet’s scattering disk and the observer-
to-planet distance, respectively. We normalise F by eliminating
the (ρ/Δ)2 factor from Eq. (25).

Rather than working with longitudes, ζd, and co-latitudes, ηd,
it is convenient to introduce the two auxiliary variables:

u =
1
π

(ηd − 1
2

sin(2ηd)) (26)

v =
1

1 + cos(α)
(sin(ζd) + cos(α)), (27)

such that, after some manipulations, Eq. (25) transforms into

F =
π

2
(1 + cos (α))

∫ 1

0

∫ 1

0
dudv I(u, v). (28)

The pre-multiplying factor before the double integral is the pro-
jected size of the planet’s “visible” disk. The double integral may
be seen as an average radiance Stokes vector over that domain.

In the form of Eq. (28), it is straightforward to insert the
evaluation of F into the PBMC algorithm as the sum

F =
π

2
(1 + cos (α))

1
nph

nph∑
i=1

〈I(ui, vi)〉, (29)

where ui and vi are picked from the random uniform distribu-
tions u, v ∈ [0, 1]. Each ui, vi yields the location on the planet’s
disk where the observer’s line of sight intercepts the planet’s at-
mosphere or, equivalently, x0 in the implementation of the algo-
rithm of Appendix A. For a sufficiently remote observer, s0 is,
according to Fig. 4, permanently oriented along the x axis. The
application of Eq. (29) requires the inversion of Eqs. (26), (27).
For u → ηd, we interpolate from pre-calculated tabulations of
u = u(ηd;α). For v → ζd, the inversion is done analytically.
Since in our formulation I is by default referenced to the merid-
ian plane containing the z axis and s0, and s0 is fixed in space,
there is no need to rotate the emergent 〈I(ui, vi)〉 Stokes vectors,
which can be added directly into Eq. (29). In our normalisation,
the first of the F elements is AgΦ(α), with Ag being the planet’s
geometric albedo and Φ(0) ≡ 1.

Illumination
Solar polar

Azimuth
Observer polar angle

Observer

angle

Fig. 5. Illumination and viewing angles for the plane-parallel atmo-
sphere test cases discussed in Sect. 3.

2.4.2. Integration over the entire disk

Alternatively to the integration over the “visible” disk, one can
proceed by integrating over the entire disk. Introducing r and Θ
as the polar coordinates that determine the projection of N in
Fig. 4 on the yz plane, and the normalised variables u′ = Θ/2π
and v′ = (r/ρ)2, integration over the projected surface element
rdrdΘ leads to

F =
1
Δ2

∫ ρ

0
rdr

∫ 2π

0
dΘI(r,Θ) =

( ρ
Δ

)2
π

∫ 1

0

∫ 1

0
du′dv′I(u′, v′),

(30)

which, after eliminating the (ρ/Δ)2 factor, translates into

F =
π

nph

nph∑
i=1

〈I(u′i , v
′
i)〉 (31)

in the PBMC algorithm. Again, u′i , v
′
i are picked from uniform

distributions u′, v′∈[0, 1].
Some of the advantages of the latter implementation with

respect to the one in Sect. 2.4.1 include [1] it makes no as-
sumption on the extent of the effectively-scattering disk and,
therefore, properly handles the full range of phase angles from
superior to inferior conjunctions; [2] each photon trajectory sim-
ulation can simultaneously contribute to various specified phase
angles. A drawback of the latter implementation (shared with
FMC algorithms) is that for a given number of photon realisa-
tions nph, the solution statistics becomes poorer for the larger
phase angles because fewer of the simulated photon trajectories
actually connect the observer and the direction of illumination.
We explore in Sect. 4 some of these issues in application of the
two disk-integration schemes to both Rayleigh and Venus-like
atmospheres.

3. Comparison of the PBMC algorithm against
solutions from other methods

We assessed the performance of our PBMC algorithm against a
suite of test cases for which reliable solutions are either avail-
able in the literature or can be produced with existing models.
The suite includes solutions to both the scalar and vector RTE,
different viewing/illumination geometries, and a variety of op-
tical properties for the scattering particles. Here in Sect. 3, we
focus on scattering in plane-parallel atmospheres.

Figure 5 sketches the relevant angles. In particular, an az-
imuth of 0 corresponds to the observer facing the Sun, and 180◦
to the observer looking away from the Sun. In the scalar RTE cal-
culations, polarisation is omitted by zeroeing all entries butM1,1
in theM scattering matrix.
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Table 1. Parameters in the investigation of conservative Rayleigh scat-
tering in plane-parallel atmospheres.

Optical thickness, τ:
0.02, 0.05, 0.1, 0.15, 0.25, 0.5, 1, 2, 4, 8, 16, 32

Lambert surface albedo, rg:
0, 0.25, 0.8

Cosine of solar polar angle (SPA):
0.1, 0.2, 0.4, 0.6, 0.8, 0.92, 1

Cosine of observer polar angle (OPA):
0.02, 0.06, 0.1, 0.2, 0.4, 0.64, 0.84, 0.92, 1

Azimuth between solar and observer planes, Δφ:
0, 30, 60, 90, 120, 150, 180◦

Notes. The total number of test cases amounts to 12 × 3 × 7 × 9 × 7 =
15 876. Throughout the exercises of Sects. 3.1 and 3.2, we assumed an
atmospheric single scattering albedo � ≡ 1.

3.1. Non-polarised Rayleigh scattering

In a first assessment, we compared our PBMC algorithm in its
scalar mode against DISORT (Stamnes et al. 1988) solutions
in Rayleigh scattering media. The exercise includes 15 876 test
cases that explore both optically thin and thick atmospheres with
viewing/illumination angles from zenith inclination to nearly
horizontal pointing (see Table 1). The comparison, the details
of which are given in the appendices, shows an excellent match
between the two approaches.

3.2. Polarised Rayleigh scattering

Coulson et al. (1960) tabulated solutions for the elements of the
Stokes vector in conservative, polarising, Rayleigh-scattering at-
mospheres above Lambert reflecting surfaces. More recently,
Natraj and collaborators (2009, 2012) have extended the calcu-
lations to arbitrarily large optical thicknesses. The newly tab-
ulated Stokes vectors (that we adopt as reference) are claimed
to be accurate to within one unit in the eighth decimal place.
We computed the 15 876 cases summarised in Table 1 for nph up
to 107 with our PBMC algorithm in its VRTE mode. For compar-
ison, we utilised both the classical and pre-conditioned sampling
schemes introduced in Sect. 2.3.

Figure 6 shows δI (=(IBMC−Iref)/Iref × 100) for the pre-
conditioned (top) and classical sampling schemes (bottom). For
the latter, Fig. 7 shows δP (=(PBMC−Pref)/Pref × 100), where
P =

√
Q2 + U2.

The δI graphs reveal that the two sampling schemes gener-
ally perform well for optical thicknesses≤4, but that the classical
scheme destabilises and/or biases the solutions for larger thick-
nesses. A similar behaviour also occurs for δP. Median values
for |δI| as calculated with the pre-conditioned scheme are listed
in Table C.1. For the PBMC solutions, the convergence rate is
comparable to that for the solution of the scalar RTE.

Figure 8 offers some insight into the stability issue with the
classical sampling scheme. It shows the convergence history for
the I Stokes element for a cos(OPA) = cos(SPA) = 1 view-
ing/illumination geometry and varying optical thicknesses above
a black surface. (OPA/SPA stands for observer/solar polar angle,
Table 1.) The most striking feature of Fig. 8 is that the classical
sampling scheme produces abrupt changes in the solution with
effects that may not go away even after many photon simula-
tions. The instabilities become more frequent and noticeable for
the larger optical thicknesses. Referring to Eq. (24) and Fig. 3,
the neglect of polarisation in the classical sampling scheme is

Fig. 6. Differences in intensity, δI, for the solution of the VRTE in con-
servative, Rayleigh-scattering atmospheres. The algorithm uses the pre-
conditioned (top) and classical (bottom) sampling schemes for photon
propagation directions.

likely to favour some propagation directions rather than others
and, in turn, erroneously bias the solution. Inspection of some
of the abrupt changes indicates that they are associated with a
sequence of photon collision events each with scattering angle θ
near 90◦ and therefore likely to be misrepresented by the classi-
cal sampling scheme. The disturbance becomes more apparent in
optically thick, conservative media because they allow for many
more collisions before the photon is lost. Further evidence for
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Fig. 7. Differences in polarisation, δP, for the solution of the VRTE in
conservative, Rayleigh-scattering atmospheres. The algorithm uses the
pre-conditioned sampling scheme for photon propagation directions.

