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ABSTRACT

Context. During their evolution massive stars can reach the phase of critical rotation when a further increase in rotational speed is
no longer possible. Direct centrifugal ejection from a critically or near-critically rotating surface forms a gaseous equatorial decretion
disk. Anomalous viscosity provides the efficient mechanism for transporting the angular momentum outwards. The outer part of the
disk can extend up to a very large distance from the parent star.
Aims. We study the evolution of density, radial and azimuthal velocity, and angular momentum loss rate of equatorial decretion disks
out to very distant regions. We investigate how the physical characteristics of the disk depend on the distribution of temperature and
viscosity.
Methods. We calculated stationary models using the Newton-Raphson method. For time-dependent hydrodynamic modeling we
developed the numerical code based on an explicit finite difference scheme on an Eulerian grid including full Navier-Stokes shear
viscosity.
Results. The sonic point distance and the maximum angular momentum loss rate strongly depend on the temperature profile and
are almost independent of viscosity. The rotational velocity at large radii rapidly drops accordingly to temperature and viscosity
distribution. The total amount of disk mass and the disk angular momentum increase with decreasing temperature and viscosity.
Conclusions. The time-dependent one-dimensional models basically confirm the results obtained in the stationary models as well
as the assumptions of the analytical approximations. Including full Navier-Stokes viscosity we systematically avoid the rotational
velocity sign change at large radii. The unphysical drop of the rotational velocity and angular momentum loss at large radii (present
in some models) can be avoided in the models with decreasing temperature and viscosity.
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1. Introduction

The outflowing disks may be formed around various types of
stars, such as Be stars, B[e] stars, and possibly luminous blue
variables (e.g., Smith & Townsend 2007) and asymptotic gi-
ant branch stars (see, e.g., Matt et al. 2000; de Ruyter et al.
2006). Observational evidence supports the idea that these disks
are Keplerian (rotationally supported) gaseous disks (Carciofi &
Bjorkman 2008). The solutions for time-independent viscous de-
cretion disk structures where one assumes the disk to be isother-
mal and in vertical hydrostatic equilibrium (e.g., Okazaki 2001;
Carciofi & Bjorkman 2008) show that, because of highly su-
personic rotational velocity, the disks are geometrically very
thin, and the disk opening angle is only a few degrees in the
region close to the star. These studies naturally support the
idea of the viscous decretion disk model leading to the for-
mation of near-Keplerian disks around critically rotating stars.
However, since the specific angular momentum in the near-
Keplerian disk increases with the radius, decretion disks are un-
likely near-Keplerian far from the star. A natural expectation
is that a disk which is Keplerian near a star becomes angular-
momentum conserving far from the star, although this transi-
tional feature of decretion disks is not very well understood

theoretically nor has it been observationally confirmed. Most of
the models analyze the inner parts of the disk, whereas the evolu-
tion close to the sonic point or even in the supersonic regions up
to the possible outer disk edge has not been, to our knowledge,
very well studied.

In this paper we study the characteristics of the outflowing
disks of critically rotating stars. The mass loss rate is deter-
mined by the angular momentum loss rate needed to keep the
star at critical rotation (Krtička et al. 2011, see also Kurfürst
2012; Kurfürst & Krtička 2012). The basic scenario follows the
model of the viscous decretion disk proposed by Lee et al. (1991,
see also Okazaki 2001). In this model Lee et al. (1991) ob-
tained a steady structure of viscous decretion disks around Be
stars in thermal and radiative equilibrium. As the physics of
accretion disks is quite similar, we follow the main principles
(Pringle 1981; Frank et al. 1992) used in accretion disk the-
ory for the description of decretion disks. The main uncertain-
ties are the viscous coupling and the temperature distribution.
Although some recent models indicate a constant value of the
viscosity throughout such disks (Penna et al. 2012), we inves-
tigate the cases when the viscous coupling varies outward as a
certain power law. The disk temperature is mainly affected by
the irradiation from the central star (Lee et al. 1991). Motivated
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by the nonlocal thermodynamic equilibrium (NLTE) simulations
(Carciofi & Bjorkman 2008) we extrapolate the temperature dis-
tribution up to quite distant regions as a power law.

