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ABSTRACT

Context. Several asteroids have recently been visited by spacecrafts that give us precious information and new constraints on their
physical and rotational properties. In parallel, there are already several well-established theories to model the rotational motion of a
rigid body, but accurate models of the rotational motion of asteroids have been poorly investigated so far.
Aims. We aim to model the rotational motion of the asteroids (1) Ceres, (4) Vesta, (433) Eros, (2867) Steins, and (25143) Itokawa with
high precision. Their physical parameters have been or will be (in the case of Ceres) better constrained by data from space missions.
We concentrate in particular on the motion of their spin axis in space, a component that is generally not studied.
Methods. We used Kinoshita’s theory, based on a Hamiltonian approach for the rotation of a rigid body. We deduced an analytical
model for determining the precession rate and the nutation coefficients for the set of five asteroids selected above.
Results. For each asteroid considered we make a summary of the rotational and physical characteristics necessary for our calculations,
and we give both the precession rate and accurate tables of nutation. Results show a very high precession rate for (25143) Itokawa, of
more than one degree per decade (ψ̇ = −(461.52 ± 6.57)′′/yr), and rather high ones for (433) Eros and (2867) Steins. We present the
complete tables of nutation for both (1) Ceres and (4) Vesta, and give the peak-to-peak amplitudes for the five asteroids. At last, we
show the curves described by the spin axis in space. Results agree with previous ones for (4)Vesta and (433) Eros.
Conclusions. In this paper we show that it is possible to accurately compute the combined precession-nutation motion of asteroids that
are well constrained by observational data as we do for a set of five asteroids. This enables one to understand the rotational behavior
of their spin axis in space and constitutes an interesting step toward knowing of their rotational evolution and its consequences on
their history. This work should serve as a basis for more extended ones dealing with the long-term rotational dynamics of the asteroids
studied.
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1. Introduction

With the drastic improvement in ground-based observations as
well as through very accurate in situ observations from space
probes, our knowledge of asteroids and minor planets has in-
creased significantly in the past twenty years. Up to now nine as-
teroids or minor planets have already been visited by spacecrafts.

The first mission, Galileo, was launched on 1989 Oct. 18
with Jupiter as a target. It flew over (951) Gaspra and (243) Ida,
at the same time discovering its moon Dactyl. The NEAR
probe was launched on 1996 Feb. 17, then passed close to
(253) Mathilde and finished its trajectory on (433) Eros. The or-
bital operation around (433) Eros lasted longer than one year
and our knowledge of its characteristics are more accurate with
respect to other space missions. The Deep Space probe was
launched on 1998 Oct. 24, and encountered (9969) Braille before
joining the comet Borrelly. After these various successful mis-
sions, the Hayabusa spacecraft was launched on 2003 May 9,
for landing on the surface and collecting samples of the as-
teroid (25143) Itokawa. Notice that today, a second Hayabusa
mission is in preparation by JAXA for a launch in 2014 to-
ward the asteroid (162173) 1999 JU3. The spacecraft Rosetta,
whose main objective is to join the comet 67P/Churyumov-
Gerasimenko in 2014, has encoutered the asteroids (2867) Steins

and (521) Lutetia. Recently, (4) Vesta has been visited by the
DAWN spacecraft for one year, and (1) Ceres will be its next
target for 2015.

Thanks to these various space missions, we could get pre-
cious determinations of a set of parameters related to the physi-
cal properties, the composition, and the internal structure of the
celestial bodies that have been explored. In particular, shape,
mass, rotation period, and moments of inertia determined with
a relatively high precision during flyby or orbital trajectory are
fundamental parameters for studing the rotational motion of the
asteroids that are concerned. This aspect of the dynamics will
give us a new line of thought about their formation and their
evolution.