Fig. 8. Convergence history of the I Stokes element for a conser-
vative Rayleigh atmosphere over a black surface with cos(SPA) =
cos(OPA) = 1 and two different optical thicknesses. Thin and thick
curves represent the solutions obtained with the pre-conditioned and
classical sampling schemes, respectively. Abrupt changes in the solu-
tion with the classical sampling scheme for optical thickness of 4 occur,
but they are not discernible on the scale of the graph.

the latter comes from the fact that Rayleigh calculations with
� ∼ 0.95 or less (not shown) show no stability issues for any
optical thickness in the range tested. The bottom line is that the
primary assumption of the classical sampling scheme, i.e. that
the multi-dimensional integral of Eq. (17) can be approximated
by separate integrals as given by Eq. (18) plus a subsequent cor-
rection, becomes inappropriate for specific configurations.

The idea is confirmed by investigating the solution to the
VRTE in other polarising media. For this purpose, we produced
scattering matrices at λ = 0.63 μm for monodisperse droplets of
real refractive index equal to 1.53 and a few radii from 1.2× 10−1

to 1.7×10−1 μm. Figure 9 shows the corresponding−b1(θ)/a1(θ)
ratios, which are properties of the media but also the correspond-
ing degrees of polarisation for photons scattered one single time.

Fig. 9. Polarisation in single scattering for monodisperse droplets of
various radii and real refractive index equal to 1.53 at λ = 0.63 μm.

Fig. 10. Convergence history for scattering by the monodisperse
droplets of Fig. 9. Thin and thick curves represent the solutions obtained
with the pre-conditioned and classical sampling schemes, respectively.
The classical scheme produces inconsistent solutions for strongly polar-
ising conditions. The calculations assumed optical thickness equal to 16
and cos(OPA) = cos(SPA) = 1.

When referring to the structure of Eqs. (23), (24), it is appar-
ent that lower |b1(θ)/a1(θ)| ratios distort the probability density
function f (θ, φ; q � 0) less with respect to the case for q = 0.
The convergence history for the solutions to the multiple scat-
tering problem in a medium of optical thickness equal to 16 and
cos(OPA) = cos(SPA) = 1 are shown in Fig. 10. They reveal
that the classical scheme performs poorly in the more strongly
polarising media, but performs similarly to the pre-conditioned
sampling algorithm in less polarising conditions.

To the best of our knowledge, there have been no previous
reports of difficulties using BMC algorithms with classical sam-
pling, probably because benchmarking solutions for optically
thick Rayleigh atmospheres had not been readily available. This
example serves to highlight the importance of benchmarking so-
lutions in the literature.

3.3. Polarised Mie scattering

We tested our PBMC algorithm against a number of VRTE so-
lutions in Mie-scattering media. The Stokes vectors for radia-
tion emerging from a conservative atmosphere with so-called
haze-L scattering particles have been tabulated by de Haan et al.
(1987) from calculations based on the doubling-adding method.
Tables 2 and B.1 show some of their solutions and the corre-
sponding PBMC calculations. The I Stokes element from both
calculation methods generally agrees to the fourth decimal place
for nph = 109. Typically, solutions accurate to within one per cent
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Table 2. Solutions to the Stokes vector in a conservative, haze-L atmosphere of optical thickness equal to 1 and cos(SPA) = 0.5.

{cos(OPA); de Haan et al. PBMC, nph=

Azimuth} (1987) 105 106 107 108 109

{0.1; 0.}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+1.10269
+0.004604
+0.
+0.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+1.101852
+0.004629
+0.000002
+0.000002

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+1.103338
+0.004588
+0.000000
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+1.102915
+0.004601
+0.000004
−0.000002

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+1.102821
+0.004603
−0.000001
−0.000001

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+1.102866
+0.004605
+0.000000
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

{0.5; 0.}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.31943
−0.002881
+0.
+0.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.319251
−0.002927
+0.000001
+0.000006

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.320067
−0.002894
−0.000005
+0.000002

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.319427
−0.002871
−0.000001
+0.000001

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.319394
−0.002877
−0.000001
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.319410
−0.002880
−0.000001
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

{1.0; 0.}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.033033
−0.002979
+0.
+0.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.032659
−0.002955
+0.000040
+0.000006

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.032963
−0.002976
−0.000005
+0.000002

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.033024
−0.002977
+0.000001
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.033019
−0.002977
−0.000001
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.033034
−0.002979
−0.000001
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

{0.1; 30.}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.66414
+0.000303
−0.002770
+0.000038

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.662924
+0.000390
−0.002766
+0.000054

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.663431
+0.000301
−0.002736
+0.000039

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.664643
+0.000310
−0.002769
+0.000038

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.664342
+0.000302
−0.002770
+0.000038

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.664298
+0.000302
−0.002770
+0.000038

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

{0.5; 30.}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.25209
−0.001444
−0.004141
+0.000017

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.253527
−0.001471
−0.004180
−0.000003

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.252656
−0.001428
−0.004139
+0.000012

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.252107
−0.001445
−0.004135
+0.000017

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.252055
−0.001444
−0.004137
+0.000018

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.252060
−0.001444
−0.004140
+0.000018

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

{1.0; 30.}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.033033
−0.001489
−0.002580
+0.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.032689
−0.001472
−0.002629
−0.000002

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.032989
−0.001506
−0.002578
+0.000001

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.033071
−0.001492
−0.002580
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.033041
−0.001488
−0.002580
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.033050
−0.001490
−0.002581
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Notes. The de Haan et al. (1987) solutions are extracted from their Table 5.

in I are obtained for nph = 105. Polarisation is low in all cases
investigated in Table 2. As a consequence, the convergence of
the Q, U and V elements is slower than for I. In the appendices,
we extend the comparison by considering the results published
by Garcia & Siewert (1986) for scattering within a Venus-like
atmosphere. The good match of our PBMC results attests to the
capacity of our algorithm to produce accurate solutions to elab-
orate scattering problems.

4. Planetary phase curves

That the convergence rate of MC integration is independent of
the dimension of the integral, Eq. (16), can be used to effi-
ciently estimate the net radiation scattered from the planet. In
the solar system, Venus represents a unique demonstration of
how disk-integrated polarisation can be used to infer a planet’s
cloud composition (Coffeen 1969; Hansen & Hovenier 1974).
At remote distances from Earth, exoplanets will not be spatially
resolvable in the near future and, thus, their investigation must
rely on disk-integrated measurements. Initial attempts to investi-
gate the optical properties of exoplanet atmospheres in reflected
light by means of polarisation have been made (Berdyugina et al.
2008, 2011; Wiktorowicz 2009). Foreseeably, a new generation
of telescopes and instruments will provide the technical capacity
to detect and characterise a variety of exoplanets.

To explore the disk-integration schemes of Sect. 2.4,
we utilised a few configurations relevant to both Rayleigh
and Venus-like atmospheres. Essentially, the disk-integration
scheme selects the entry point of the photon into the atmosphere.
The three-dimensional photon trajectory is then traced through
the medium. The PBMC algorithm is implemented over a spheri-
cal shell description of the planet’s atmosphere, which allows us
to investigate phenomena related to atmospheric curvature and
stratification at large star-planet-observer phase angles.

Table 3. Parameters in the investigation of disk integration for both
conservative and non-conservative Rayleigh atmospheres.

Optical thickness:
0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1, 2, 5, 10, 30
Single scattering albedo:
0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99, 1
Surface albedo:
0, 0.3, 1

Notes. The total number of cases amounts to 13 × 9 × 3 = 351.