2. Basic equations and parameterization

The disk is described in a cylindrical coordinate system assum-
ing axial symmetry (e.g., Lee et al. 1991; Okazaki 2001; Krtička
et al. 2011). The mass conservation (continuity) equation in the
geometrically thin case is (we denote the cylindrical radius as R,
the spherical radius as r)

R
∂Σ

∂t
+
∂

∂R
(RΣVR) = 0, (1)

where Σ is the surface density defined as

Σ =

∫ ∞

−∞
ρ dz, (2)

ρ is the density, and VR is the radial component of velocity.
The equation of radial momentum conservation in the thin disk
approximation is

∂VR

∂t
+ VR

∂VR

∂R
=

V2
φ

R
− GM

R2
− 1
Σ

∂(a2Σ)
∂R

+
3
2

a2

R
, (3)

where Vφ is the azimuthal component of velocity, a is the speed
of sound, a2 = kT /(μmu), μ is the mean molecular weight
(μ = 0.62 for the ionized hydrogen gas), mu is the atomic mass
unit, and M is stellar mass. The last term on the right-hand side
comes from the description of the gravitational force in a cylin-
drical coordinate system in the thin disk approximation, i.e., the
disk thickness is negligible with respect to radial distance of
any point studied (Matsumoto et al. 1984; Krtička et al. 2011;
Kurfürst & Krtička 2012). From the conservation of azimuthal
component of momentum we have

∂Vφ
∂t
+ VR

∂Vφ
∂R
+

VRVφ
R
= fvisc, (4)

where fvisc means the viscous force per unit volume, exerted by
the outer disk segment on the inner disk segment. In the axisym-
metric (∂/∂φ = 0) and geometrically thin case the viscous force
density is fvisc = ∂TRφ/∂R + 2TRφ/R (e.g., Mihalas & Mihalas
1984), where TRφ denotes the R-φ component of the stress ten-
sor. Viscous force density fvisc is usually represented by using
the first order linear viscosity term (see Eq. (8)) with the adopted
Shakura-Sunyaev α parameter (Shakura & Sunyaev 1973). We
also examine the cases with nonconstant α parameters. Taking
into account the turbulent motion of the gas, we can write for
the kinematic viscosity ν (Frank et al. 1992)

ν = α
a2R
Vφ
≈ αaH, (5)

with H denoting the typical vertical scaleheight of the disk, H2 =
a2R3/(GM) in Keplerian case.

The NLTE simulations (e.g., Carciofi & Bjorkman 2008)
show that the radial temperature distribution in the very inner
regions (up to few stellar radii) corresponds to a flat blackbody
reprocessing disk due to the optically thick nature of this inner
part (T0 ≈ 1

2 Teff, T (r) ∝ R−0.75), where T0 is the disk tempera-
ture at R = Req. As the disk becomes vertically optically thin, the
disk temperature rises to the optically thin radiative equilibrium
temperature with the average of about 60% of Teff . The tem-
perature radial profile at larger radii is nearly isothermal with

relatively mild temperature decrease (about 1000 K from 10
to 50 stellar radii). Millar & Marlborough (1998, 1999) also
found the radial temperature distribution up to 100 stellar radii
to be nearly isothermal. We approximate these dependencies by
a radial power law

T = T0(Req/R)p, (6)

where p is a free parameter (0 ≤ p < 0.5). Using the same
power law temperature decline we also extrapolate the radial
temperature structure of the outer part of the disk.

The viscosity also influences the temperature, but the contri-
bution of the viscous heating in the disk is very small (practically
negligible) compared with the heating that comes from radiative
flux from the star (e.g., Smak 1989; Carciofi & Bjorkman 2008).
The viscous heating dominates in the inner disk regions (Lee
et al. 1991) only in the case of enormous value of mass loss
rate (Ṁ ≥ 10−5 M� yr−1). This is the reason why the viscosity is
parameterized via temperature independent α parameter.

The radial profile of α is not quite certain. The common
agreement is that the value of the α parameter of turbulent vis-
cosity is less than 1, since for α > 1 the rapid thermalization due
to shocks would lead again to α ≤ 1 (Shakura & Sunyaev 1973).
Most authors use the value around 0.1; some of the most recent
works focused on the disk viscosity problem (e.g., Penna et al.
2012) find the α viscosity coefficient as constant, α ≈ 0.025.
However, here we regard it as an open question if the α should
be considered as constant throughout the disk or not. Therefore,
we introduce

α = α0(Req/R)n, (7)

where α0 is the viscosity of the inner region of the disk near
the stellar surface, n is a free parameter of the radial viscosity
dependence, n > 0. The kinematic viscosity ν(R) is related to
temperature via Eq. (5).

The first order linear viscosity term in Eq. (4) gives

f (1)
visc = −

1
R2Σ

∂

∂R
(αa2R2Σ), (8)

while including the full viscosity term we obtain the right-hand
side of Eq. (4) in the form

f (2)
visc =

1
R2Σ

∂

∂R

(
αa2R3Σ

∂ ln Vφ
∂R

− αa2R2Σ

)
· (9)

The same expression is obtained by employing the angular mo-
mentum equation (Pringle 1981; Frank et al. 1992)

∂

∂t

(
ΣR2Ω

)
+

1
R
∂

∂R

(
ΣVRR3Ω

)
=

1
2πR
∂G
∂R

(10)