In this paper we determine analytically and for a short time
scale the motion of the spin axis of five asteroids explored
by the space probes that we have mentioned above, under the
gravitational torque exerted by the Sun. These objects have
well constrained physical and rotational parameters, which al-
low accurate analytical modeling. A few works have already
treated this problem, for instance, those recently done in the case
of (1) Ceres by Rambaux et al. (2011) from Eulerian approach or
Lara et al. (2011) from a Hamiltonian one. For our study, we use
the Hamiltonian approach in the following, which has already
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been applied by Souchay et al. (2003a,b) when they calculated
the free and forced rotational motion of (433) Eros. In light of
new data, we are able to give the precession rate of the spin axis
and the leading nutation coefficients in longitude and in obliquity
with relatively high accuracy, for the set of asteroids mentioned
above with well-known physical and rotational parameters. Thus
we will have a good representation on a short time scale of the
rotational motion of these celestial bodies.

2. The forced motion

We consider here the forced rotational motion of the asteroids,
more precisely the motion of their spin axis undergoing motion
caused by gravitational external torque exerted by the Sun. In
the following, we have to define the action-angle variables that
characterize the rotation and the reference frames related to the
problem. Then, we can express the equations of motions in a
Hamiltonian formulation.

2.1. Variables and reference frames

At first approximation we consider each asteroid as a rigid body.
For studing of the forced rotational motion of a rigid body, we
can refer to the complete Kinoshita’s theory already applied with
success for the Earth at the milliarsecond level (Kinoshita 1977)
and at the microarsecond level (Souchay et al. 1999), as well as
for Mars (Bouquillon et al. 1999) and Venus (Cottereau et al.
2010).

Here, we focus on the motion of the axis of angular momen-
tum with respect to an inertial reference frame. Indeed, we pos-
tulate that, at first approximation and as is the case for the Earth
and the other terrestrial planets, the axis of rotation and the axis
of figure of the asteroid are very close to the axis of the angular
momentum, and that their motions of precession and nutation in
space are quasi-identical. In the case of the Earth, the validity of
these postulates can be checked easily (Kinoshita 1977; Souchay
et al. 1999).

The reference frame is arbitrary by nature. Nevertheless,
since we are interested in particular by the evolution of the obliq-
uity, we choose the orbital plane of the asteroid as the reference
plane at a given epoch (J2000.0). For a study at a relatively short
time interval (≈100 yrs), the orbital elements do not change sig-
nificantly (except for true anomaly), and we can consider the
orbital plane as quasi fixed during this interval. Otherwise, we
would have to consider a complementary Hamiltonian term E
related to the slow motion of the orbital plane in the expression
of the Hamiltonian K characterizing the rotation of the aster-
oid (Kinoshita 1977). Here, K is expressed with the help of the
Andoyer canonical variables (l, g, h, L,G,H) that are described
in detail by Kinoshita (1977).

Here we are particularly concerned with the angle-action
couple of variables h and H where h is the precession angle of
the angular momentum axis and H the projection of the angular
momentum axis on the polar axis normal to the reference plane.
From this variable H, we have access to the obliquity of the an-
gular momentum axis with respect to the inertial plane, thanks
to the basic relationship:

H = G sin I (1)

where G is the amplitude of the angular momentum and I is the
obliquity. These parameters are shown in Fig. 1. We underline
that in the Kinoshita notation, we have the convention ψ = −h
and I = −ε.

Fig. 1. Angular-momentum vector L with the help of the precession
angle h and of the obliquity I with respect to inertial plane (O, X,Y). By
analogy with the Earth, the vernal point γ is the ascending node of the
asteroid orbital plane with respect to the mean equator.

2.2. Equations of motion

From Kinoshita (1977), we can express the equations of motion
for the axis of the angular momentum in a straightforward way,
through the following equations:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dh
dt
=

1
G sin I

∂K
∂I

dI
dt
= − 1

G sin I
∂K
∂h

(2)

where the Hamiltonian can be written as K = F0+E+U with F0
the torque-free motion of rotation, E the component due to the
motion of the orbital plane, and U the disturbing function due
to the action of the Sun. The free part is not a function of vari-
ables of motion I and h, and it is not treated here. Here, E can
be neglected because the variation of the orbital elements is not
significant on a short time scale as we have explained above.