4.1. Rayleigh phase curves

Buenzli & Schmid (2009) have investigated with an FMC al-
gorithm the phase curves of Rayleigh-scattering planets. Their
study expands on earlier work (e.g. Kattawar & Adams 1971)
by systematically exploring the parameter space (optical thick-
ness, atmospheric single scattering albedo, and Lambert surface
albedo). Madhusudhan & Burrows (2012) have also produced
Rayleigh phase curves on the basis of analytical solutions to the
plane-parallel problem. Rayleigh scattering may provide a first
approximation to the interpretation of a planet’s phase curve. It
is, however, of limited usefulness in the general understanding
of possibly occurring atmospheres. In such cases, more flexible
treatments including Mie and other non-Rayleigh forms of scat-
tering are needed. Thus, Stam et al. (2006) have devised an ef-
ficient technique for disk integration based on the plane-parallel
approximation that can deal with arbitrary scattering particles
for planets with horizontally uniform atmospheres.

We produced Rayleigh phase curves for the configurations
listed in Table 3 with the visible-disk integration scheme of
Sect. 2.4.1 and compared them to those published by Buenzli
& Schmid (2009). Specific properties of the curves such as the
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Fig. 11. Computational time per phase curve point for nph=104 and
Rayleigh-scattering calculations. For a full phase curve with, for in-
stance, 34 evenly separated points from 7.5 to 172.5◦ (as for Fig. E.1),
the computational time is 34 times what is indicated in the plot. The
curves correspond to different values of the single scattering albedo of
the medium, �, and the Lambert surface albedo, rg.

geometric or spherical albedo, or the value and position of the
polarisation peak have been discussed in that work, and are not
discussed here any further. With the PBMC algorithm all prop-
erties are evaluated at the specified phase angles without having
to bin (and possibly extrapolate) in phase angle.

The agreement between Buenzli & Schmid (2009) and our
PBMC calculations is very good. For nph = 106, the median of
the absolute differences in FI between the two approaches over
the α = 7.5–132.5◦ range is about 0.1%, which is consistent
with the accuracy targeted by Buenzli & Schmid (2009). Since
the computational time is dictated by the number of photon real-
isations, it turns out that the computational cost is comparable in
both the spatially resolved problems of Sect. 3.2 and in the spa-
tially unresolved problems discussed here. In other words, inte-
grating over the disk involves a computational time comparable
to obtaining the solution over a localised region of the planet.
With the visible-disk integration scheme, moreover, the conver-
gence properties of the algorithm become independent of phase
angle.

Figure E.1 shows phase curves for FI and FQ/FI with� = 1,
rg = 1; and τ = 0.1, 0.4, 1, 2, 5, and 10; and nph = 104.
Because we use the xz meridional plane for referencing the
Stokes vector I, the ratio FQ/FI is consistent with positive po-
larisation in the xz plane perpendicular to the scattering plane.
Figure 11 shows the computational times on a 2.6 GHz desktop
computer for an average point of a phase curve and nph = 104.
Computational times depend on the platform, and are not often
published in the literature, which prevents a comparison with the
performance of other algorithms.

4.2. Venus phase curves

Venus is a well-known example that demonstrates the poten-
tial of disk-integrated polarimetry in the remote investigation
of clouds (Coffeen 1969; Hansen & Hovenier 1974). The disk-
integrated polarisation of Venus is low but sensitive to wave-
length and phase angle, facts that were exploited by Hansen &
Hovenier (1974) to characterise the droplets that make up the

Fig. 12. Polarisation phase curves for Venus. Black diamonds are the
measurements used in Hansen & Hovenier (1974). Colour symbols and
curves are our PBMC calculations for nph=104 and 105, respectively.
This figure can be compared to Figs. 4, 8, 9, and 11, 12 in Hansen &
Hovenier (1974).

Venus upper clouds. Venus sets a valuable precedent for eventu-
ally investigating exoplanetary clouds with polarimetry.

As a further assessment of our PBMC algorithm, we looked
into the Venus polarisation phase curves. This analysis has the
added value of allowing comparison with real planetary mea-
surements. From the visible through the near-infrared, the Venus
clouds are optically thick and close to fully conservative. The
analysis, thus, provides insight into the performance of the
PBMC algorithm in conditions that require many photon col-
lisions per simulation.

Figure 12 shows the digitised data points for the degree
of linear polarisation utilised by Hansen & Hovenier (1974)
at 0.365, 0.445, 0.55, 0.655, and 0.99 μm. The colour symbols
are our PBMC calculations for nph = 104, and the underlying
solid curves are the calculations for nph = 105. For the mod-
elling, we use the prescriptions for particle size distributions
(gamma-distribution, effective radius reff = 1.05, effective vari-
ance veff = 0.07), refractive indices, and atmospheric single scat-
tering albedo inferred by Hansen & Hovenier (1974). We as-
sume that the atmosphere is made up of a single slab of optical
thickness equal to 30 overlaying a fully reflective Lambert sur-
face. The legends in the panel give additional information about
the Rayleigh-scattering component, fR (see Hansen & Hovenier
1974), which becomes important at UV wavelengths, and var-
ious reff values. For nph = 104 and the visible-disk scheme of
Sect. 2.4.1, the computational time per point in the phase curve
is about 8 secs. For the curves of Fig. 12, we took 2◦-increments
in α, which leads to the full phase curve for nph = 104 be-
ing produced in about 12 min. The statistical dispersion of the
PBMC calculations is smaller than the dispersion associated
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Fig. 13. Polarisation phase curves for Venus calculated with our PBMC
algorithm with n=105 at near-infrared wavelengths for a H2SO4/H2O
dilution at 75%. We adopted a single scattering albedo of 1 in all cases.
nr is the refractive index in each case.

with the measurements, and from a practical viewpoint, it seems
appropriate to truncate to nph = 104. The phase curves of Fig. 12
can be directly compared to the model calculations of Figs. 4,
8, 9, and 11, 12 in Hansen & Hovenier (1974), which confirms
the good agreement between both approaches.

In addition, we produced polarisation phase curves at wave-
lengths from 1.2 to 2.4 μm for the droplets’ size distribu-
tion given above and real-only refractive indices based on
a 75% H2SO4/H2O solution by mass (Hansen & Hovenier 1974).
They are shown in Fig. 13, which further illustrates the sensitiv-
ity of polarisation to wavelength.

As a final exercise, we explored the appropriateness of inte-
grating over the visible disk, Sect. 2.4.1, against the more com-
prehensive approach of Sect. 2.4.2. For this, we took the Venus
atmosphere at 0.55 μm described above as a basis. Differences
are expected to arise when the atmosphere is vertically ex-
tended. Thus, we stratified the total optical thickness of the at-
mosphere (=30) with scale heights H (the e-folding length for
changes in the γ extinction coefficient in the vertical) of 4, 8, 16,
and 32 km. Both disk-integration schemes produce nearly iden-
tical results (not shown) for the FQ/FI ratio. In contrast, the dif-
ferences in FI , Fig. 14, can become significant when the planet
approaches inferior conjunction, especially for the larger scale
heights. Figure 14 provides valuable clues for choosing the ap-
propriate disk-integration scheme for specific applications. The
figure also shows that stratification and curvature effects become
important for sufficiently large phase angles and H/Rp ratios.

5. Summary and future work

We have presented a novel pre-conditioned backward Monte
Carlo (PBMC) algorithm to solve the vector radiative transport
equation (VRTE) in planetary atmospheres. A unique feature
of our PBMC algorithm is that it pre-conditions the scatter-
ing matrix before sampling the incident propagation direction
at a photon collision. Pre-conditioning retains some of the in-
formation associated with the polarisation state of photons, a
feature shown to be critical for correct treatment of conserva-
tive, optically thick, strongly polarising media. This is, to the

Fig. 14. Phase curves FI in the optical for Venus-like planets with at-
mospheres stratified according to the given scale heights.

best of our knowledge, the first investigation to report the nu-
merical difficulties that may occur in BMC algorithms (and pos-
sibly FMC as well) when polarisation is ignored in sampling
propagation directions. We give extensive evidence that our pro-
posed pre-conditioned sampling scheme ensures the stability of
the PBMC algorithm.

We explored the performance of the PBMC algorithm, show-
ing that it consistently produces solutions accurate to better than
0.01% in the Stokes element I when compared to published
benchmarks provided that enough photon trajectories are sim-
ulated. Our extensive assessment exercise, that includes accura-
cies and computational times, should help potential users assess
the advantages and disadvantages of the method. We believe that
similar exercises should become common place in the investiga-
tion of VRTE solvers.

