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ABSTRACT

We show that moderate energy relaxation in the formation of dark matter halos invariably leads to profiles that match those observed
in the central regions of galaxies. The density profile of the central region is universal and insensitive to either the seed perturbation
shape or the details of the relaxation process. The profile has a central core; the multiplication of the central density by the core radius
is almost independent of the halo mass, in accordance with observations. In the core area the density distribution behaves as an Einasto
profile with low index (n ∼ 0.5); it has an extensive region with ρ ∝ r−2 at larger distances. This is exactly the shape that observations
suggest for the central region of galaxies. On the other hand, this shape does not fit the galaxy cluster profiles. A possible explanation
of this fact is that the relaxation is violent in the case of galaxy clusters; however, it is not violent enough when galaxies or smaller
dark matter structures are considered. We discuss the reasons for this.
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1. Introduction

Although the dark matter (DM) component contributes most to
the galaxy mass containment, a generally accepted explanation
for some observational properties of the galaxy dark matter ha-
los has not been supplied yet. In particular, there is some dis-
agreement regarding the density profile in the center of the halos.
Earlier N-body simulation suggested very cuspy profiles with
an infinite density in the center (see, e.g., Moore et al. 1999;
Neto et al. 2007). For instance, the Navarro-Frenk-White profile
(hereafter NFW) behaves as ρ ∝ r−1 in this area. Recent simu-
lations (Stadel et al. 2009; Navarro et al. 2010) favor an Einasto
profile with a finite central density, but the obtained Einasto in-
dex n is so high (typically n ∼ 5−6) that the profile is very steep
in the center and may still be called cuspy. Although the simu-
lations mainly model the largest structures of the Universe, such
as galaxy clusters (M ∼ 1015 M�), their results are expected
to be valid for smaller objects as well. Moreover, simulations
of separate dark matter halos (M ∼ 1012M�) have also be per-
formed (see, for instance, the Via Lactea project Diemand et al.
2007).

However, the correct interpretation of the N-body data re-
quires a reliable estimation of the simulation convergence. The
idea of N-body simulations is to substitute real tiny dark matter
particles by heavy test bodies. Since there are fewer bodies, the
task becomes computable. We face a problem, however: the test
bodies collide much more effectively than the original DM parti-
cles. The strong encounters with high momentum transfer lead to
evident effects such as kicking of the test particles from the halo.
They are avoided in simulations by softening of the Newtonian
potential near the test bodies. However, the gravitational force
is long-acting, and the influence of weak long-distant collisions
dominates. In a nutshell, the gravitational potential of homoge-
neous dark matter is plain, while the potential of the test bodies
has local potential wells near the bodies, despite of the soften-
ing. This produces unphysical soft scattering of the bodies on
each other and so leads to a collisional relaxation. The process

can be described by the Fokker-Planck approximation (Landau
& Lifshitz 1980). The characteristic time of the collisional re-
laxation is (Binney & Tremaine 2008, Eq. (1.32)) τr =

N(r)
8 lnΛ · r

v
,

where v is the characteristic particle speed at radius r, N(r) is
the number of particles inside r, lnΛ is the Coulomb logarithm.
The ratio of the system lifetime t0 to τr should be low enough
to guarantee the negligibility of the relaxation. A real halo con-
tains ∼1065 particles, hence the collisions are wholly immaterial.
The quantity of test bodies in simulations is incomparably lower.
The closer we approach the halo center, the smaller N(r) and r/v
are, and the shorter is τr. Thus the central region of the halos is
the most problematic for the simulations: the profile inside some
convergence radius rconv may be already corrupted by the colli-
sions. It is commonly assumed that rconv is defined by a certain
value of t0/τr.

The commonly-used criterion of the convergence of N-body
simulations is the stability of the central density profile (Power
et al. 2003). The simulations indeed show that the central NFW-
like cusp is formed quite rapidly (t < τr) and then is stable and
insensitive to the simulation parameters. However, the conver-
gence criteria obtained with this method are surprisingly opti-
mistic: the cusp is stable at least up to t = 1.7τr and proba-
bly much longer (Power et al. 2003). Hayashi et al. (2003) and
Klypin et al. (2013) reported that the cusp is stable even at tens
of relaxation times and smears out only at t ∼ 40τr. The rea-
sons why the collision influence is negligible at a time interval
exceeding the relaxation time are not quite clear. Nevertheless,
criterion t = 1.7τr (Power et al. 2003) is routinely used in mod-
ern simulations (Navarro et al. 2010).

The criteria based on the density profile stability have a weak
point, however: the stability does not guarantee the absence of
the collisional influence. Considerations based on the Fokker-
Planck equation (Evans & Collett 1997; Baushev 2013b) show
that an NFW-like profile (ρ ∝ r−β, β � 1) is an attractor: the
Fokker-Planck diffusion transforms any reasonable initial distri-
bution into it in a time shorter than τr , and then the cuspy pro-
file should survive much longer than τr , since the Fokker-Planck
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diffusion is self-compensated in this case. Therefore the cusp is
stable and insensitive to the simulation parameters; at t ∼ 50τr
it is destroyed by higher-order terms of the Boltzmann collision
integral, disregarded by the Fokker-Planck approach (Quinlan
1996; Baushev 2013b). This scenario perfectly describes the be-
havior of real N-body simulations: the NFW-like cusp appears at
t < τr, remains stable up to tens of relaxation times, and then is
smoothed. However, the shape of the cusp is in this case defined
by the test particle collisions, that is, by a purely numerical ef-
fect. The only reliable criterion of negligibility of the unphysical
collisions is t � τr. This means that rconv is several times larger
than predicted by the criterion t = 1.7τr (Power et al. 2003).
Thus the criteria based on the profile stability are most likely too
optimistic and underestimate the influence of numerical effects.
The problem needs further investigation.