We can give an analytical expression of the precession-
nutation motion. Using Hori’s averaging method (Hori 1966),
we can decompose our perturbing potential USun due to the Sun
into two parts: its secular one Usec

Sun and its periodic one Uper
Sun.

Then we introduce W1 as an average function that eliminates
short-period terms at the first order. Here, W1 is defined by Lie’s
method as: W1 =

∫
Uper

Sundt.
We express the precession rate ψ̇ = −ḣ as the effect of Usec

Sun,
the secular part of the potential due to the Sun:

ψ̇ = −ḣ =
1

G sin I

∂Usec
Sun

∂I
· (3)

The nutation motion in longitude Δψ = −Δh and in obliquity
Δε = −ΔI are given by the following two relationships:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δψ =

1
G sin I

∂W1

∂I

Δε = − 1
G sin I

∂W1

∂h
·

(4)

Thanks to these equations and following the same procedure as
Souchay (2003a) in the case of (433) Eros for the expression of
the potential of the Sun, we finally express the rotational changes
through ψ̇, Δψ, and Δε analytically.
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3. Expression of rotational motion

We assume that each asteroid that is studied in this paper can be
approximated by a perfect rigid ellipsoid body with semi-axes a,
b, c satisfying a > b > c and three moments of inertia A, B, C
satisfying A < B < C. The way of determining of these moments
of inertia will be developed in the Sect. 4.4. Here, we present
the analytical formulation of the rotational motion that can be
expressed as a sum that cosine and sine of the mean anomaly.

3.1. Expression of the potential

The disturbing potential due to the Sun can be expressed by ex-
pansions in spherical harmonics (Kinoshita 1977):

USun =
κ2 Ms

r3

[
2C − A − B

2
P0

2(sin δ) +
A − B

4
P2

2(sin δ) cos [2α]

]

(5)

where κ2 is the constant of gravitation, Ms the mass of the Sun,
and r is distance between the asteroid and the Sun centers of
mass. Here, P0

2(sin δ) and P2
2(sin δ) are two associated Legendre

polynomials, α and δ represent the body-centered longitude and
latitude of the Sun, respectively, both expressed with respect to
the equatorial plane of the asteroid.

We focus on the first term of the potential on the righthand
side of Eq. (5), which depends on the oblatness of the asteroid.
The second term depends on the triaxiality of the asteroid and
has been studied in detail by Souchay & Bouquillon (2005) in
the case of (433) Eros. They show that its contribution to the
motion of nutation gives high frequency variations, correspond-
ing roughly to half of the period of the rotation and in conse-
quence generates after integration terms with very small ampli-
tudes. Thus we can ignore the effect of the triaxiality, i.e. the
second component on the righthand side of Eq. (5), at the first
order of our calculations.

Then it is useful to express P0
2(sin δ) as a function of λ

and β, which are the relative latitude and longitude of the Sun
with respect the reference plane. Kinoshita (1977) gives us this
transformation, starting from Jacobi polynomials. He showed
that P2(sin δ) can be divided into three components, directly de-
pending on the factors 1

2 (3 cos2 J − 1), sin 2J, and sin2 J, where
J stands for the angular distance between the axis of figure
and the axis of angular momentum. As already set as a hy-
pothesis, these two axes are very close, so that we can consider
J ≈ 0. Thus we take only the first term into account depending
on 1

2 (3 cos2 J − 1) ≈ 1 and we have

P0
2(sin δ) =

1
2

(3 cos2 J − 1)
[1
2

(3 cos2 I − 1)P2(sin β)

−1
2

sin [2I]P1
2(sin β) sin [λ − h]

−1
4

sin2 [I]P2
2(sin β) cos [2λ − 2h]

] (6)

where: I = −ε is the obliquity.
Moreover, we call that we have chosen as the basic reference

plane the orbital plane of the asteroid at the basic epoch J2000.0.
On short time scales, the orbital plane does not move signifi-
cantly, and we can adopt the value β ≈ 0 in our calculations.