In its spherical shell version, our PBMC algorithm is well
suited to evaluating the net radiation scattered by a spatially un-
resolved planet. This feature is particularly interesting in any in-
vestigation of the phase curves of solar system planets and exo-
planets. We proposed two disk-integration schemes and showed
that integration over the “visible” disk incurs a computational
cost comparable to solving the VRTE over a localised region
of the planet, provided that the spatial details of the emerging
radiation can be overlooked. Thus far, we have focused on plan-
etary atmospheres that may be vertically stratified but are oth-
erwise homogeneous in the horizontal direction. Future work
will extend the disk-integration scheme to horizontally inhomo-
geneous planets, thus accounting for a full three-dimensional
description of the planet. Similar ideas will also be explored
for disk-integrated thermal emission and for the simultaneous
spectral-and-disk integration of both scattered and thermally-
emitted radiation.

A one-slab, plane-parallel version of our PBMC algorithm
is available upon request. Making the algorithm publicly avail-
able will hopefully encourage comparative investigations of
VRTE solvers.
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Appendix A: PBMC algorithm implementation

The implementation of our PBMC algorithm follows the formu-
lation by O’Brien (1992, 1998), which we extend to include po-
larisation. Other BMC formulations exist, that differ mainly in
their definition of the statistical estimator’s kernel (e.g. Collins
et al. 1972; Marchuk et al. 1980; Postylyakov 2004). For com-
pleteness, we sketch the practical details of the algorithm here.

Starting from {x0, s0}, recurrent use of Eq. (11) for the first
few pairs {xk,sk} leads to:

I(x0, s0) = (1 − a(x0, x0b))(LB(x0, s0) + BI(x0b, s0b))

+ a(x0, x0b)(LA(x0, s0) +AI(x0a, s0a))

I(x0b, s0b) = (1 − a(x0b, x0bb))(LB(x0b, s0b) + BI(x0bb, s0bb))

+ a(x0b, x0bb)(LA(x0b, s0b) +AI(x0ba, s0ba))

I(x0a, s0a) = (1 − a(x0a, x0ab))(LB(x0a, s0a) + BI(x0ab, sab))

+ a(x0a, x0ab)(LA(x0a, s0a) +AI(x0aa, s0aa))

I(x0bb, s0bb)= (1−a(x0bb,x0bbb))(LB(x0bb,s0bb)+BI(x0bbb, s0bbb))

+ a(x0bb, x0bbb)(LA(x0bb, s0bb) +AI(x0bba, s0bba))

I(x0ba, s0ba)= (1−a(x0ba, x0bab))(LB(x0ba, s0ba)+BI(x0bab, s0bab))

+ a(x0ba, x0bab)(LA(x0ba, s0ba) +AI(x0baa, s0baa))

I(x0ab, s0ab)= (1−a(x0ab, x0abb))(LB(x0ab, s0ab)+BI(x0abb, s0abb))

+ a(x0ab, x0abb)(LA(x0ab, s0ab) +AI(x0aba, s0aba))

I(x0aa, s0aa)= (1−a(x0aa, x0aab))(LB(x0aa, s0aa)+BI(x0aab, s0aab))

+ a(x0aa, x0aab)(LA(x0aa, s0aa) +AI(x0aaa, s0aaa)).

A summation series for I(x0, s0) is obtained by sequentially
inserting the I(xkb, skb) and I(xka, ska) into the correspond-
ing I(xk, sk). In doing so, each I(xk, sk) turns into a dou-
ble summation of increasingly higher dimension integrals. In
the PBMC framework, each of those integrals is estimated by
their integrands at properly selected values of the integration
variables.

The overall process, however, is greatly simplified if at each
step only one of the two summations is pursued. The structure of
Eq. (11), with coefficients 1−a(xk, xkb) and a(xk, xkb), suggests
the way to proceed. In the more general case, it is convenient to
draw a random number �∈[0, 1] and follow theA summation if
a(xk, xkb) ≥ � > 0 and the B summation if a(xk, xkb) < � < 1.

The ultimate goal of the PBMC algorithm is to estimate the
Stokes vector at the detector from a number nph of single photon
experiments. For a fixed {x0, s0}, this is done by evaluating

I(x0, s0) =
1

nph

nph∑
iph=1

〈Iiph (x0, s0)〉, (A.1)

where each 〈Iiph (x0, s0)〉 is an estimate based on a single photon
simulation. The estimate becomes statistically meaningful by re-
peating the process nph of times. When the integration is over the
planetary disk, Eq. (A.1) is replaced by Eqs. (29) or (31), and the
position x0 of entry of the simulated photon into the atmosphere
is determined with the corresponding sampling scheme.

The process that yields 〈I(x0, s0)〉 (index iph omitted) starts
by tracing the ray from x0 in the −s0 direction, following the
instructions below:

1. Initialise 〈I(x0, s0)〉 = 0, xk = x0, sk = s0, Hk = H0 (≡unity
matrix) and wk = 1.

2. Determine xkb and a(xk, xkb). Then,
(a) If rg(xkb) = 0 or if vector −sk does not intersect the

planet’s surface:
– g = a(xk, xkb).
– Go for A at step 3.

(b) Otherwise,
– g = 1.
– Draw a random number � ∈ [0, 1]. Then,

– If a(xk, xkb) ≥ � > 0, go for A at step 3.
– If a(xk, xkb) < � < 1, go for B at step 4.

3. Going for A: Collision in between boundaries.

– Draw a random number εka ∈ [0, 1] and displace the pho-
ton from xk to xka along −sk according to Eq. (7).

– At xka, draw a random number ζka ∈ [0, 1] and find θka
from the probability distribution function of Eq. (23).
This is done by tabulation and subsequent inversion of∫

fθ(θ)dθ ∈ [0, 1].
– At xka, find φka from the probability distribution func-

tion of Eq. (24). This is done by means of the rejection
method and the fact that by construction 2π fφ|θ(φ|θ) ≤ 2.

– Update:
– 〈I(x0, s0)〉 ← 〈I(x0, s0)〉 + wkg�(xka)t(xka, x�)Hk
P(xka, sk, s�)F�

– wk ← wkg�(xka)
– Hk ← HkP(xka, sk, ska)/(HkP(xka, sk, ska))1,1.
– xk ← xka and sk ← ska.

– If wk ≥ εph, go to step 2. Otherwise, go to step 5.

4. Going for B: Collision at the bottom boundary. Draw random
numbers ζkb, ηkb∈[0, 1].

– Displace the photon from xk to xkb along −sk.
– At xkb, evaluate φkb = ζkb*2π and cos(θkb) =

√
ηkb.

– Update:

– 〈I(x0, s0)〉 ← 〈I(x0, s0)〉+
wkgrg(xkb) (n(xkb) · s�)/π t(xkb, x�)HkF�

– wk ← wkgrg(xkb)
– Hk ← HkP(xkb, sk, skb)/(HkP(xkb, sk, skb))1,1.
– xk ← xkb and sk ← skb.

– If wk ≥ εph, go to step 2. Otherwise, go to step 5.
5. End of 〈I(x0, s0)〉 loop.

The loop ends when the weight wk reaches a user-defined thresh-
old εph that truncates the summation series. The value of εph has
an impact on both the solution’s accuracy and execution time.
Values in the range 10−4–10−5 are adequate for required accura-
cies of about 0.1% in the I Stokes element.

BMC algorithms with classical sampling schemes for photon
propagation directions have a structure similar to the above. In
the classical sampling scheme, the incident photon directions s′
are sampled from the local f (θ, φ) for q ≡ 0 (Fig. 3, top panel)
rather than from the full f (θ, φ) of Eqs. (23)–(24) (Fig. 3, panels
for |q| > 0). The classical BMC algorithm can be seen as a vari-
ation to the above algorithm, with the main difference being the
definition of Hk.
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Appendix B: Comparison with de Haan et al. (1987)

Table B.1. Solutions to the Stokes vector in a conservative, haze-L atmosphere of optical thickness equal to 1 and cos(SPA) = 0.1.