(used in numerical scheme; see Sect. 4.2), whereΩ is the angular
velocity (Ω = Vφ/R) and G is the viscous torque acting between
two neighboring disk segments,

G = 2παa2ΣR3 ∂ lnΩ
∂R
· (11)

Most authors use the concept of some outer disk radius Rout,
where, because of the radiation pressure for example, the disk
matter may be completely driven outward (Lee et al. 1991).
Using the reasonable parameterization of T and α, we are not de-
pendent on the choice of Rout and can calculate the radial profiles
of the characteristics as a direct solution of the hydrodynamic
equations.
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3. Analytical estimates of the radial thin disk
structure

To obtain a general idea about the behavior of the main charac-
teristics of the system we consider the stationary form of the
basic hydrodynamic equations (Okazaki 2001; Krtička et al.
2011). Integrating Eq. (4) (using the term f (2)

visc from Eq. (9))
and dividing this by the stationary mass conservation equation
(RΣVR = const.) we derive for α = const.

RVφ +
αa2R

VR

(
1 − R

∂ ln Vφ
∂R

)
= const. (12)

Inclusion of only the first order linear viscosity term (see Eq. (8))
gives a similar relation without the second term in the bracket.
In the innermost part of the disk, VR 	 a. Consequently, the
second term on the left-hand side of Eq. (12) dominates, there-
fore VR ∼ R and Σ ∼ R−2 from the continuity equation (Okazaki
2001). In the inner region of the disk the radial pressure gradient
is negligible compared with the gravitational force, hence from
the momentum Eq. (3) Keplerian rotation follows, Vφ ∼ R−1/2.
Since Ṁ = const. (see Eq. (1)), we have in this region J̇(Ṁ) ∼
RVφ ∼ R1/2. Equation (12) becomes

RVφ + γ
αa2R

VR
= const., (13)

where for Keplerian rotational velocity the numerical factor γ =
3/2. Obviously, the second order linear viscosity term in the
Keplerian case represents one half of the corresponding first
order linear term assuming the same α parameter, and there-
fore cannot be neglected. In the distant region near the sonic
point (VR ≈ a) the radial velocity increases; therefore, the first
term on the left-hand side of Eq. (12) fully dominates, hence
RVφ = const. and the disk is angular momentum conserving.

In very distant supersonic regions with nearly flat disk tem-
perature distributions (VR � a, VR � Vφ, ∂a2/∂R ≈ 0)
and negligible gravity the radial momentum Eq. (3) with use
of mass conservation Eq. (1) implies logarithmic radial depen-
dence, V2

R ∼ ln R. The second term on the left-hand side of
Eq. (13) rises, consequently the azimuthal velocity has to sub-
stantially decrease and may in general become even negative.
This is, however, not possible according to the logarithmic term
in Eq. (12). The numerical simulations (see Figs. 5–7) prove that
the azimuthal velocity even in extremely distant regions does not
change its direction. Equation (13) indicates that for steeper vis-
cosity and temperature decrease (lower α and a2 in distant re-
gions) the region of azimuthal velocity drop moves outwards.

From the stationary form of the radial momentum and mass
conservation Eqs. (3) and (1) with the help of Eq. (6), the sonic
point condition (Okazaki 2001; Krtička et al. 2011) is fullfilled
at the sonic point radius

Rs = GM

[(
5
2
+ p

)
a2 + V2

φ

]−1

. (14)

Substituting Vφ(Rs) ≈ 1
2 VK(Rs), where VK(R) =

√
GM/R is the

Keplerian velocity (Krtička et al. 2011, see also Figs. 1 and 2)
we derive an estimate of the sonic point radius

Rs

Req
≈

⎡⎢⎢⎢⎢⎢⎣ 3
10 + 4p

(
VK(Req)

a(Req)

)2⎤⎥⎥⎥⎥⎥⎦
1

1−p

· (15)

Radius of the maximum of the disk angular momentum loss
roughly corresponds to the sonic point radius (see Figs. 1–7).

Since J̇max ≈ ṀRsVφ(Rs), we have

J̇max(Ṁ) ≈ 1
2

⎡⎢⎢⎢⎢⎢⎣ 3
10 + 4p

(
VK(Req)

a(Req)

)2⎤⎥⎥⎥⎥⎥⎦
1

2−2p

ṀReqVK(Req). (16)

From the above equations we can see that adding cooling (higher
p) can substantially increase the sonic point distance and conse-
quently the angular momentum loss of the disk for a fixed Ṁ.
For example, for p = 0.2 the maximum loss rate of angular mo-
mentum increases roughly 2 times and for p = 0.4 it increases
roughly 5–6 times in comparison with the isothermal case, ac-
cording to the type of star.