Finally the expression of the perturbing solar potential takes
the simplified form:

U∗sun ≈ k ×
[a

r

]3
×

[
−1

4
(3 cos I2 − 1)− 3

4
sin I2 cos [2λ−2h]

]
. (7)

Where, using using Kepler’s third law:

k =
κ2Ms

a3
× 2C − A − B

2
= n2 × 2C − A − B

2
(8)

with a the semi-major axis and n the mean motion of the
asteroid.

3.2. Development of the equations as functions of the mean
anomaly

If we introduce this simplified expression of the potential in
Eqs. (4), we have

Δψ =
K
2

cos I ×
∫ [(a

r

)3
−

(a
r

)3
cos [2λ − 2h]

]
per

dt (9a)

Δε = −K
2

sin I ×
∫ [(a

r

)3
sin [2λ − 2h]

]
per

dt. (9b)

Here we include the scaling factor K (Kinoshita 1977):

K =
3n2

ωa
× 2C − A − B

2C
=

3n2

ωa
× Hd, (10)

with:

Hd =
C − (A + B)/2

C
, (11)

where Hd represents the dynamical ellipticity of the asteroid,
characterizing its flattening. The scaling factor K gives the mag-
nitude of the amplitude of the preceession-nutation motion, and
we see that it is proportional to the square of the mean motion n,
to the dynamical ellipticity Hd, and to the inverse of the rotation
rate ωa. As the obliquity, K is a crucial parameter that we report
in our results in Sect. 6.

As shown in Souchay et al. (2003) in the case of (433) Eros,
we can develop Eqs. (22) at any order of eccentricity e and as a
function of the sole mean anomaly M of the asteroid. The longi-
tude is counted from γJ2000, the fixed vernal point of the asteroid:
i.e., the ascending node of the orbital plane referred to the equa-
torial plane of the epoch J2000.0. Thus, the longitude can be split
as λ = ω+ ν+ γN (see Fig. 2) where γN is the angle between γ,
and the ascending node N of the orbital plane refers to the eclip-
tic of J2000, ω and ν are respectively the argument of the periap-
sis and the true anomaly. But as we see in Sect. 4.3, we initially
have access to γ′, the descending node, which is 180 degree op-
posite to γ. Thus we finally we write λ = ω + ν + 180◦ − γ′N.
We note that Λ = γ′N. We explain how to calculate this angle in
the Sect. 4.3.

We can split the different terms of Eqs. (22) as

(a
r

)3
cos [2(λ − h)] = C′

(a
r

)3
cos [2ν] − S ′

(a
r

)3
sin [2ν] (12)

and
(a

r

)3
sin [2(λ − h)] = S ′

(a
r

)3
cos [2ν] + C′

(a
r

)3
sin [2ν], (13)

where C′ = cos [2(ω − Λ − h)] and S ′ = sin [2(ω − Λ − h)] can
be considered as two constants for the interval of time that we
consider, because of the very low rate of change of the argument
of the periapsis ω, the angle Λ defined above and the precession
angle h involved. Moreover, we assume that h = −ψ is a small
variable.
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Fig. 2. Orbital plane and the plane normal to the angular momentum
vector. The Sun longitude λ is counted along the orbital plane from the
vernal point γ.

Souchay et al. (2003a) give the general developments of the

three terms function of M and ν, i.e.
[

a
r

]3
,
[

a
r

]3
cos (2ν), and[

a
r

]3
sin (2ν). Here, we can use the Cayley coefficients to ex-

pand functions of the true anomaly in Fourier series of the mean
anomaly from the following expressions (Hughes 1981):

( r
a

)i

cos [ jν] =
∑

k

Ci, j
k [e] cos [kM] (14)

( r
a

)i

sin [ jν] =
∑

k

S i, j
k [e] sin [kM]. (15)

Thus we have
(a

r

)3
=

∑
k

C−3,0
k [e] cos [kM]

=

(
1 +

3e2

2
+ ...