{cos(OPA); de Haan et al. PBMC, nph=

Azimuth} (1987) 105 106 107 108 109

{0.1; 0.}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+2.93214
+0.009900
+0.
+0.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+2.927667
+0.009888
+0.000015
+0.000007

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+2.929702
+0.009908
+0.000008
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+2.932289
+0.009902
+0.000001
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+2.932468
+0.009899
−0.000001
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+2.932400
+0.009899
+0.000000
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

{0.5; 0.}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.22054
+0.000976
+0.
+0.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.222888
+0.000974
+0.000015
+0.000001

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.220427
+0.000975
+0.000006
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.220107
+0.000975
−0.000002
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.220366
+0.000976
+0.000001
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.220391
+0.000976
+0.000000
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

{1.0; 0.}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.009287
−0.000815
+0.
+0.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.009324
−0.000809
+0.000010
+0.000004

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.009345
−0.000816
−0.000012
+0.000001

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.009328
−0.000817
−0.000001
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.009292
−0.000815
+0.000000
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.009287
−0.000815
+0.000000
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

{0.1; 30.}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.76910
−0.003758
+0.003124
+0.000012

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.766669
−0.003721
+0.003114
+0.000011

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.767652
−0.003747
+0.003125
+0.000012

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.768724
−0.003750
+0.003124
+0.000012

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.769202
−0.003757
+0.003124
+0.000012

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.769190
−0.003759
+0.003124
+0.000012

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

{0.5; 30.}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.132828
+0.000220
−0.000525
+0.000007

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.131144
+0.000180
−0.000512
+0.000002

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.132665
+0.000218
−0.000523
+0.000007

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.132663
+0.000221
−0.000528
+0.000007

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.132708
+0.000220
−0.000526
+0.000007

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.132740
+0.000220
−0.000525
+0.000007

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

{1.0; 30.}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.009287
−0.000408
−0.000706
+0.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.009749
−0.000429
−0.000718
+0.000002

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.009306
−0.000412
−0.000702
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.009283
−0.000407
−0.000706
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.009279
−0.000407
−0.000706
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+0.009286
−0.000408
−0.000706
+0.000000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Notes. The de Haan et al. (1987) solutions are extracted from their Table 6.

Appendix C: Comparison with DISORT

For an assessment of the PBMC algorithm against the prob-
lem of radiation emerging from a conservative, non-polarising
Rayleigh atmosphere above a Lambert reflecting surface, we
built a battery of solutions with DISORT (Stamnes et al. 1988).
DISORT is a well-documented and thoroughly tested solver
of the scalar RTE for monochromatic radiation in multiple-
scattering media based on the discrete-ordinate method.

Table 1 summarises the model parameters and their ranges
for the comparison exercise. They include the atmospheric op-
tical thickness, surface albedo, and the three angles of Fig. 5.
The atmospheric single scattering albedo is taken to be one as
corresponds to conservative scattering. In total, the battery com-
prises 15 876 test cases that explore both optically thin and
thick atmospheres with viewing/illumination angles from zenith
inclination to nearly horizontal pointing. The PBMC calcula-
tions were carried out with nph=104, 105, 106, and 107 photon
realisations. Figure C.1 shows the relative differences, defined
as δI=(IPBMC−Iref )/Iref×100, between the computations with
DISORT (reference model) and our PBMC algorithm. Median

Table C.1. Median values for |δI| in the PBMC test cases of Sects. 3.1
(scalar RTE) and 3.2 (VRTE, pre-conditioned sampling scheme) corre-
sponding to conservative Rayleigh atmospheres.

nph Scalar [%] Vector [%]
104 0.2835 0.2820
105 0.0859 0.0894
106 0.0302 0.0291
107 0.0087 0.0093

Fig. C.1. Relative differences in intensity, δI, between DISORT and
our PBMC algorithm for conservative, non-polarising, Rayleigh atmo-
spheres. The full set of cases is summarised in Table 1 of the main text.
Dashed vertical lines separate cases run with different atmospheric op-
tical thickness (τ, in the graph). The PBMC algorithm simultaneously
runs 7 × 7 = 49 configurations for the illumination geometry.

values for |δI| are listed in Table C.1. The convergence rate is
consistent with the expected n−1/2

ph law for MC integration.
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Appendix D: Comparison with Garcia & Siewert
(1986)

Scattering in media inspired by the Venus atmosphere has been
investigated by Garcia & Siewert (1986) with a generalised
spherical harmonics method. We refer to two of their study
cases, namely: L = 13 (reff = 0.2 μm, veff = 0.07, λ = 0.951 μm,

refractive index of 1.44; akin to the mode-1 haze atop the up-
per clouds of Venus) and L = 60 (reff = 1.05 μm, veff = 0.07,
λ = 0.782 μm, refractive index of 1.43; akin to the mode-2
droplets that make up the upper clouds of Venus). Tables D.1–
D.16 show the Garcia & Siewert (1986) solutions and our PBMC
calculations for nph up to 109.

Table D.1. Stokes vector element I at the top of the atmosphere for an L = 13 atmosphere: reff = 0.2 μm, veff = 0.07, λ = 0.951 μm, refractive
index of 1.44, with optical thickness of one, single scattering albedo � = 0.99, and surface albedo of 0.1.

cos(OPA) GS1986 105 106 107 108 109

−1.0 5.4956(–2) 5.5020(–2) 5.4893(–2) 5.4942(–2) 5.4964(–2) 5.4960(–2)
−0.9 9.0491(–2) 9.0196(–2) 9.0349(–2) 9.0487(–2) 9.0507(–2) 9.0512(–2)
−0.8 1.2560(–1) 1.2587(–1) 1.2584(–1) 1.2572(–1) 1.2561(–1) 1.2562(–1)
−0.7 1.6781(–1) 1.6779(–1) 1.6791(–1) 1.6796(–1) 1.6787(–1) 1.6783(–1)
−0.6 2.1934(–1) 2.1954(–1) 2.1939(–1) 2.1941(–1) 2.1933(–1) 2.1936(–1)
−0.5 2.8294(–1) 2.8310(–1) 2.8301(–1) 2.8297(–1) 2.8296(–1) 2.8296(–1)
−0.4 3.6268(–1) 3.6377(–1) 3.6262(–1) 3.6263(–1) 3.6269(–1) 3.6271(–1)
−0.3 4.6523(–1) 4.6550(–1) 4.6568(–1) 4.6552(–1) 4.6533(–1) 4.6526(–1)
−0.2 6.0287(–1) 6.0369(–1) 6.0313(–1) 6.0298(–1) 6.0291(–1) 6.0289(–1)
−0.1 8.0223(–1) 8.0163(–1) 8.0181(–1) 8.0218(–1) 8.0229(–1) 8.0225(–1)

Notes. Relative azimuth between the incident and emerging directions is 0 and cos(SPA) = 0.2. The GS1986 results are extracted from Table 1 of
Garcia & Siewert (1986). For consistency with that reference, we have preserved their criterion of signs for cos(OPA) (i.e. negative for outgoing
radiation) in Tables D.1–D.16.

Table D.2. Same as Table D.1 for Stokes vector element Q.

cos(OPA) GS1986 105 106 107 108 109

−1.0 −2.1609(–2) −2.1546(–2) −2.1557(–2) −2.1619(–2) −2.1610(–2) −2.1610(–2)
−0.9 −3.2581(–2) −3.2345(–2) −3.2454(–2) −3.2553(–2) −3.2584(–2) −3.2588(–2)
−0.8 −3.5048(–2) −3.4944(–2) −3.5122(–2) −3.5070(–2) −3.5058(–2) −3.5055(–2)
−0.7 −3.4950(–2) −3.5194(–2) −3.4992(–2) −3.4998(–2) −3.4962(–2) −3.4953(–2)
−0.6 −3.2768(–2) −3.2868(–2) −3.2794(–2) −3.2796(–2) −3.2764(–2) −3.2769(–2)
−0.5 −2.8664(–2) −2.8876(–2) −2.8734(–2) −2.8663(–2) −2.8666(–2) −2.8666(–2)
−0.4 −2.2754(–2) −2.3029(–2) −2.2803(–2) −2.2746(–2) −2.2754(–2) −2.2759(–2)
−0.3 −1.5241(–2) −1.4574(–2) −1.4991(–2) −1.5184(–2) −1.5228(–2) −1.5238(–2)
−0.2 −6.6429(–3) −6.4586(–3) −6.6268(–3) −6.6322(–3) −6.6373(–3) −6.6404(–3)
−0.1 +1.4355(–3) +1.2341(–3) +1.4922(–3) +1.4053(–3) +1.4481(–3) +1.4408(–3)

Notes. The GS1986 results are extracted from Table 2 of Garcia & Siewert (1986).