4. Numerical methods

4.1. Stationary calculation

For the stationary models (Kurfürst & Krtička 2012) we solved
the system of Eqs. (1), (3), and (4) omitting the explic-
itly time-dependent terms, using the Newton-Raphson method
(e.g., Krtička 2003). For the purpose of this study we se-
lected the star with the following parameters corresponding to
the main-sequence spectral Type B0 (Harmanec 1988): Teff =
30 000 K, M = 14.5 M�, R	 = 5.8 R�. To solve the system
of hydrodynamic equations (supplemented by the sonic point
condition Eq. (14)) numerically we used the so-called shooting
method, based on changing the inner boundary (photospheric)
radial velocity in order to find a proper branch of the solution.
The azimuthal velocity at the inner disk boundary (stellar equa-
torial surface) corresponds to Keplerian velocity. The solution
of the system of hydrodynamic equations is independent of the
scaling of the surface density Σ (cf. Krtička et al. 2011) and the
mass loss rate Ṁ is treated as a free parameter in our calcula-
tions. In our models the inner boundary radius is the equatorial
radius of the critically rotating star, Req = 3/2 R	.

Numerical problems occured when we attempted to involve
the second order viscosity term according to Eq. (9). Despite its
complete analytic linearization in the Jacobi matrix, the solu-
tions suffered from severe vibrations or perturbations mainly in
the proximity of and above the sonic point, and so we used only
the first order viscosity term Eq. (8) in the azimuthal momentum
Eq. (4). For the numerical calculation we selected a radial grid
consisting of 300–1000 grid points according to various initial
conditions. We used the numerical package LAPACK (Anderson
et al. 1999) to solve the system of linearized equations.

4.2. Time-dependent calculation

For the time-dependent calculations we write the left-hand sides
of hydrodynamic equations in conservative form (see, e.g.,
Norman & Winkler 1986; Hirsch 1988; Stone & Norman 1992;
Feldmeier 1995; LeVeque et al. 1998)

∂u
∂t
+ ∇ · F(u) = 0, (17)

where the quantities u = Σ, ΣV, R×ΣV and F(u) = ΣV, ΣV ⊗V,
R × ΣV ⊗ V for the mass, momentum, and angular momentum
conservation equations, respectively (with × denoting the vec-
tor product and ⊗ denoting the tensor product). Assuming axial
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symmetry of the thin disk, ∂/∂φ = 0, all functions are only radi-
ally and time dependent. The radial component of mass conser-
vation equation is given in Eq. (1) and the radial component of
momentum equation (see Eq. (3)) in its conservative form gives

∂(ΣVR)
∂t

+
1
R
∂

∂R
(RΣV2

R) − ΣV2
φ

R
= −∂P
∂R
− ΣGM

R2
+

3
2

a2

R
, (18)

where P is the isothermal gas pressure, P = a2Σ. The explicit
form of the angular momentum equation (see Eq. (10)) in this
case is

∂

∂t
(RΣVφ) +

1
R
∂

∂R
(R2ΣVRVφ) = RΣ f (2)

visc, (19)

the term f (2)
visc denotes the density of the viscous force in a form

derived in Eq. (9). Because we parameterize the disk temperature
profile via Eq. (6), we do not employ the energy equation for the
calculation in this case.

For the time-dependent calculations we extended the one-
dimensional hydrodynamic code of Feldmeier (1995). Following
Norman & Winkler (1986), the angular momentum advec-
tion flux acts as the azimuthal component of momentum flow.
We nevertheless do not use the consistent advection schema
(Norman et al. 1980) as it is described in detail in Norman
& Winkler (1986), but employ Eq. (10) in its explicit form.
Equations (1), (3), and (10) with use of Eq. (11) are dis-
cretized using time-explicit operator-splitting and finite differ-
ence method on staggered radial grids (see LeVeque et al. 1998).
The advection fluxes are calculated on the boundaries of control
volumes of these grids (see, e.g., Roache 1982; LeVeque et al.
2002) using van Leer’s monotonic interpolation (van Leer 1977,
1982).

In the source steps regarding the right-hand sides of Eqs. (18)
and (19) we accelerate the fluid by the action of external forces
(gravity) and internal pressure forces on the gas momenta (see
Norman & Winkler 1986). Involving the radial artificial viscos-
ity term Q (see Eq. (23)) we solve finite-difference approxi-
mations to the following differential equations (see Norman &
Winkler 1986),

dΣ
dt

∣∣∣∣∣
source

= 0, (20)

dΠ
dt

∣∣∣∣∣
source

= Σ
V2
φ

R
− ∂(a

2Σ)
∂R

− ΣGM
R2
+

3
2

a2

R
− ∂Q
∂R
, (21)

dJ
dt

∣∣∣∣∣
source

= RΣ f (2)
visc, (22)

where Π = ΣVR is the radial momentum density, J = ΣRVφ is
the angular momentum density, and f (2)

visc is the second order vis-
cosity term derived in Eq. (9). We adopt the artificial viscosity Q
in the explicit form (Norman & Winkler 1986, see also, e.g.,
Caramana et al. 1998)