)
+

(
3e +

27e3

8
+ ...

)
cos [M] + ... (16)

(a
r

)3
cos [2ν] =

∑
k

C−3,2
k [e] cos [kM]

=

(
− e

2
+

e3

12
+ ...

)
cos [M]

+

(
1 − 5e2

2
+

41e4

48
+ ...

)
cos [2M] + ... (17)

(a
r

)3
sin [2ν] =

∑
k

S −3,2
k [e] sin [kM]

=

(
− e

2
+

e3

24
+ ...

)
sin [M]

+

(
1 − 5e2

2
+

37e4

48
+ ...

)
sin [2M] + ... (18)

Following their way to calculate we are able to express the equa-
tions of motion as function of cosines and sinus of the mean
anomaly M.

3.3. The nutation coefficients

After expressing the Eqs. (9a) and (9b) with the Cayley coef-
ficients, we use the expression of the mean motion n = dM

dt to
integrate. First, for the motion in longitude,

Δψ =
K
2

cos I ×
∫ [(a

r

)3
−

(a
r

)3
cos [2λ − 2h]

]
per

dt

=
K
2

cos I ×
∫ [(a

r

)3
(1 − C′ cos [2ν] + S ′ sin [2ν])

]
per

dt

=
K
2

cos I
∫ [∑

k

C−3,0
k [e] cos [km] −C′

∑
k

C−3,2
k [e] cos [kM]

+S ′
∑

k

S −3,2
k [e] sin [kM]

]
per

dM
n
· (19)

And after the integration,

Δψ =
K
2

cos I
[∑

k

C−3,0
k [e]

sin [km]
kn

− C′
∑

k

C−3,2
k [e]

sin [kM]
kn

− S ′
∑

k

S −3,2
k [e]

cos [kM]
kn

]
per
. (20)

And similarly for the motion in obliquity,

Δε = −K
2

sin I ×
∫ [(a

r

)3
sin [2λ − 2h]

]
per

dt

= −K
2

sin I ×
∫ [(a

r

)3
(S ′ cos [2ν] + C′ sin [2ν])

]
per

dt

= −K
2

sin I ×
∫ [

S ′
∑

k

C−3,2
k [e] cos [km]

+C′
∑

k

S −3,2
k [e] sin [kM]

]
per

dM
n
· (21)

Finally,

Δε = −K
2

sin I ×
⎡⎢⎢⎢⎢⎢⎣S ′

∑
k

C−3,2
k [e]

sin [kM]
kn

−C′
∑

k

S −3,2
k [e]

cos [kM]
kn

⎤⎥⎥⎥⎥⎥⎦
per

· (22)

The last step consists in developing the Cayley coefficients to
the fourth order of e. The eccentricity of the bodies concerned is
never greater than 0.28. Thus, it seems enough to stop our calcu-
lations at the fifth order of e, which gives us terms of amplitude
lower than 2 mas. In fact, the uncertainties on precession and
nutation motion do not depend on theoretical uncertainties or on
orbital parameters, which are very well known at the sixth or
seventh digit, but especially of observational variables Hd and ε.
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By keeping only the periodic terms, we obtain the analytical
expression of the nutation in longitude Δψ and in obliquity Δε:

Δψ =
K
2

cos I ×
[(

3e +
27
8

e3 + C′
[

e
2
− e3

12

])
sin M

n

+

(
9
2

e2 +
7
2

e4 + C′
[
−1 +

5
2

e2 − 41
48

e4

])
sin 2M

n

+

(
53
8

e3 +C′
[
−7

2
e +

123
16

e3

])
sin 3M

3n

+

(
77
8

e4 +C′
[
−17

2
e2 +

115
6

e4

])
sin 4M

4n

−C′
845
48

e3 sin 5M
5n

−C′
533
16

e4 sin 6M
6n

− S ′
(
− e

2
+

e3

24

)cos M
n

− S ′
(
1 − 5

2
e2 +

37
48

e4
)cos 2M

n

− S ′
(7
2

e − 123
16

e3
)cos 3M

3n

− S ′
(17

2
e2 − 115

6
e4

)cos 4M
4n

− S ′
845
48

e3 cos 5M
5n

− S ′
533
16

e4 cos 6M
6n

]