Contrary to the simulations, observations show a fairly
smooth core in the centers of, at least, galaxy halos (de Blok
et al. 2001; de Blok & Bosma 2002; Marchesini et al. 2002;
Gentile et al. 2007). Chemin et al. (2011) removed the baryon
contribution and found that the dark matter distribution in the
central regions of a large array of galaxies may well be fitted by
the Einasto profile with a low index (n � 0.5) that corresponds
to a cored profile. The central densities of the dwarf spheroidal
satellites of the Andromeda galaxy are also low and favor the
cored profiles (Tollerud et al. 2012), although the profiles in this
case can be modified by the dynamical friction and tidal effects,
since the satellites are situated inside the virial radius of the
host galaxy. However, recent observations of dwarf spheroidal
galaxies also indicate no cusps in their centers (Oh et al. 2011;
Governato et al. 2012). This makes attempts to explain the soft
cores of the central density profiles by the influence of the bary-
onic component dubious: the dwarfs contain only a very minor
fraction of baryons.

Many galaxies (at least, the spiral ones) show quite an ex-
tensive region in their dark matter halo with a ρ ∝ r−2 profile:
the region corresponds to a characteristic flat tail in their rota-
tion curves. This feature allowed proving the existence of the
dark matter by Rubin et al. (1978). Meanwhile, none of two
profiles (Navarro-Frenk-White or Einasto) that are commonly
used to fit the halos in the N-body simulations has such a re-
gion. Certainly, the current power-law index γ = d logρ/d log r
of both the profiles reaches−2 at some point. However, the index
changes continuously in both cases, the point where γ = −2 is
marked not, therefore we cannot expect an extensive region with
ρ ∼ r−2. Of course, the real structure formation is a much more
complex process than the simulations, and the origin of the re-
gion could be a result of the influence of the baryon component,
substructures, galaxy disk, etc. However, the persistence of the
isothermal-like shape ρ ∼ r−2 in the density profiles of a vast col-
lection of galaxies with very different physical properties (Sofue
& Rubin 2001) suggests a more fundamental and more universal
physical reason.

Finally, observations indicate that the multiplication of the
halo central density ρc by the core radius rcore is almost constant
for a wide variety of galaxies, while their physical parameters,
including ρc and rcore apart, change in a rather extensive range.
This effect was first discovered by Kormendy & Freeman (2004)
and then confirmed by several independent observations (see
Salucci et al. 2007; Donato et al. 2009 and references therein).
To be able to compare results obtained using different profile
models, we define the core radius rcore as the radius, at which

d logρ(rcore)
d log r

= −1. (1)

Donato et al. (2009) used the Burkert profile (Burkert 1995)

ρ(r) =
ρcr3

b

(r + rb)(r2 + r2
b)
· (2)

It is easy to see that rcore = rb/2. Recently, Donato et al. (2009)
found that log(ρcrb) = 2.15± 0.2 in units of log(M� pc−2) on the
basis of the co-added rotation curves of ∼1000 spiral galaxies,
the mass models of individual dwarf irregular and spiral galax-
ies of late and early types with high-quality mass profiles, and
the galaxy-galaxy weak-lensing signals from a sample of spi-
ral and elliptical galaxies. They also showed that the observed
kinematics of Local Group dwarf spheroidal galaxies are consis-
tent with this value as well. The result was obtained for galactic
systems belonging to various Hubble types whose mass profiles
have been determined by several independent methods.

The aim of this article is to show that all the above-
mentioned features (a cored central profile, an extended region
with a ρ ∝ r−2 profile, and ρcrcore � const. relationship) ap-
pear automatically, if we assume that the relaxation of the galac-
tic halos during their formation was not violent. The violent-
relaxation scenario, usually leading to a cuspy density profile,
was first suggested by Lynden-Bell (1967) for stellar systems.
The idea of it is that strong small-scale gravitational fields ap-
pear during the halo relaxation, and as a result all the particles
completely forget their initial states. Recent N-body simulations
(Diemand et al. 2005, 2007; Diemand & Kuhlen 2008) showed
however, that this assumption is probably incorrect, and a signif-
icant part of the particles and subhalos “remember” their initial
specific energies ε = v

2

2 + φ: they change quite moderately.
There may be several theoretical reasons for the absence of

the violent relaxation (Baushev 2014). For instance, the effi-
ciency of the violent relaxation rapidly drops with the growth
of the initial radius r of the area under consideration from
the center of the object. Even the original paper (Lynden-Bell
1967) reported that the outer regions of the stellar clusters re-
mained unrelaxed. Meanwhile, a dark matter halo originates
from a perturbation that was initially linear and, in contrast to
the formed structures, had a low density contrast. Consequently,
the main contribution to the halo mass was made by the layers
with large r, since their volume 4πr2dr dominates. This circum-
stance impedes the relaxation. Moreover, a significant part of
the dark matter gradually accretes onto the already formed halo,
when the strong gravitational field inhomogeneities have already
disappeared (Wang et al. 2012).