Qi = Σi(VR, i+1 − VR, i)[−C1a + C2min(VR, i+1 − VR, i, 0)], (23)

where VR is the radial velocity component, a is the sound speed,
the lower index i denotes the i-th spatial grid step. The second
term scaled by a constant C2 = 1.0 is the quadratic artificial vis-
cosity (see Caramana et al. 1998) used in compressive zones.
The linear viscosity term should be sparingly used for damping
oscillations in stagnant regions of the flow (Norman & Winkler
1986). We use this term with C1 = 0.5 rarely when some os-
cillations may occur near the inner boundary region (near stel-
lar equatorial surface), either in cases with low α0 viscosity

parameter (α0 < 0.02) or in cases with steeper temperature
decrease (p > 0.2).

For the time-dependent modeling we employ two types of
stars: main sequence stars of spectral Type B0 (Harmanec 1988)
with parameters introduced in Sect. 5.1 and a Pop III star with
the following parameters (Marigo et al. 2001; Ekström et al.
2008): Teff = 30 000 K,M = 50 M�,R	 = 30 R�. The calcula-
tions were extended up to a considerable distance from the par-
ent star, although this may in most cases be a purely hypothetical
issue due to the low disk density in such regions. According to
the analytical prescriptions introduced in Sects. 2 and 3, we solve
the set of Eqs. (1)–(4) with the use of Eq. (9).

The inner boundary (stellar equatorial) values were adopted
on the equatorial radius of the critically rotating star (Req =
3/2 R	) in following way. The estimation of inner boundary sur-
face density Σ(Req) is implemented as a fixed boundary value; in
the case of a critically rotating B0-type star the isothermal disk
surface density is Σ(Req) = 1.6 × 102 g cm−2, roughly corre-
sponding to Ṁ ≈ 10−9 M� yr−1 derived by Granada et al. (2013).
In the case of a critically rotating Pop III type star the isother-
mal disk surface density is Σ(Req) = 1.6 × 105 g cm−2, which
roughly corresponds to Ṁ ≈ 10−6 M� yr−1 (Ekström et al. 2008).
Similarly to the stationary calculations described in Sect. 4.1, the
time-dependent models are independent of the scaling of the sur-
face density Σ. The inner boundary condition for VR is free, i.e.,
the quantity is extrapolated from mesh interior values as a 0th or-
der extrapolation. As the inner boundary condition for Vφ we as-
sume the Keplerian velocity (critically rotating stellar equatorial
surface). The outer boundary conditions are considered as out-
flowing for all quantities.

We set the initial surface density profile to Σ ∼ R−2 (Okazaki
2001). We start the numerical calculation with zero initial gas
radial velocity and Keplerian rotational velocity throughout the
whole disk. Our numerical test confirmed that the final solution
is independent of the initial conditions and does not depend on
the actual inner boundary condition for VR.

5. Results of numerical models

5.1. Stationary calculations

In stationary calculations the first order linear viscosity was as-
sumed according to Eq. (8). The model with constant viscosity
profile and p = 0 in Fig. 1 shows a rapid decrease in the ro-
tational velocity and the angular momentum loss at large radii.
These quantities even drop to negative values in the case of the
adopted first order linear viscosity prescription (see Sect. 3). The
velocity drop is caused by the increase of the second term in
Eq. (13) at large radii. We consider the drop to be unphysical.
As a solution to this problem within stationary calculations we
introduce the models with power law viscosity decline. Up to a
certain value of p parameter in temperature power law profile
the models avoid the rapid rotational velocity drop (show con-
stant angular momentum loss rate) in supersonic region (Fig. 2).

5.2. Disk evolution time

In the time-dependent models we recognize the wave that con-
verges the initial state of calculated quantities to their final sta-
tionary state. Because of the initial density distribution we may
regard the wave as physical (not only numerical artefact). We
assume that during the disk developing phase a similar trans-
forming wave occurs and its amplitude and velocity depends on
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Fig. 1. Dependence of the relative radial and azimuthal velocities and
the relative angular momentum loss rate J̇/J̇(Req) on radius for various
temperature profiles calculated by the method described in Sect. 4.1.
Constant viscosity α = 0.025 is assumed. Arrows denote the sonic
point.
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Fig. 2. As in Fig. 1, but with variable α parameter, α ∼ R−0.2.

physical conditions (namely the density distribution) in the stel-
lar surroundings. There might be a possibility to observe some
bow shocks at the boundary between the developing disk and
the interstellar medium (even though the disk radial velocity in
the distant regions is about one order of magnitude lower than
in the case of line-driven stellar winds). The wave may also de-
termine the timescale of the Be star disk growth and dissipation
phases (e.g., Guinan & Hayes 1984; Štefl et al. 2003). In the
subsonic region the wave establishes nearly hydrostatic equilib-
rium in the radial direction (Eq. (3)) and the wave speed ap-
proximately equals the sound speed. In the supersonic region
this wave propagates as a shock wave. Its propagation speed can
be approximated as D = a