Table D.3. Same as Table D.1 for relative azimuth between the incident and emerging directions equal to π/2.

cos(OPA) GS1986 105 106 107 108 109

−1.0 5.4956(–2) 5.5355(–2) 5.5019(–2) 5.4925(–2) 5.4940(–2) 5.4943(–2)
−0.9 6.2210(–2) 6.1875(–2) 6.2079(–2) 6.2196(–2) 6.2215(–2) 6.2208(–2)
−0.8 7.0553(–2) 7.0913(–2) 7.0690(–2) 7.0640(–2) 7.0550(–2) 7.0549(–2)
−0.7 8.0201(–2) 8.0182(–2) 8.0114(–2) 8.0210(–2) 8.0213(–2) 8.0199(–2)
−0.6 9.1434(–2) 9.1662(–2) 9.1338(–2) 9.1450(–2) 9.1429(–2) 9.1435(–2)
−0.5 1.0461(–1) 1.0419(–1) 1.0439(–1) 1.0462(–1) 1.0463(–1) 1.0462(–1)
−0.4 1.2018(–1) 1.2029(–1) 1.2015(–1) 1.2020(–1) 1.2019(–1) 1.2019(–1)
−0.3 1.3868(–1) 1.3899(–1) 1.3914(–1) 1.3882(–1) 1.3874(–1) 1.3869(–1)
−0.2 1.6070(–1) 1.6060(–1) 1.6076(–1) 1.6073(–1) 1.6074(–1) 1.6071(–1)
−0.1 1.8701(–1) 1.8711(–1) 1.8712(–1) 1.8701(–1) 1.8704(–1) 1.8702(–1)

Notes. The GS1986 results are extracted from Table 3 of Garcia & Siewert (1986).
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Table D.4. Same as Table D.3 for Stokes vector element Q.

cos(OPA) GS1986 105 106 107 108 109

−1.0 2.1609(–2) 2.1860(–2) 2.1643(–2) 2.1590(–2) 2.1604(–2) 2.1608(–2)
−0.9 2.5704(–2) 2.5607(–2) 2.5704(–2) 2.5705(–2) 2.5710(–2) 2.5705(–2)
−0.8 3.0469(–2) 3.0671(–2) 3.0429(–2) 3.0517(–2) 3.0475(–2) 3.0472(–2)
−0.7 3.6046(–2) 3.6093(–2) 3.6023(–2) 3.6054(–2) 3.6054(–2) 3.6049(–2)
−0.6 4.2632(–2) 4.2779(–2) 4.2559(–2) 4.2631(–2) 4.2628(–2) 4.2633(–2)
−0.5 5.0505(–2) 5.0141(–2) 5.0446(–2) 5.0512(–2) 5.0509(–2) 5.0511(–2)
−0.4 6.0066(–2) 6.0063(–2) 6.0026(–2) 6.0067(–2) 6.0065(–2) 6.0068(–2)
−0.3 7.1913(–2) 7.2239(–2) 7.2106(–2) 7.1984(–2) 7.1948(–2) 7.1925(–2)
−0.2 8.6986(–2) 8.7084(–2) 8.7023(–2) 8.6990(–2) 8.7004(–2) 8.6992(–2)
−0.1 1.0690(–1) 1.0681(–1) 1.0688(–1) 1.0687(–1) 1.0691(–1) 1.0691(–1)

Notes. The GS1986 results are extracted from Table 4 of Garcia & Siewert (1986).

Table D.5. Same as Table D.3 for Stokes vector element U.

cos(OPA) GS1986 105 106 107 108 109

−1.0 0.0 +2.9922(–5) +4.1728(–7) −1.6475(–5) −4.7473(–6) −2.6314(–6)
−0.9 −5.9894(–3) −5.9741(–3) −6.0376(–3) −5.9877(–3) −5.9862(–3) −5.9921(–3)
−0.8 −9.1368(–3) −8.8194(–3) −9.1365(–3) −9.1444(–3) −9.1407(–3) −9.1363(–3)
−0.7 −1.2109(–2) −1.1913(–2) −1.2042(–2) −1.2125(–2) −1.2101(–2) −1.2112(–2)
−0.6 −1.5187(–2) −1.5355(–2) −1.5094(–2) −1.5189(–2) −1.5180(–2) −1.5186(–2)
−0.5 −1.8526(–2) −1.8432(–2) −1.8539(–2) −1.8551(–2) −1.8527(–2) −1.8530(–2)
−0.4 −2.2261(–2) −2.2511(–2) −2.2263(–2) −2.2252(–2) −2.2266(–2) −2.2264(–2)
−0.3 −2.6534(–2) −2.6487(–2) −2.6515(–2) −2.6531(–2) −2.6532(–2) −2.6538(–2)
−0.2 −3.1534(–2) −3.1663(–2) −3.1532(–2) −3.1545(–2) −3.1543(–2) −3.1537(–2)
−0.1 −3.7631(–2) −3.7731(–2) −3.7529(–2) −3.7606(–2) −3.7620(–2) −3.7628(–2)

Notes. The GS1986 results are extracted from Table 5 of Garcia & Siewert (1986).

Table D.6. Same as Table D.3 for Stokes vector element V .

cos(OPA) GS1986 105 106 107 108 109

−1.0 0.0 −4.0359(–6) −2.8272(–6) −1.2913(–6) −3.3342(–7) −7.6852(–8)
−0.9 −5.6876(–5) −5.8781(–5) −5.8552(–5) −5.6437(–5) −5.7022(–5) −5.6950(–5)
−0.8 −6.8062(–5) −5.7527(–5) −6.6774(–5) −6.8001(–5) −6.8242(–5) −6.8138(–5)
−0.7 −6.7491(–5) −7.8796(–5) −6.9653(–5) −6.8228(–5) −6.7184(–5) −6.7626(–5)
−0.6 −5.8655(–5) −6.6799(–5) −6.0468(–5) −5.8863(–5) −5.8413(–5) −5.8706(–5)
−0.5 −4.2700(–5) −3.3163(–5) −4.4207(–5) −4.3677(–5) −4.2733(–5) −4.2723(–5)
−0.4 −1.9781(–5) −2.0763(–5) −2.1645(–5) −2.0016(–5) −1.9869(–5) −1.9829(–5)
−0.3 +1.0762(–5) +1.5177(–5) +1.3012(–5) +1.1121(–5) +1.0477(–5) +1.0727(–5)
−0.2 +5.0591(–5) +5.4362(–5) +4.9086(–5) +5.0666(–5) +5.0576(–5) +5.0594(–5)
−0.1 +1.0277(–4) +9.5783(–5) +1.0541(–4) +1.0422(–4) +1.0323(–4) +1.0281(–4)

Notes. The GS1986 results are extracted from Table 6 of Garcia & Siewert (1986).

Table D.7. Same as Table D.3 for relative azimuth between the incident and emerging directions equal to π.

cos(OPA) GS1986 105 106 107 108 109

−1.0 5.4956(–2) 5.5381(–2) 5.4887(–2) 5.4938(–2) 5.4940(–2) 5.4954(–2)
−0.9 5.3085(–2) 5.2828(–2) 5.3125(–2) 5.3082(–2) 5.3088(–2) 5.3091(–2)
−0.8 5.8688(–2) 5.8651(–2) 5.8711(–2) 5.8702(–2) 5.8683(–2) 5.8687(–2)
−0.7 6.5653(–2) 6.5626(–2) 6.5606(–2) 6.5650(–2) 6.5650(–2) 6.5652(–2)
−0.6 7.3678(–2) 7.3572(–2) 7.3684(–2) 7.3720(–2) 7.3686(–2) 7.3680(–2)
−0.5 8.2754(–2) 8.2726(–2) 8.2727(–2) 8.2719(–2) 8.2742(–2) 8.2755(–2)
−0.4 9.2933(–2) 9.2400(–2) 9.2931(–2) 9.2896(–2) 9.2931(–2) 9.2936(–2)
−0.3 1.0421(–1) 1.0402(–1) 1.0454(–1) 1.0425(–1) 1.0424(–1) 1.0422(–1)
−0.2 1.1641(–1) 1.1681(–1) 1.1645(–1) 1.1640(–1) 1.1643(–1) 1.1641(–1)
−0.1 1.2913(–1) 1.2987(–1) 1.2903(–1) 1.2913(–1) 1.2915(–1) 1.2913(–1)