All these reasons allow us to assume that the violent relax-
ation does not occur, at least, in some types of halos. Hereafter
we assume that the relaxation of low-mass halos (Mvir �
1012 M�), corresponding to galaxies, is not violent. We assume
that the relaxation is moderate in the following sense:

1. The final total specific energy εf of most of the particles dif-
fers from the initial ones εi no more than by a factor cvir/5
εf
εi
≤ cvir

5
· (3)

2. There can be particles that violate condition (3), but their to-
tal mass should be small with respect to the halo mass inside
r = 2Rvir

cvir

M <

2Rvir/cvir∫
0

dMhalo. (4)

The reason for this limitation will be clear from the subse-
quent text.
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Here we used the NFW halo concentration cvir. As we will see,
the real density profile may significantly differ from the NFW
one, if conditions (3)–(4) are true. However, we use cvir because
of its popularity and in view of the fact that characteristic val-
ues of cvir for various types of astronomical objects are well
known. Condition (3) is too strict for galaxy clusters, since their
concentrations are low (cvir ∼ 3−5). Indeed, even for rather a
dense cluster (cvir = 6) Eq. (3) would mean that the energies
of almost all the particles change by no more than 20% during
the relaxation. The real relaxation is most likely more intensive;
perhaps, this is the reason why the galaxy clusters have profiles
close to NFW (Okabe et al. 2010).

In contrast, conditions (3) and (4) seem quite soft for galac-
tic halos. Concentration cvir � 12−17 even for the giant Milky
Way galaxy and probably much higher for low-mass galaxies.
Consequently, assumption (3) means that the energy of most of
the particles changes no more than by a factor of 3 with respect
to the initial value. This behavior looks quite natural for a col-
lisionless system. Condition (4) is also weak. Indeed, a halo of
typical galactic concentration (cvir ∼ 15−20) contains 20−25%
of its mass inside r = 2Rvir

cvir
; this means that condition (4) reduces

to the constraint that the fraction of the particles that changed
their energy by more than a factor of cvir/3 � 3 is smaller than a
quarter of the halo mass.

Of course, there is always some dark matter that violates con-
dition (3). For instance, the particles that were in the center of the
halo at the very beginning of the collapse, when their velocities
(as well as the velocities of other particles) were low. Their en-
ergies changed by much more than Eq. (3) during the collapse,
even if there was no relaxation at all. Indeed, they remain in the
halo center during the collapse, while the gravitational potential
of this area deepens by approximately a factor cvir because of
the crowding of the matter toward the center. However, the den-
sity of these “ancient habitants” of the halo center was compara-
ble with the average DM density of the Universe at the moment
of the halo collapse, that is, it was only by a factor ∼5 higher
than the present-day value. Meanwhile, the central density of the
Milky Way is higher by a factor ∼3× 105 than the Universe DM
density. Clearly, the “ancient habitants” do yield some density
into the DM content of the Galactic center, but the contribution
is negligible (∼10−5).

To conclude the introductory section, we should emphasize
that the moderate relaxation is now no more than a hypothesis.
However, as we will see, it leads to quite correct predictions of
the central density profiles of galaxies.

In Sect. 2 we discuss the energy evolution of a collapsing
dark matter halo and show that the distribution of the formed
halo probably has a peculiar form. In Sect. 3 we calculate the
density profile corresponding to this distribution. In Sect. 4 we
discuss the obtained profile and compare it with observational
data. Finally, in Sect. 4, we briefly summarize our results and
discuss further implications.

2. Energy distribution

The assumption of the moderate energy evolution immediately
leads to some important consequences. Hereafter we accept for
simplicity that the halo is spherically symmetric. The present-
day dark matter halos were formed from some primordial per-
turbations that existed in the early Universe. Initially, the per-
turbations grew linearly, but then they reached the nonlinear
regime and collapsed. We consider the initial (at the moment
when δρ/ρ � 1) energy distribution of the particles that later

Fig. 1. Initial energy spectra dM
dε for three shapes of initial perturbation:

ρ ∝ (2 − ( r
Rvir

)2) (solid line), ρ = const. (dashed line), ρ ∝ r−1 (dot-
ted line). In all the cases the spectra are similar, narrow, and strongly
concentrated toward ε = −Φ.

formed the halo. It is determined by the gravitational field of the
initial perturbation, and the closer a particle was to the center,
the lower was its energy. However, the potential well of the ini-
tial perturbation cannot be deep, and the particles cannot have a
very low energy, because thy are lumped in quite a narrow en-
ergy interval. Indeed, a trivial Newtonian calculation gives us
the initial energy spectrum for various shapes of initial pertur-
bations (Baushev 2014). We assume for simplicity that the size
of the perturbation at the moment of the collapse is equal to the
virial radius of the formed halo Rvir: these values should be sim-
ilar in the very general case (Gorbunov & Rubakov 2010). We
introduce the virial potential of the halo Φ = G Mvir

Rvir
. As an ex-

ample, we consider the case when the initial density distribu-
tion of the perturbation has the shape ρ ∼ r−1 inside Rvir. Then
M(r) =

∫
4πr2ρdr = Mvir(r/Rvir)2 and

dφ(r)
dr
= G

M(r)
r2
= G

Mvir

R2
vir

φ(r) = −Φ
(
2 − r

Rvir

)
· (5)

Here we took into account that φ(Rvir) = −Φ. It follows from
the general cosmological consideration that the initial velocity
of the matter may be thought to be zero without loss of gener-
ality (Gorbunov & Rubakov 2010). Therefore, the specific to-
tal energy of a particle is equal to the specific gravitational en-
ergy, that is, to the gravitational potential ε = φ(r). By dividing
dM(r) = 2rMvir

R2
vir

dr by dε = dφ(r) = G Mvir

R2
vir

dr, we obtain

dM
dε
=

dM
dφ(r)

=
2r
G
=

2Mvir

Φ

(
2 +
ε

Φ

)
· (6)

In a similar manner, we can obtain the initial energy spectra for
various forms of initial perturbations (see (Baushev 2014) for
details). Distributions dM

dε for three different shapes (ρ ∝ (2 −
( r

Rvir
)2) (solid line), ρ = const. (dash line), ρ ∝ r−1 (dotted line))

are represented in Fig. 1. In all the cases the spectra are quite
similar, narrow, and strongly concentrated toward ε = −Φ. Even
an unphysically steep initial perturbation ρ ∼ r−1 contains only
particles with ε ∈ [−2Φ;−Φ].