√
Σ1/Σ0 (see Fig. 3), where the sub-

scripts 0 and 1 denote the values in front of and behind the shock
front, respectively (Zel’dovich & Raizer 1967). We regard the
shock propagation time as the dynamical time tdyn ≈ R/D =
0.3R/a. For example for the distance 104 Req the isothermal con-
stant viscosity B0-type star disk model gives tdyn ≈ 40 yr. The
dynamical time is almost independent of the viscosity while it
significantly increases with decreasing temperature.

We associate the disk evolution time with disk viscous time
(Okazaki 2001; Maeder 2009)

tvisc =

∫ R

Req

Vφ dR/(αa2), (24)

i.e., the timescale on which matter diffuses through the disk un-
der the effect of the viscous torques (Frank et al. 1992). In the
isothermal constant viscosity case the same model gives tvisc ∼
102 yr for the sonic point radius. The viscous time significantly

Fig. 3. Snapshot of the radial velocity and the surface density trans-
forming wave in the case of a B0-type star isothermal constant viscosity
model (see Fig. 5), the time tdyn ≈ 40 yr. The wave propagation velocity
is denoted as D. In the model, the ratio Σ1/Σ0 (surface densities be-
hind and in front of the wavefront) is about one order of magnitude and
slightly increases with the distance.

Fig. 4. Comparison of the density wave propagation time (lower two
branches denoted as tdyn) with the disk viscous time (upper two branches
denoted as tvisc), for B0-type star isothermal (p = 0) constant viscosity
model and the model with decreasing (p = 0.4) temperature profile
(see Fig. 6), in dependence on radius. The disk viscous time is calcu-
lated from Eq. (24). Since the rotational velocity Vφ is adopted from the
models, the graph of tvisc is cut off in the region of the rapid rotational
velocity drop. The plotted values of tdyn are adopted from the models.

grows with temperature and viscosity. The comparison of the
two times tdyn and tvisc is in Fig. 4.

We also investigated the case with arbitrarily low nonzero
initial surface density values in the whole computational do-
main. We assumed the initial (Keplerian) value of Vφ up to only a
few tens of stellar radii followed by a discontinuous jump down
to zero. Even using these initial conditions the disk evolves to
a large distance and it converges to the proper final state. The
density in the outer disk radius region is lower than the initial
density value, forming a rarefaction wave that really extends ra-
dially with time (but more work on this point is needed).

5.3. Stationary state reached by time-dependent models

From the calculations it follows that the profiles of surface den-
sity and radial velocity as well as the sonic point distance (where
VR/a = 1) very weakly depend on the viscosity parameter n. The
outer limit of Keplerian rotation velocity region (Vφ ∼ R−0.5)
is almost independent of the viscosity parameter. The calcula-
tions nevertheless show strong dependence of the outer edge
of the region where the rotational velocity behaves as angular
momentum conserving (Vφ ∼ R−1) (i.e., of the distance where
the rotational velocity begins to rapidly drop) on viscosity pa-
rameter (for a given temperature profile). For a selected range
of viscosity parameter n the distance of this region differs ap-
proximately by one order of magnitude (see, e.g., Fig. 5). In the
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Fig. 5. Dependence of scaled vertically integrated density and radial and
azimuthal disk velocities and the scaled angular momentum loss rate
J̇/J̇(Req) on radius in the case of isothermal disk (p = 0) of selected
B0-type star for various radial viscosity profiles (various n) in a final
stationary state of time-dependent models (the rapid drop of rotational
velocity and the angular momentum loss rate in the outer disk region is
a stationary jump, not a shock wave).

models the location of this rapid rotational velocity drop does not
exceed the radius where the disk equatorial density falls to av-
eraged interstellar medium density (its mean density we assume
as 10−23 g cm−3 e.g., Misiriotis et al. 2006; Maeder 2009). At this
distance a kinetic plasma modeling would likely be required;
moreover, the interaction of the disk with interstellar medium
has to be taken into account.

Within time-dependent calculations we examined the differ-
ences in the numerical results between the two different prescrip-
tions for viscous torque (Eqs. (8) and (9)). Similarly to the steady
disk calculations (see Sect. 5.1), the first order linear viscosity
calculations (Eq. (8)) exhibit the rapid rotational velocity drop
to negative values and consequently indicate very slow conver-
gence to zero. The rotational velocity profiles calculated involv-
ing the second order linear viscosity term (Eq. (9)) confirm the
analytical result Vφ > 0 throughout the entire disk range (see
Sect. 3).