Notes. The GS1986 results are extracted from Table 7 of Garcia & Siewert (1986).
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Table D.8. Same as Table D.7 for Stokes vector element Q.

cos(OPA) GS1986 105 106 107 108 109

−1.0 −2.1609(–2) −2.1667(–2) −2.1508(–2) −2.1620(–2) −2.1604(–2) −2.1609(–2)
−0.9 −8.9018(–3) −8.8077(–3) −8.8265(–3) −8.8926(–3) −8.9011(–3) −8.9020(–3)
−0.8 −3.3079(–3) −3.0655(–3) −3.3472(–3) −3.3118(–3) −3.3080(–3) −3.3078(–3)
−0.7 +1.2155(–3) +1.2320(–3) +1.2018(–3) +1.2004(–3) +1.2182(–3) +1.2157(–3)
−0.6 +5.2168(–3) +5.1933(–3) +5.2157(–3) +5.2033(–3) +5.2184(–3) +5.2183(–3)
−0.5 +8.8753(–3) +8.7096(–3) +8.8633(–3) +8.8735(–3) +8.8756(–3) +8.8752(–3)
−0.4 +1.2230(–2) +1.1998(–2) +1.2262(–2) +1.2239(–2) +1.2237(–2) +1.2232(–2)
−0.3 +1.5202(–2) +1.5458(–2) +1.5417(–2) +1.5247(–2) +1.5219(–2) +1.5206(–2)
−0.2 +1.7500(–2) +1.7913(–2) +1.7470(–2) +1.7479(–2) +1.7516(–2) +1.7503(–2)
−0.1 +1.8225(–2) +1.8193(–2) +1.8276(–2) +1.8183(–2) +1.8234(–2) +1.8226(–2)

Notes. The GS1986 results are extracted from Table 8 of Garcia & Siewert (1986).

Table D.9. Stokes vector element I at the top of the atmosphere for an L = 60 atmosphere: reff = 1.05 μm, veff = 0.07, λ = 0.782 μm, refractive
index of 1.43, with optical thickness of one, single scattering albedo � = 0.99, and surface albedo of 0.1.

cos(OPA) GS1986 105 106 107 108 109

−1.0 3.8783(–2) 4.0259(–2) 3.8870(–2) 3.8890(–2) 3.8815(–2) 3.8787(–2)
−0.9 6.3881(–2) 6.5155(–2) 6.4312(–2) 6.3962(–2) 6.3903(–2) 6.3911(–2)
−0.8 9.3567(–2) 9.3881(–2) 9.3393(–2) 9.3590(–2) 9.3609(–2) 9.3614(–2)
−0.7 1.3570(–1) 1.3459(–1) 1.3554(–1) 1.3575(–1) 1.3575(–1) 1.3577(–1)
−0.6 1.9652(–1) 1.9709(–1) 1.9670(–1) 1.9659(–1) 1.9655(–1) 1.9660(–1)
−0.5 2.8490(–1) 2.8667(–1) 2.8553(–1) 2.8539(–1) 2.8507(–1) 2.8499(–1)
−0.4 4.1401(–1) 4.1261(–1) 4.1488(–1) 4.1407(–1) 4.1421(–1) 4.1413(–1)
−0.3 6.0620(–1) 6.1091(–1) 6.0618(–1) 6.0609(–1) 6.0630(–1) 6.0639(–1)
−0.2 9.3026(–1) 9.2723(–1) 9.2921(–1) 9.2998(–1) 9.3044(–1) 9.3055(–1)
−0.1 1.7498 1.7453 1.7480 1.7504 1.7504 1.7503

Notes. Relative azimuth between the incident and emerging directions is 0 and cos(SPA) = 0.2. The GS1986 results are extracted from Table 9 of
Garcia & Siewert (1986).

Table D.10. Same as Table D.9 for Stokes vector element Q.

cos(OPA) GS1986 105 106 107 108 109

−1.0 +3.2087(–3) +3.4480(–3) +3.2325(–3) +3.2196(–3) +3.2120(–3) +3.2096(–3)
−0.9 +5.6437(–3) +5.7535(–3) +5.6839(–3) +5.6392(–3) +5.6471(–3) +5.6488(–3)
−0.8 +7.8901(–3) +7.9410(–3) +7.8199(–3) +7.8853(–3) +7.8859(–3) +7.8946(–3)
−0.7 +9.9943(–3) +9.8596(–3) +9.9632(–3) +9.9880(–3) +1.0001(–2) +9.9992(–3)
−0.6 +1.1613(–2) +1.1428(–2) +1.1618(–2) +1.1636(–2) +1.1611(–2) +1.1616(–2)
−0.5 +1.2199(–2) +1.2363(–2) +1.2207(–2) +1.2207(–2) +1.2203(–2) +1.2199(–2)
−0.4 +1.1091(–2) +1.1064(–2) +1.1108(–2) +1.1073(–2) +1.1094(–2) +1.1093(–2)
−0.3 +8.3270(–3) +8.3240(–3) +8.3002(–3) +8.3205(–3) +8.3292(–3) +8.3296(–3)
−0.2 +7.3504(–3) +7.5133(–3) +7.4235(–3) +7.3600(–3) +7.3618(–3) +7.3547(–3)
−0.1 +1.9182(–2) +1.9353(–2) +1.9177(–2) +1.9211(–2) +1.9189(–2) +1.9188(–2)

Notes. The GS1986 results are extracted from Table 10 of Garcia & Siewert (1986).

Table D.11. Same as Table D.9 for relative azimuth between the incident and emerging directions equal to π/2.

cos(OPA) GS1986 105 106 107 108 109

−1.0 3.8783(–2) 3.8832(–2) 3.8936(–2) 3.8833(–2) 3.8784(–2) 3.8769(–2)
−0.9 4.3702(–2) 4.4171(–2) 4.3742(–2) 4.3753(–2) 4.3693(–2) 4.3691(–2)
−0.8 4.9701(–2) 5.0634(–2) 4.9657(–2) 4.9693(–2) 4.9695(–2) 4.9677(–2)
−0.7 5.7037(–2) 5.7559(–2) 5.7175(–2) 5.6978(–2) 5.7033(–2) 5.7017(–2)
−0.6 6.6034(–2) 6.5713(–2) 6.5610(–2) 6.6049(–2) 6.6014(–2) 6.6043(–2)
−0.5 7.7098(–2) 7.5906(–2) 7.6959(–2) 7.7383(–2) 7.7145(–2) 7.7099(–2)
−0.4 9.0697(–2) 9.0893(–2) 9.0944(–2) 9.0729(–2) 9.0789(–2) 9.0726(–2)
−0.3 1.0709(–1) 1.0592(–1) 1.0761(–1) 1.0725(–1) 1.0713(–1) 1.0714(–1)
−0.2 1.2517(–1) 1.2588(–1) 1.2570(–1) 1.2517(–1) 1.2524(–1) 1.2522(–1)
−0.1 1.3935(–1) 1.4012(–1) 1.3925(–1) 1.3937(–1) 1.3941(–1) 1.3942(–1)

Notes. The GS1986 results are extracted from Table 11 of Garcia & Siewert (1986).
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Table D.12. Same as Table D.11 for Stokes vector element Q.

cos(OPA) GS1986 105 106 107 108 109

−1.0 −3.2087(–3) −3.2246(–3) −3.1961(–3) −3.2089(–3) −3.2079(–3) −3.2085(–3)
−0.9 −3.7776(–3) −3.7995(–3) −3.8133(–3) −3.7942(–3) −3.7817(–3) −3.7775(–3)
−0.8 −4.5173(–3) −4.6534(–3) −4.5095(–3) −4.5168(–3) −4.5187(–3) −4.5158(–3)
−0.7 −5.4695(–3) −5.4574(–3) −5.4403(–3) −5.4509(–3) −5.4674(–3) −5.4675(–3)
−0.6 −6.6841(–3) −6.6171(–3) −6.6422(–3) −6.6838(–3) −6.6841(–3) −6.6855(–3)
−0.5 −8.2210(–3) −8.0785(–3) −8.2276(–3) −8.2521(–3) −8.2255(–3) −8.2208(–3)
−0.4 −1.0153(–2) −1.0132(–2) −1.0199(–2) −1.0163(–2) −1.0166(–2) −1.0157(–2)
−0.3 −1.2551(–2) −1.2301(–2) −1.2697(–2) −1.2583(–2) −1.2555(–2) −1.2556(–2)
−0.2 −1.5362(–2) −1.5522(–2) −1.5402(–2) −1.5368(–2) −1.5375(–2) −1.5371(–2)
−0.1 −1.7919(–2) −1.8065(–2) −1.7879(–2) −1.7918(–2) −1.7922(–2) −1.7929(–2)

Notes. The GS1986 results are extracted from Table 12 of Garcia & Siewert (1986).