We now consider the formed halo. Its gravitational field is
stationary. The motion of a particle in the central gravitational
field φ(r) can be explicitly characterized by two integrals of mo-
tion: its specific angular momentum μ ≡ |[u × r]| and specific
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energy ε = v2r
2 +

μ2

2r2 + φ. Instead of ε, it is more convenient to
use the apocenter distance of the particle r0, which is the largest
distance that the particle can move away from the center. It is
bound with ε as ε = φ(r0) + μ2/(2r2

0). We may introduce distri-
bution function f (r0) of the particles of the formed halo over r0

dm = f (r0)dr0

∫ Rvir

0
f (r0)dr0 = Mvir. (7)

As we will see, if conditions (3)–(4) are satisfied, f (r0) has a
very peculiar appearance.

It is extremely important for our consideration that the po-
tential well of the collapsed halo is much deeper then the initial
one. The depth (i.e., the value of φ(0)) depends on the halo pro-
file: for the NFW φ(r) � −cvirΦ, if cvir � 1 (Baushev 2012).
Although density profiles of real galaxies are much more com-
plex, φ(r) � −cvirΦ may still be a good approximation. For
instance, we may accept for the Milky Way Mvir = 1012 M�,
Rvir = 250 kpc, cvir � 15 (Klypin et al. 2002): then Φ �
(130km s)−2. Meanwhile, the Galaxy escape speed near the solar
system unambiguously exceeds 525 km s−1 (Carney & Latham
1987) and may in principle be much higher (650 km s−1 or
even higher (Marochnik & Suchkov 1984; Binney & Tremaine
2008)). Accordingly, |φ(0)| � cvir|φ(Rvir)| = cvirΦ.

As we showed, initial energy spectra are very similar for any
reasonable shape of the initial perturbation. We consider for the
sake of definiteness an initial perturbation ρ ∝ (2 − ( r

Rvir
)2), be-

cause it seems to be a good approximation for a real one. We can
see in Fig. 1 that most the particles have ε � −Φ, and there are
no particles with ε < −1.6Φ. Consequently, the particles obey-
ing condition (3) may not have ε < − cvir

3 1.6Φ � − cvir
2 Φ, and

even the fraction of the particles with ε � − cvir
2 Φ is small: the

initial spectrum contains only a few particles with ε � −1.6Φ.
We estimate r0, corresponding to a particle with ε = −1.6Φ. Of
course, it depends on the density profile of the halo and on the
particle angular momentum. The influence of the latter factor
can be easily taken into account: a nonzero angular momentum
decreases r0 of a particle of a given energy ε, but cannot decrease
it by a factor exceeding 2. Indeed, a particle of given energy ε
in a given central gravitational field has the largest r0 if μ = 0,
and its orbit is radial. The ratio of r0 for the radial and the circu-
lar cases is 2 in the instance of the gravitational field of a point
mass. It is easy to see that the ratio can only be lower, if we con-
sider a distributed density profile instead of a point mass: if the
dark matter is spread, the more compact circular orbit encloses
a smaller central mass than in the point-mass case. Moreover,
N-body simulations suggest that the orbits of most of the parti-
cles are elongated (Hansen et al. 2006). In this case the influence
of the angular momentum on r0 is negligible.

A particle of energy ε � − cvir
2 Φ has r0 � 2Rvir

cvir
in the case of an

NFW profile. The potential wells of real galaxies are most likely
deeper than the best-fit NFW predicts (probably because of the
influence of the much more concentrated baryon component).
For instance, the escape velocity from the center of an NFW halo
with Mvir = 1012 M� and cvir � 15 (as we could see, these values
approximately correspond to the dark matter halo of the Milky
Way) is �300 km s−1, while the real escape speed from the center
of the Galaxy is at least twice as high (Carney & Latham 1987).
The deeper the potential well, the larger is r0 that corresponds
to the same ε; consequently, r0 =

2Rvir
cvir

is a conservative estimate
of r0 of a particle with energy ε � − cvir

2 Φ. Consequently, par-
ticles obeying condition (3) cannot have smaller r0. However,
the halo contains a significant part of its mass (∼25%) inside
r = 2Rvir

cvir
.

The absence of violent relaxation leads to a very impor-
tant consequence: the density profile in the center of the halo
is formed by the particles that arrive from the outside. Since
their r0 are larger than 2Rvir

cvir
, some part of their trajectories lie

outside of this area. Of course, the real situation is more com-
plex, and there are always particles that violate condition (3).
However, condition (4) guarantees that their contribution inside
r = 2Rvir

cvir
is small. As we could see, condition (4) is quite soft for

the real systems.
We can also expect that most of the particles have r0 ∼ Rvir.

Indeed, the initial energies of the particles were very close to
the virial one Φ = −G Mvir

Rvir
. Since the total energy of the system

is conserved, the average energy of the particles remain close
to −Φ; consequently, all the particles may not drop their energies
by a factor ∼cvir/5. The particle energy exchange is a more or
less random process, and we may expect that the particle energy
near the average value −Φ is much more probable than the min-
imum possible − cvir

5 Φ. Consequently, even the fraction of parti-
cles with r0 � 2Rvir

cvir
should be small. However, this statement is

less rigid (and less important for us) than the above-mentioned
dominance of the particles with r0 � r in the center.