Figure 5 illustrates the isothermal case (p = 0) of a B0-type
star (Ṁ ≈ 10−9 M� yr−1, see Sect. 4.2) with α(Req) = 0.025
(Penna et al. 2012). The calculated radius of the sonic point
Rs ≈ 550 Req roughly corresponds to the analytical prediction
from Eq. (15) with Rs being approximately 480 Req. The max-
imum angular momentum loss rate J̇max (see Eq. (16)) is inde-
pendent of viscosity while it strongly depends on the profile of
temperature. Since J̇max roughly equals the angular momentum
loss rate at the sonic point radius, we assume the total angular
momentum contained in the disk to be

Jdisk =

∫ Rs

Req

2πR2ΣVφ dR, (25)

and we therefore regard Rs as the disk outer edge. Analogously
it also determines the mass of the disk

Mdisk =

∫ Rs

Req

2πRΣ dR. (26)

Comparing for example the total disk angular momentum Jdisk
with the total stellar angular momentum J	 = ηMR2

	Ωcrit where
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Fig. 6. As in Fig. 5, however for temperature decreasing with a power
law with p = 0.4. Inner boundary viscosity α(Req) = 0.025 is consid-
ered. The characteristic radii (sonic point distance, outer disk radius)
are in this case significantly larger.

Fig. 7. Comparison of the radial profiles of relative surface density and
relative velocities and the radial profiles of angular momentum loss in
the case of decreasing viscosity (n = 0.2) for isothermal disk (p = 0)
and for outward decreasing temperature profile (p = 0.4) in a final sta-
tionary state of time-dependent disk models for Pop III star.

a nondimensional parameter η = 0.05 (Meynet & Maeder 2006),
in this case the ratio Jdisk/J	 = 1.2 × 10−6.

Figure 6 shows the case of decreasing temperature profile
(p = 0.4) of the B0-type star with the same viscosity profiles as
in Fig. 5. The sonic point distance is roughly Rs ≈ 31 500 Req
for all the viscosity profiles, which is about two orders of mag-
nitude larger than in the isothermal case. In this model the ratio
Jdisk/J	 = 7.9 × 10−5, which is similarly about two orders of
magnitude larger than in the isothermal case.

Figure 7 shows the calculated profiles of the pop III star’s
disk (Ṁ ≈ 10−6 M� yr−1, see Sect. 4.2) with various temperature
parameters for fixed decreasing viscosity (n = 0.2). The graph
clearly shows a strong dependence of radii of the sonic point and
of the rapid rotational velocity drop, as well as of the slopes of
surface density and radial velocity on temperature profile. The
sonic point radius is located at Rs ≈ 360 Req in the isothermal
case and ≈16 500 Req in case of radially decreasing temperature
with selected parameter p = 0.4. The use of the same dimen-
sionless parameter η = 0.05 gives the ratio Jdisk/J	 = 1.2× 10−3
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for the isothermal model and Jdisk/J	 = 0.2 for the model with
decreasing temperature. In the latter case the disk carries away
a significant fraction of stellar angular momentum and the star
may not have enough angular momentum to develop the disk
fully. In this case the stellar evolution has to be calculated to-
gether with the disk evolution. The calculations support the con-
clusion that the unphysical drop of the rotational velocity can be
avoided in the models with radially decreasing viscosity param-
eter and temperature.

Within the time-dependent calculations we also examined
subcritically rotating stars modifying the boundary condition
for Vφ. For the inner boundary value of the azimuthal velocity
Vφ(Req) � 0.97VK(Req) (where VK(Req) denotes the Keplerian
velocity at the stellar equator), the models precisely converge in
the supersonic region. However, in the case when the boundary
rotational velocity is only slightly higher than the above limit
(0.97VK(Req) � Vφ(Req) � 0.98VK(Req)) there occur (more or
less regular) pulsations in the density and radial velocity profiles
in the region close to the star. For Vφ(Req) � 0.97VK(Req) the
density (and consequently the radial velocity) profile is unstable
and gradually declines; for lower Vφ(Req) the decrease in density
is faster.

6. Conclusions

We calculated axisymmetrical, vertically integrated one-
dimensional time-dependent models of decretion disks of
critically rotating stars. For this purpose we developed a numer-
ical code for time-dependent hydrodynamical modeling that in-
cludes full Navier-Stokes viscosity. We extrapolate the disk tem-
perature profiles obtained by NLTE simulations (e.g., Carciofi &
Bjorkman 2008) by the parameterized profiles. Various temper-
ature profiles give different slopes of integrated density decrease
throughout most of the disk. The radial dependence of the disk
equatorial density may in various regions differ from the param-
eterized density profiles generally used in models dealing with
the disk thermal structure (e.g., Sigut et al. 2009; McGill et al.
2013). Since the radial profile of the α viscosity parameter is not
quite certain, we parameterize it via an independent power law
radial dependence.