Table D.13. Same as Table D.11 for Stokes vector element U.

cos(OPA) GS1986 105 106 107 108 109

−1.0 0.0 4.1956(–5) −1.2981(–5) 6.1562(–6) 1.1299(–6) −4.9001(–7)
−0.9 8.2963(–4) 8.3503(–4) 8.0867(–4) 8.3203(–4) 8.2784(–4) 8.2941(–4)
−0.8 1.3068(–3) 1.3137(–3) 1.3230(–3) 1.3182(–3) 1.3095(–3) 1.3064(–3)
−0.7 1.7878(–3) 1.8250(–3) 1.7629(–3) 1.7827(–3) 1.7880(–3) 1.7876(–3)
−0.6 2.3127(–3) 2.3901(–3) 2.2889(–3) 2.3131(–3) 2.3111(–3) 2.3136(–3)
−0.5 2.9041(–3) 2.8899(–3) 2.9072(–3) 2.9146(–3) 2.9066(–3) 2.9046(–3)
−0.4 3.5776(–3) 3.6875(–3) 3.5900(–3) 3.5616(–3) 3.5790(–3) 3.5787(–3)
−0.3 4.3260(–3) 4.2575(–3) 4.3401(–3) 4.3411(–3) 4.3322(–3) 4.3279(–3)
−0.2 5.0624(–3) 5.0706(–3) 4.9985(–3) 5.0585(–3) 5.0599(–3) 5.0640(–3)
−0.1 5.5033(–3) 5.6343(–3) 5.4692(–3) 5.5019(–3) 5.5060(–3) 5.5049(–3)

Notes. The GS1986 results are extracted from Table 13 of Garcia & Siewert (1986).

Table D.14. Same as Table D.11 for Stokes vector element V .

cos(OPA) GS1986 105 106 107 108 109

−1.0 +0.0 −4.3645(–6) −1.8591(–7) −6.3359(–7) +4.3425(–7) +9.3999(–9)
−0.9 −2.3298(–5) −3.8504(–5) −2.3586(–5) −2.4567(–5) −2.3974(–5) −2.3709(–5)
−0.8 −3.3159(–5) −1.7557(–5) −2.8954(–5) −2.9475(–5) −3.2471(–5) −3.3215(–5)
−0.7 −4.0605(–5) −4.3482(–5) −3.3880(–5) −4.1344(–5) −4.0458(–5) −4.0574(–5)
−0.6 −4.6329(–5) −1.7786(–5) −3.7889(–5) −4.5658(–5) −4.5602(–5) −4.6485(–5)
−0.5 −5.0166(–5) −9.0685(–5) −5.0612(–5) −4.9531(–5) −4.8829(–5) −4.9981(–5)
−0.4 −5.2027(–5) −3.5571(–5) −5.8161(–5) −5.6519(–5) −4.9828(–5) −5.1378(–5)
−0.3 −5.3865(–5) −6.7988(–5) −3.6750(–5) −4.8297(–5) −5.3102(–5) −5.4228(–5)
−0.2 −6.1686(–5) −4.4539(–5) −6.4015(–5) −6.1808(–5) −6.1938(–5) −6.1856(–5)
−0.1 −8.0698(–5) −1.1810(–4) −9.4732(–5) −8.1532(–5) −8.0507(–5) −8.0468(–5)

Notes. The GS1986 results are extracted from Table 14 of Garcia & Siewert (1986).

Table D.15. Same as Table D.9 for relative azimuth between the incident and emerging directions equal to π.

cos(OPA) GS1986 105 106 107 108 109

−1.0 3.8783(–2) 3.8659(–2) 3.8838(–2) 3.8753(–2) 3.8783(–2) 3.8784(–2)
−0.9 4.1409(–2) 4.2703(–2) 4.1395(–2) 4.1426(–2) 4.1439(–2) 4.1412(–2)
−0.8 5.1943(–2) 5.2001(–2) 5.1773(–2) 5.1933(–2) 5.1942(–2) 5.1937(–2)
−0.7 6.8133(–2) 6.9284(–2) 6.8124(–2) 6.8141(–2) 6.8127(–2) 6.8136(–2)
−0.6 9.5937(–2) 9.6150(–2) 9.6270(–2) 9.5912(–2) 9.5951(–2) 9.5959(–2)
−0.5 1.3265(–1) 1.3250(–1) 1.3319(–1) 1.3305(–1) 1.3273(–1) 1.3267(–1)
−0.4 1.3780(–1) 1.3838(–1) 1.3761(–1) 1.3781(–1) 1.3788(–1) 1.3783(–1)
−0.3 1.4338(–1) 1.4424(–1) 1.4402(–1) 1.4344(–1) 1.4343(–1) 1.4342(–1)
−0.2 1.9176(–1) 1.9157(–1) 1.9172(–1) 1.9181(–1) 1.9182(–1) 1.9182(–1)
−0.1 1.9322(–1) 1.9453(–1) 1.9322(–1) 1.9314(–1) 1.9325(–1) 1.9325(–1)

Notes. The GS1986 results are extracted from Table 15 of Garcia & Siewert (1986).
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Table D.16. Same as Table D.15 for Stokes vector element Q.

cos(OPA) GS1986 105 106 107 108 109

−1.0 3.2087(–3) 3.2612(–3) 3.2480(–3) 3.1974(–3) 3.2063(–3) 3.2083(–3)
−0.9 3.4697(–3) 3.6107(–3) 3.4775(–3) 3.4732(–3) 3.4767(–3) 3.4697(–3)
−0.8 3.9993(–3) 4.1837(–3) 3.9768(–3) 4.0047(–3) 3.9993(–3) 3.9993(–3)
−0.7 3.2661(–3) 3.3228(–3) 3.2461(–3) 3.2540(–3) 3.2657(–3) 3.2671(–3)
−0.6 1.0031(–3) 7.4623(–4) 1.0070(–3) 1.0129(–3) 9.9955(–4) 1.0025(–3)
−0.5 3.4663(–3) 3.5630(–3) 3.4973(–3) 3.4719(–3) 3.4727(–3) 3.4655(–3)
−0.4 1.1649(–2) 1.1922(–2) 1.1758(–2) 1.1639(–2) 1.1641(–2) 1.1652(–2)
−0.3 7.3601(–3) 7.6231(–3) 7.5405(–3) 7.3596(–3) 7.3704(–3) 7.3621(–3)
−0.2 −3.5796(–3) −3.7610(–3) −3.6178(–3) −3.5574(–3) −3.5784(–3) −3.5792(–3)
−0.1 1.2076(–2) 1.2413(–2) 1.2175(–2) 1.2137(–2) 1.2085(–2) 1.2081(–2)

Notes. The GS1986 results are extracted from Table 16 of Garcia & Siewert (1986).

Appendix E: Rayleigh phase curves

Fig. E.1. Disk-integrated phase curves for FI and FQ/FI for a
Rayleigh-scattering atmosphere with � = 1 and rg = 1 and optical
thicknesses from 0.1 to 10. Our PBMC calculations for nph = 104

(red curves) are compared to the calculations by Buenzli & Schmid
(2009) using a forward Monte Carlo algorithm (black curves) and at
least 2 × 106 photons per exit direction bin over the 30–120◦ α-range.
Both sets of curves are nearly indistinguishable on the scale of the
graph, even for the relatively small number of photon realisations used
in our PBMC calculations.
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