A region with a dominant fraction of particles with r0 � r
inevitably occurs in the center of the halo, if the relaxation is
moderate. It even appears if the relaxation is much more violent
than Eq. (3) (for instance, if εf/εi ∼ cvir/2): the lowest energy
of the particles is still higher than φ(0) � −cvirΦ in this case.
However, the radius of the area is then much smaller. Hereafter
we use condition (3), and the area is quite large in this case:
2Rvir
cvir
� 30 kpc for the Milky Way galaxy.

3. Calculations

The density distribution in the center of the halo, created by the
particles that arrive in this region from the outside, is universal
and insensitive to the shape of distribution f (r0) (Baushev 2014,
2013a). First of all, we specify the angular momentum distribu-
tion of the particles. According to results of the numerical sim-
ulations (see, for instance, Kuhlen et al. 2010), the distribution
over vτ deviates, but is still similar to Gaussian. We assume for
simplicity that their specific angular momentum has a Gaussian
distribution

dm ∝ 2μ
α2

exp

(
−μ

2

α2

)
dμ, (8)

where α ≡ α(r0) is the width of the distribution, depending on r0.
The total distribution can be rewritten as

dm = f (r0)
2μ
α2

exp

(
−μ

2

α2

)
dr0dμ. (9)

As we have already mentioned, most of the particles have
r0 ∼ Rvir, and therefore only those with small μ can penetrate
into the area of our interest r ∼ rcore � Rvir. This means that
the distribution in the halo center is mainly determined by the
behavior of Eq. (9) at μ � 0, where Eq. (9) is finite. Thus our
calculation is not sensitive to the distribution over μ: we would
obtain a very similar result for any other distribution, which has
the same value 2μ f (r0)/α2(r0) when μ→ 0.

Since the particle energy conserves

μ2

2r2
0

+ φ(r0) = ε =
v2r
2
+
μ2

2r2
+ φ(r), (10)
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the radial and tangential components of the particle velocity are
equal to

vr =

√
2(φ(r0) − φ(r)) − μ2

⎛⎜⎜⎜⎜⎝ 1
r2
− 1

r2
0

⎞⎟⎟⎟⎟⎠ vτ =
μ

r
· (11)

The zero of the radicand gives us the maximum angular momen-
tum of a particle with which it can reach radius r,

μ2
max = 2(φ(r0) − φ(r))

⎛⎜⎜⎜⎜⎝ 1
r2
− 1

r2
0

⎞⎟⎟⎟⎟⎠−1

· (12)

We may rewrite Eq. (11) as

vr =

√
r2

0 − r2

rr0

√
μ2

max − μ2. (13)

We also need the half-period of the particle, that is, the time it
takes for the particle to fall from its largest to the smallest radius,

T (r0, μ) =
∫ r0

rmin

dr
vr
· (14)

T is, generally speaking, a function of r0 and μ. However, as was
shown in Baushev (2014), for the particles that can reach the
cental region the dependence on μ is extremely weak (the reason
is that the function T (r0, μ) slowly changes near the extremum
at μ = 0). Therefore we may approximate T (r0, μ) � T (r0, 0) ≡
T (r0).

A particle of mass m contributes to the halo density through-
out the interval between r0 and the smallest radius the particle
can reach. The contribution in an interval dr is proportional to
the time the particle spends in this interval (Baushev 2011)

dm
m
=
δρ · 4πr2dr

m
=

dt
T (r0)

=
dr
vrT (r0)

· (15)

Here δρ is the contribution of the particle to the total halo density
at radius r. We obtain that δρ = m

4πr2vrT (r0) . To determine the total
halo density, we substitute here a mass element (9) instead of m
and integrate over dr0 and dμ,

ρ =

Rvir∫
0

f (r0)dr0

4πr2T (r0)α2(r0)

μmax∫
0

2μ
vr

exp

(
− μ2

α2(r0)

)
dμ. (16)

If we substitute Eq. (13) for vr, the second integral can be taken
analytically:

μmax∫
0

2μ
vr

exp

(
− μ2

α2(r0)

)
dμ =

2rr0α(r0)√
r2

0 − r2
D

(
μmax

α(r0)

)
, (17)

where D(x) ≡ e−x2 ∫ x

0
et2

dt is the Dawson function. Since we cal-
culate the density profile of the central region and use assump-
tion r � r0, we can significantly simplify Eq. (17). In particu-
lar, it follows from Eq. (12) that μmax � r

√
2(φ(r0) − φ(0)). We

obtain

ρ =

∫ ∞

0

f (r0)
2πα(r0)T (r0)r

D

⎛⎜⎜⎜⎜⎜⎝r
√

2(φ(r0) − φ(0))

α(r0)

⎞⎟⎟⎟⎟⎟⎠ dr0. (18)

We can factor out the Dawson function from the integral using
the above-mentioned properties of function f (r0) (see the end

Fig. 2. Density profile of the model under consideration (20) (with rc =
0.05Rvir, solid line). An Einasto profile with n = 0.5 and rs = 0.017Rvir

is plotted for comparison (dashed line).

of the Energy distribution section). First, it is almost equal to
zero for small r0: this means that the integration in Eq. (18)
is performed not from 0, but from 2Rvir

cvir
. Second, as we could

see, the formed halo is dominated by the particles with r0 ∼
Rvir. It follows that the main contribution to the integral in
Eq. (18) is given by the part close to the upper limit r0 � Rvir:
roughly speaking, by r0 ∈ [Rvir/2; Rvir]. These two properties
of f (r0) mean that f (r0) sharply depends on r0 at this inter-
val. Conversely, α(r0) probably does not change much in in-
terval [Rvir/2; Rvir]: α(r0) is widely believed to be a power-law
dependence with the index between −1 and 1 (Hansen et al.
2006).