(23)

Δε = −K
2

sin I ×
[
−

(
− e

2
+

e3

24

)
C′ cos M

n

+

(
− e

2
+

e3

12

)
S ′ sin M

n

+

(
−1 +

5
2

e2 − 37
48

e4

)
C′ cos 2M

2n

+

(
1 − 5

2
e2 +

41
48

e4

)
S ′ sin 2M

2n

−
(
7
2

e − 123
16

e3

)
× C′ cos 3M − S sin 3M

3n

−
(
17
2

e2 − 115
6

e4

)
× C′ cos 4M − S sin 4M

4n

− 845
48

e3 × C′ cos 5M − S ′ sin 5M
5n

− 533
16

e4 × C′ cos 6M − S ′ sin 6M
6n

]
·

(24)

3.4. The precession rate

To give the expression of the precession rate, we start from the
formula (20), since for the nutation we develop the Cayley co-
efficients but only keep the secular part. We have the following
development to the fourth order of e:

ψ̇ ≈ K
2

cos I

[
1 +

3
2

e2 +
15
8

e4

]
(25)

where K is given by (10).

4. Initial conditions

To compute the precession rates, as well as the nutation coeffi-
cients, according to the expressions above we need to know the
orbital dynamics of the asteroid but also its spin axis orientation,
its spin rate, and its moments of inertia.

4.1. Orbital dynamics

To carry out our calculations, we need the set of orbital param-
eters (a, e, i, ω,Ω, M) of the asteroid. At first approximation, we
can set the five first parameters as constants for the short time
scale considered in our investigations, typically a few decades
or a hundred years. These orbital parameters are given by JPL’s
HORIZONS system1. The orbital parameters e and M are ex-
plicitly involved in Eqs. (23) and (24), whereas the value of a is
needed to compute the constant K according to (10). At last i, ω,
and Ω will be used for the orientation of the spin axis (see next
section).

4.2. The spin characteristics

At a given date, the spin characteristics of an asteroid are essen-
tially given by two parameters: the obliquity, i.e. the angle be-
tween the equatorial and the orbital planes of the object, and its
spin angular rate. The equations of the rotational motion given
by formula, (23), (24), and (25) depend directly on the spin an-
gular rate ωr , through the presence of K, and on the obliquity
ε = −I. Despite its fundamental physical importance, for in-
stance, in terms of seasons, climate, and solar flux, in particular,
the obliquities of the asteroids are rarely given in the literature.
As a consequence we need to calculate it for our set of asteroids.

For at purpose we use two unit vectors. First the vector nor-
mal to the orbital plane, defined by the orbital elements Ω and i
with respect to the mean equinox and ecliptic of J2000.0:

z =

⎛⎜⎜⎜⎜⎜⎜⎝
sin i sinΩ
cosΩ sin i

cos i

⎞⎟⎟⎟⎟⎟⎟⎠ , (26)

and second, the vector linked to the axis of figure that is given in
terms of its right ascension α f and its declination δ f with respect
to the ICRF. We make a basic and trivial transformation to get its
longitude λ f and latitude β f , with respect to the mean equinox
and ecliptic J2000.0 (see for instance Bills & Nimmo 2011):

f =

⎛⎜⎜⎜⎜⎜⎜⎝
cos β f cosλ f
− cos β f sin λ f

sin β f

⎞⎟⎟⎟⎟⎟⎟⎠ . (27)

The obliquity ε is then obtained by inverting the equations of the
scalar product and of the cross product of these two vectors from
one of the following equations:

z · f = cos ε, z × f = w sin ε. (28)

4.3. Calculation of the longitude

We let γ and γ′ be, respectively, the ascending and descending
nodes of the asteroid orbital plane with respect to its equatorial
plane. Let N be the ascending node of the orbital plane with
respect to the reference plane, i.e. the ecliptic of J2000.0. In
Eqs. (22) involving the longitude λ, it is counted from γ as fol-
lowing λ = ω + ν + 180◦ − Λ where Λ = γ′N. To calculate this
last angle, which appears as a constant in the equations of mo-
tion, we point out that w, colinear to the cross product of unit
vectors z and f , is directed toward γ′ (see Fig. 3).