The time-dependent one-dimensional models confirm the
basic results obtained in the stationary models in respect of the
sonic point distance and of the distance of the disk outer edge
(i.e., the radius where the rotational velocity begins to rapidly de-
crease) on parameterized temperature and viscosity profiles. The
sonic point is located at larger radii in the models with steeper
temperature decrease while its radius very weakly depends on
the viscosity profile. The sonic radius strongly depends on both
temperature and viscosity profiles and does not exceed the dis-
tance where we expect the disk equatorial density may drop to
the average density of the interstellar medium. Consequently, the
total angular momentum contained in the disk and the mass of
the disk increase with the decreasing temperature and viscosity
profiles. The analytical relations provided in Sect. 3 give ade-
quate approximations of the numerical models. The unphysical
drop of the rotational velocity and angular momentum loss at
large radii, which is present in the isothermal models with con-
stant viscosity parameters, can be avoided in the models with
decreasing temperature and viscosity parameters.
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Kurfürst, P., & Krtička, J. 2012, in Circumstellar Dynamics at High Resolution,
eds. A. Carciofi, & Th. Rivinius (San Francisco: ASP), 464, 223

Lee, U., Saio, H., & Osaki, Y. 1991, MNRAS, 250, 432
LeVeque, R. J. 2002, Finite Volume Methods for Hyperbolic Problems

(Cambridge University Press)
LeVeque, R. J., Mihalas, D., Dorfi. E. A., & Müller, E. 1998, Computational

Methods for Astrophysical Fluid Flow (Berlin: Springer-Verlag)
Maeder, A. 2009, Physics, Formation and Evolution of Rotating Stars (Berlin

Heidelberg: Springer-Verlag)
Marigo, P., Girardi, L., Chiosi, C., & Wood, P. R. 2001, A&A, 371, 152
Matsumoto, R. 1984, PASJ, 36, 71
Matt, S., Balick, B., Winglee, R., et al. 2000, ApJ, 545, 965
McGill, M. A., Sigut, T. A. A., & Jones, C. E. 2013, ApJS, 204, 2
Meynet, G., & Maeder, A. 2006, Stars with the B[e] Phenomenon, eds. M. Kraus,

& A. S. Miroschnichenko, ASPC Conf. Ser., 355, 27
Mihalas, D., & Mihalas, B. W. 1984, Foundation of Radiation Hydrodynamics

(New York: Oxford University Press)
Millar, C. E., & Marlborough, J. M. 1998, ApJ, 494, 715
Millar, C. E., & Marlborough, J. M. 1999, ApJ, 516, 276
Misiriotis, A., Xilouris, E. M., Papamastorakis, J., et al. 2006, A&A, 459, 113
Norman, M. L., & Winkler, K.-H. A. 1986, Astrophysical Radiation

Hydrodynamics. NATO Advanced Research Workshop on Astrophysical
Radiation Hydrodynamics, held in Garching bei Munchen, Germany, August,
1982, eds. K.-H. A. Winkler, & M. L. Norman

Norman, M. L., Wilson, J. R., & Barton, R. T. 1980, ApJ, 239, 968
Okazaki, A. T. 2001, PASJ, 53, 119
Penna, R. F., Sadowski, A., Kulkarni, A. K., & Narayan, R. 2012, MNRAS, 428,

2255
Pringle, J. E. 1981, ARA&A, 19, 137
Roache, P. J. 1982, Computational Fluid Dynamics (New Mexico: Hermosa

Publishers)
Sigut, T. A. A., McGill, M. A., & Jones, C. E. 2009, ApJ, 699, 1973
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Smak, J. 1989, Acta Astron., 39, 201
Smith, N., & Townsend, R. H. D. 2007, ApJ, 666, 967
Štefl, S., Baade, D., Rivinius, T., et al. 2003, A&A, 402, 253
Stone, J. M., & Norman, M. L. 1992, Ap&SS, 80, 753
van Leer, B. 1977, J. Comput. Phys., 23, 276
van Leer, B. 1982, Flux-vector splitting for the Euler equations, Proc. Int. Conf.

on Numerical Methods in Fluid Dynamics, 8th, Aachen, West Germany, June
28–July 2 (Berlin: Springer-Verlag)

Zel’dovich, Ya. B., & Raizer, Yu. P. 1967, Physics of shock waves and high-
temperature hydrodynamic phenomena (New York: Academic Press)

A23, page 7 of 7


	Introduction
	Basic equations and parameterization
	Analytical estimates of the radial thin disk structure
	Numerical methods
	Stationary calculation
	Time-dependent calculation

	Results of numerical models
	Stationary calculations
	Disk evolution time
	Stationary state reached by time-dependent models

	Conclusions
	References