√
2(φ(r0) − φ(0)) changes even more slowly: for instance,√

(φ(Rvir) − φ(0))/(φ(Rvir/2) − φ(0)) � 1.13 for the NFW pro-
file with cvir = 15. Moreover, D is a finite and not very sharp
function of its argument. Comparing this with the sharp behav-
ior of f (r0), we may neglect the weak dependence of the argu-
ment of function D in Eq. (18) on r0 and substitute some value,
averaged over the halo (see the Appendix for details),

rc =

〈
α(r0)√

2(φ(r0) − φ(0))

〉
� 〈α(r0)〉√

2|φ(0)| · (19)

Then we can rewrite Eq. (18) and obtain the final result:

ρ = ρc
rc

r
D

(
r
rc

)
, ρc =

1
2πrc

∫ ∞

0

f (r0)dr0

α(r0)T (r0)
· (20)

Since D(r/rc) � r/rc, when r/rc → 0, ρc is really the cen-
tral density of the halo. As we can see, it is always finite. At
the same time, the shape of the density profile only depends on
parameter rc.

4. Discussion

Figure 2 represents profile (20) with rc = 0.05Rvir (solid line).
An Einasto profile with n = 0.5 and rs = 0.017Rvir is plotted
for comparison (dashed line). The model profile is very similar
to the Einasto profile in the center; consequently, it fits experi-
mental data well (Chemin et al. 2011). The second consequence
is that Eq. (20) describes a cored profile with rcore � rc; using
criterion (1), we obtain rcore � 0.924rc.

Profile (20) in all conditions transforms into ρ ∝ r−2 at large
distances, which may explain the persistence of the flat regions
in the rotation curves of a vast collection of galaxies with very
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different physical properties. However, a question arises: we as-
sume that r0 � r during the derivation of Eq. (20). Is this ap-
proximation (and, consequently, Eq. (20)) still valid for large r,
where the profile behaves as ρ ∝ r−2? As we showed, Eq. (20)
is valid for r < 2Rvir

cvir
. Meanwhile, the ρ ∝ r−2 profile appears if

r � rc. The value of rc depends on 〈α〉 and
√

2|φ(0)| according
to Eq. (19). We show below that the best agreement between
the theory and observations is achieved if 〈α〉 is respectively
small (32). Substituting Eq. (32) and |φ(0)| � cvirΦ into (19),
we can roughly estimate rc � Rvir/(28

√
2cvir). We illustrate this

on the example of the Milky Way galaxy. Here 2Rvir

cvir
� 30 kpc,

that is, approximately the disk radius; rc � Rvir/(28
√

2cvir) �
1.6 kpc, which is comparable with the bulge size. So 2Rvir

cvir
� rc,

Eq. (20) is still valid for r � rc, and we may expect an extended
region with ρ ∝ r−2 between ∼2rc � 3.2 and ∼30 kpc.

Now we can investigate how the multiplication ρcrc depends
on the halo mass in our model. According to Eq. (20),

ρcrc =
1

2π

∫ ∞

0

f (r0)dr0

α(r0)T (r0)
· (21)

We can significantly simplify this equation with the help of
the same technic that we used to transform Eqs. (18) into (20)
(see Appendix): neglect the fairly weak dependencies of func-
tions α(r0) and T (r0) on r0 (compared with f (r0)), and substi-
tute some values, averaged over the halo. Then Eq. (20) may be
rewritten as

ρcrc � 1
2π

∫ ∞
0

f (r0)dr0

〈α〉〈T 〉 =
1

2π
Mvir

〈α〉〈T 〉 · (22)

Now we estimate 〈α〉 and 〈T 〉. To begin with, we assume that 〈α〉
has the highest possible value: it can hardly be higher than

〈α〉 = 1
4

√
GMvirRvir (23)

because a significant fraction of the halo particles would not be
gravitationally bound in the opposite case. Below we discuss the
applicability of this assumption.

The half-period T (r0) is mainly determined by the gravita-
tional acceleration at r0 (where vr = 0) and is not very sensitive
to the density distribution in the halo center. As we showed, a
significant part of the particles should have r0 ∼ Rvir. Therefore
we accept as an estimate of 〈T 〉 the time necessary for a particle
with no angular momentum to fall from r = Rvir/2 on a point
mass,

〈T 〉 =
∫ Rvir

0

dr
vr
=
π

8

R3/2
vir√

GMvir
· (24)

Indeed, 〈r0〉 can hardly be smaller than Rvir/2: as we showed,
r0 ∼ Rvir for most of the particles in our model. On the other
hand, we underestimate 〈T 〉 by considering a point mass in-
stead of the real distribution. Consequently, Eq. (24) most likely
underestimates 〈T 〉.

It is convenient to introduce � – the average halo density:
Mvir =

4
3πR

3
vir�. Substituting Eqs. (23) and (24) to (22), we

obtain

ρcrc =
216/3

π4/332/3
M1/3

vir �
2/3 � 4.21M1/3

vir �
2/3. (25)

As Mvir grows, multiplier M1/3
vir slowly increases, while �2/3

slowly decreases, since smaller halos formed at higher z, when

the Universe density was higher. Roughly speaking, the density
of a structure is proportional to the density of the Universe at
the moment z when it collapsed (Cooray & Sheth 2002), that
is, � ∝ (z + 1)3. Indeed, structures form when their density
contrast δρ/ρ reaches a certain value (close to 1) that does not
depend on the mass (Gorbunov & Rubakov 2010, Sect. 7.2.2).
Strictly speaking, the dependence of z on Mvir is ambiguous:
the initial perturbations can be considered as a random Gaussian
field, and structures of the same mass can collapse at different z.
Nevertheless, we may consider an averaged redshift z of the col-
lapse of structures of mass Mvir.