Thus, we get

Λ = γ′N = arccos(ON · w) (29)

and can determine λ starting from this determination of Λ.

1 http://ssd.jpl.nasa.gov/
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Fig. 3. Vector f normal to the equatorial plane and to the orbital plane.

4.4. Moments of inertia

To constrain the rotational dynamical equations of each asteroid
in a satisfying manner, we need to rather accurately know its mo-
ments of inertia, which appear directly in the factor K. Thanks
to space missions or accurate ground-based observations of light
curves, we can have access to a well defined shape and spin-pole
orientation of the asteroids. This is the case of the five asteroids
involved in our study. As mentioned before, we assume here that
we can approximate their shape as that of a triaxial ellipsoid with
a, b, and c as axial dimensions (c < b < a). If the density of the
asteroid is supposed to be uniform, we can deduce its moments
of inertia directly (Bills & Nimmo 2011):

⎛⎜⎜⎜⎜⎜⎜⎝
A
B
C

⎞⎟⎟⎟⎟⎟⎟⎠ = M
5

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b2 + c2

a2 + c2

a2 + b2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (30)

In case the body is differentiated, which should be the case of
minor planets such as (1) Ceres or (4) Vesta, we need to make
some assumptions about the internal structure to calculate the
moments of inertia. Moreover, in case a spacecraft encouters
the asteroid closely enough, it should be possible to determine
the low-degree gravitational potentials J2 = −C2,0 and C2,2. If
we have an estimation of the polar moment of inertia C, we can
calculate the normalized moments of inertia Ā and B̄ with the
following formula (Konopliv 2011):
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ā =
C

MR2
− J2 − 2C2,2

B̄ =
C

MR2
− J2 + 2C2,2,

(31)

where M and R stand for the mass and mean radius of the
body, respectively. The problem remains to determine the largest
moment of inertia C̄. For that purpose Konopliv et al. (2011)
present several solutions. If we have an estimation of J2 and
if we assume the hydrostatic equilibrium, then we can use the
Radau-Darwin relation (32),

C̄ =
C

MR2
=

2
3

⎛⎜⎜⎜⎜⎜⎝1 − 2
5

√
4 − k
1 + k

⎞⎟⎟⎟⎟⎟⎠ , (32)

where k is a secular Love number that can be deduced from J2.
Another solution consists in establishing a model of the internal
structure, using in situ observations or based on simulations of
the evolution of the body.

5. Physical parameters

As seen in the previous sections, to calculate the precession rate
and nutation coefficients of an asteroid, in addition of the or-
bital elements, we need to know the spin axis orientation, the
rotational angular rate, and the moments of inertia. In this pa-
per we have selected five well constrained asteroids for an ac-
curate determination of their precession-nutation motion. Four
of them have recently been visited by spacecrafts, and in conse-
quence, their physical and rotational parameters have been accu-
rately established. These asteroids are (433) Eros, (2867) Steins,
(25143) Itokawa, and (4) Vesta. The additional asteroid studied
here is (1) Ceres, which will be oberved by DAWN in 2015.

In the following, we present the most accurate data that we
have found in the literature but also the methods by which they
were obtained. The data used for our calculations will be sum-
marized in Table 3.