We have accepted for the Milky Way Mvir = MMW =
1012 M�, Rvir = 250 kpc (Klypin et al. 2002). It corresponds
to �MW = 1.5 · 104 M� kpc−3. Instead of Mvir, we can char-
acterize the structures by the present-day wave number k of
the primordial perturbations from which they were formed. Of
course, Mvir ∝ k−3. The Milky Way mass Mvir � 1012 M� corre-
sponds to kMW � (0.6 Mpc)−1 (Gorbunov & Rubakov 2010). So
k = kMW(Mvir/MMW)−1/3.

The shape of dependence z(Mvir) is defined by the cosmo-
logical model. We consider the very standard ΛCDM scenario
with H0 = 67.3 (Mpc−1 km s−1) (i.e., H−1

0 = 4.58 × 1017 s),
Ωm = 0.315 (Planck Collaboration XVI 2014). In this case, z
logarithmically depends on Mvir (Gorbunov & Rubakov 2010,
Eq. (5.47))

z + 1 ∝ ln

⎛⎜⎜⎜⎜⎜⎝ 0.4(
√

2 − 1)c

H0
√
Ωm

√
zeq + 1

k

⎞⎟⎟⎟⎟⎟⎠ · (26)

We accept zeq = 3100 for the equi-density redshift of radiation
and matter (Gorbunov & Rubakov 2010). Substituting here � ∝
(z + 1)3 and k = kMW(Mvir/MMW)−1/3, we obtain

� ∝ ln3

⎡⎢⎢⎢⎢⎢⎣0.4(
√

2 − 1)ckMW

H0
√
Ωm

√
zeq + 1

(
Mvir

MMW

)−1/3⎤⎥⎥⎥⎥⎥⎦ · (27)

It is convenient to introduce

X ≡ 0.4(
√

2 − 1)ckMW

H0
√
Ωm

√
zeq + 1

· (28)

Then Eq. (27) may be rewritten as

� ∝ ln3
[
X (Mvir/MMW)−1/3

]
∝

(
1 − ln (Mvir/MMW)

3 ln X

)3

· (29)

Consequently,

� = �MW

(
1 − ln (Mvir/MMW)

3 ln X

)3

· (30)

Now we can insert this value into Eq. (25). To compare the result
with observations, we need to calculate ρcrb instead of ρcrc. By
using a profile-independent definition of the core radius (1), we
obtain rcore = rb/2 and rcore � 0.924rc. Consequently, ρcrc �
0.541ρcrb, and we derive the final result

ρcrb = 7.78�2/3
MWM1/3

MW

(
Mvir

MMW

)1/3 (
1 − ln (Mvir/MMW)

3 ln X

)2

. (31)

Observations suggest that log(ρcrb) � const. = 2.15 ± 0.2 in
units of log(M� pc−2) for a large array of elliptic and spiral galax-
ies, and probably for the Local Group dwarf spheroidal galaxies
(Donato et al. 2009). Figure 3 represents the dependence (25)
(solid line) predicted by the moderate relaxation model. Clearly,
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Fig. 3. Value (31) of ρcrb for various halo masses (solid line). For the en-
tire range of galactic masses (Mvir � 109−1012 M�) multiplication ρcrb

remains almost constant. According to Eq. (22), ρcrb is inversely pro-
portional to 〈α〉. The dashed line represents ρcrb, if we use a lower value
of 〈α〉 (Eq. (32) instead of (23)). This agrees well with observations
(log(ρcrb) = 2.15 ± 0.2 in units of log(M� pc−2)).

the multiplication ρcrb is not perfectly constant; however, it
changes only by a factor of three when the virial mass of galaxies
varies from 109 M� to 1012 M�, which covers almost the entire
galaxy mass range. This means that the variation of ρcrb does not
exceed the 3σ interval of the observations, and from this point
of view, ρcrb may be considered as constant.

Thus, the moderate evolution model naturally predicts an
almost constant multiplication ρcrb in the galaxy mass range,
which agrees well with observations. On the other hand, the
value of the constant ρcrb predicted by Eq. (25) is lower approx-
imately by a factor of seven than the observed value. The con-
tradiction may be obviated if we assume that supposition (23)
of the value of 〈α〉 is not true. Indeed, Eq. (23) implies that 〈α〉
has the highest possible value. This is not necessarily so; more-
over, there are some reasons to believe that the mean-square-root
angular momentum of the particles of DM halos is fairly small
(Baushev 2011). According to Eq. (22), ρcrb is inversely propor-
tional to 〈α〉. If we insert

〈α〉 = 1
28

√
GMvirRvir (32)

instead of Eq. (23) into (22), we obtain the dependence of ρcrb
on Mvir in excellent agreement with observations (the dashed
line in Fig. 3).

It is important to underline that concluding about the con-
stancy of the multiplication ρcrb for the galaxy mass objects is
an inherent property of the moderate-relaxation model and does
not depend on the choice of constants in Eqs. (23) and (32). For
more massive halos (Mvir ≥ 1013 M�) the model predicts an
even weaker dependence of ρcrb on Mvir; however, the model
itself is hardly adequate for objects this massive. Very small ha-
los (Mvir < 106 M�) should have ρcrb ∝ M1/3

vir , that is, ρcrb is
not quite constant anymore. However, the dependence remains
rather weak.

5. Conclusion

Thus assuming moderate relaxation in the formation of dark
matter halos invariably leads to density profiles that match those
observed in the central regions of galaxies. The profile is insen-
sitive to the initial conditions. It has a central core; in the core
area the density distribution behaves as an Einasto profile with

a low index (n ∼ 0.5). At larger distances it has an extended re-
gion with ρ ∝ r−2. The multiplication of the central density by
the core radius is almost independent of the halo mass.

This is exactly the shape that observations suggest for the
central region of galaxies. On the other hand, it does not fit the
galaxy cluster profiles. This implies that the relaxation of huge
objects (Mvir > 1013 M�, galaxy clusters) is violent. However, it
is moderate for galaxies or smaller objects.

The most plausible explanation of this fact is that the con-
centrations cvir of small halos are much higher. As we showed,
for the relaxation to be violent, the energies of a significant part
of the particles need to change by a factor ∼cvir with respect to
the initial values (so that these particles have r0 � 0 and form
the cusp). Consequently, for galaxy clusters the relaxation is vi-
olent if the energies of the particles decrease by a factor 3–5
(cvir = 3−5 for these objects). Such a change seems possible
even in a collisionless system. However, cvir ∼ 15 even for mas-
sive galaxies and can be much higher for dwarf objects. Then the
violent relaxation claims that the energies of a significant frac-
tion of the particles change by a factor 15–20: this requirement
is quite strong. Probably, some other factors, such as the baryon
component, also influence the intensity of the relaxation. This
question merits a more detailed consideration.
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Appendix A: A convolution of two functions: how
does one transform Eq. (18) into (20)?

We consider a convolution of two functions
∫
g1(x)g2(x, y)dx

where g1(x) is finite, that is, g1(x) differs noticeably from zero
only in a narrow interval x ∈ [x1, x2], and g2(x, y) depend only
slightly on x at this interval for any given y. Then we may
roughly estimate∫
g1(x)g2(x, y)dx � g2(〈x〉, y)

∫
g1(x)dx, (A.1)

where 〈x〉 is the value of x averaged over [x1, x2]. Indeed,
Eq. (A.1) becomes exact if the width of g1(x) is negligible∫
δ(x − x0)g2(x, y)dx = g2(x0, y). It is also exact if g2(x, y)

does not change at all, when x runs between x1 and x2:∫
g1(x)g2(y)dx = g2(y)

∫
g1(x)dx. If g2(x, y) depends on x at

[x1, x2], Eq. (A.1) is an approximation. However, our prime in-
terest here is the accuracy of transformation (18) into (20) with
the help of Eq. (A.1). We show below that the approximation is
quite good in this case.

First of all, we should determine the best way to find rc (see

Eq. (19)), that is, to average
√

2|φ(0)|
α(r0) over the halo. Since we are

interested in the very central region of the halo, we consider the
case when r → 0. The Dawson function D(x) � x if x is small,
and we obtain from Eq. (18)

ρc =
1

2π

∫ ∞

0

f (r0)
α(r0)T (r0)

√
2|φ(0)|
α(r0)

dr0. (A.2)

Dividing this equation by (21), we obtain

1
rc
=

∫ ∞
0

f (r0)
α(r0)T (r0)

√
2|φ(0)|
α(r0)

dr0

∫ ∞
0

f (r0)dr0

α(r0)T (r0)

· (A.3)

A114, page 7 of 8

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322730&pdf_id=3


A&A 569, A114 (2014)

Fig. A.1. Shapes of density profiles calculated with the help of the ex-
act Eq. (18) (solid line) and approximation (20) (dashed line, see the
Appendix for details).

This equation can be considered as a sort of averaging of func-

tion
√

2|φ(0)|
α(r0) over the halo with the use of f (r0)

α(r0)T (r0) as the weight-
ing function. This method of averaging yields the best fitting of
Eq. (18) in the halo center.

To estimate the accuracy of transformation (18) into (20), we
may consider a more or less realistic model of functions f (r0),
α(r0), T (r0), and then to compare the density profiles obtained
with the help of Eqs. (18) and (20). We assume that f (r0) has a
Gaussian shape⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f (r0) ∝ exp

(
− (r0 − a)2

2σ2

)
, r0 > 0.1Rvir

f (r0) = 0, r0 < 0.1Rvir,

(A.4)

where a = 0.7Rvir, σ = 0.2Rvir. The parameters are chosen so
that the total final energy of the halo is approximately equal
to the initial one, f (r0) is finite, as described at the end of the
Energy distribution section, and the region 2Rvir

cvir
falls approx-

imately outside the 3σ area, if cvir ∼ 15, which is a typical
value for galaxies. T (r0) is mainly defined by the particle mo-
tion near the apocenter (Baushev 2013a). Since M(r0) � Mvir if
r0 ∼ Rvir, we may assume that T (r0) ∝ √r0, as in the case of
a point mass Mvir. The same reasoning allows us to assume by
analogy with Eqs. (23) and (32) that α(r0) ∝ √M(r0)r0 ∝ √r0,
and that

√
2(φ(r0) − φ(0)) � √

2|φ(0)|. A normalization of f (r0),
α(r0), and T (r0) is not significant, since we are interested in the
profile shape, and we plot it in log ρ/ log r coordinates. However,
we choose a proper value of

√
2|φ(0)| to obtain a desirable value

of rc according to Eq. (A.3). We chose rc = 0.05Rvir, exactly as
in Fig. 2.

Figure A.1 represents the density profiles calculated for
this model with the help of exact Eq. (18) (solid line) and ap-
proximation (20) (dashed line). Clearly, the deviations are quite
small, especially in the halo center and at large radii. Moreover,
approximation (20) has the same shape as the exact solution,

that is, the same Einasto-like profile in the center, the same core
radius, and the same ρ ∝ r−2 region. Consequently, the conclu-
sions of this paper are valid for the exact solution (18) as well.
Thus the approximation of Eq. (18) by (20) is quite accurate for
realistic models of halo parameters.
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