5.1. Parameters for (433) Eros, (2867) Steins,
and (25143) Itokawa

In the case of (433) Eros, the data obtained by the NEAR
probe was analyzed by Miller et al. (2002), who could deter-
mine the spin vector orientation with remarkable accuracy better
than 0.001 degree (≈4′′) and a rotational period with eight digits
accuracy T = 5.27025547 h. From the spin vector orientation
given in equatorial coordinates with the origin at the center of
the asteroid, Souchay et al. (2003a) could deduce a remarkable
value of the obliquity: ε = 89◦. This means that like Uranus,
Eros’ spin axis is nearly oriented in the orbital plane. Eros’ mo-
ments of inertia were solved with high accuracy by integrating
the shape model and assuming uniform density. Errors were min-
imized with the help of gravity harmonics determined by track-
ing of the orbit spacecraft, which shows a very high correlation
with the shape model, sustaining the idea of a very homogeneous
body. In the case of this asteroid, the normalized moment of in-
ertia Ā = 17.09 km2 is considerably smaller than the two other
ones B̄ = 71.79 km2 and C̄ = 74.49 km2 (Miller et al. 2002),
which indicates a high value of the triaxiality. For this reason the
effects of the triaxiality on nutation were studied in a specific
paper by Souchay et al. (2003b). As already mentioned before,
their conclusion is that despite its high value, Eros’ triaxiality
generates relatively small components, which can be neglected
at first order with respect to nutation coefficients due to the flat-
tening (Souchay et al. 2003; Souchay & Bouquillon 2005).

Demura et al. (2006) analyzed the data of the Hayabusa
mission derived from the AMICA (Asteroid Multiband Imaging
CAmera) to determine the locations of the pole and rotation axis
of (25143) Itokawa. The positioning of the latter, established in
equatorial coordinates, is given with a ±3.9◦ margin and charac-
terizes a retrograd rotation, with a rotation axis almost perpen-
dicular to the ecliptic plane. The rotation period of Itokawa was
determined at the fith digit: T = 12.132 h, whereas the size of the
three rectangular axes were set to 535 × 298 × 244 m with 1-m
uncertainty. Assuming a homgenous density inside the asteroid
and a trixial shape, it is possible to deduce the moments of inertia
and Hd fairly precisely.

Jorda et al. (2012) have implemented several three-
dimensional reconstruction techniques from the onboard
OSIRIS camera to retrieve the global shape of (2867) Steins.
They could reconstruct an approximate shape model, showing
that Steins looks like a ellipsoid with principal axes 6.83 ×
5.70 × 4.42 km. As in the case of (25143) Itokawa, we could
deduce moments of inertia from the Eq. (30) from these values.
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Table 1. Moments of inertia of (4) Vesta according to two bibliographic
sources.

Authors A B C
Bills & Nimmo (2011) 0.3610 0.3858 0.4532
Rambaux (2013) 0.3433 0.3546 0.42

The same authors also determined the equatorial coordinates of
the polar axis, implying a very large obliquity of 172◦ and in-
dicating a retrograd motion. Nevertheless, their accuracy for the
spin axis orientation is only given with an uncertainty of ±5◦.

5.2. Parameters for (4) Vesta

As the second most massive body of the main asteroid belt,
(4) Vesta has been visited during the DAWN mission from
July 2011 to August 2012. The tracking of the spacecraft gives
us a good accurate determination of the low-degree gravity field,
so that we can make an assumption about the internal structure
of the asteroid. Data suggest that (4) Vesta has an iron core,
a mantle, and crust (Asmar et al. 2012). In Table 1, we report
the values of the moments of inertia as deduced from two stud-
ies (Bills & Nimmo 2011; Rambaux 2013). For our study, we
chose the values proposed by these last authors. To study the
rotational motion of (4) Vesta, they used a two-layer model of
internal structure (Asmar et al. 2012), from which they provide
the polar moment of inertia and deduce the two other ones with
formula (31). We notice that Asmar et al. (2012) also give us
the spin pole orientation with a very good accuracy if we com-
pare it to those of other asteroids. Indeed the right ascension and
declination of the north polar axis are α = 309.◦031 ± 0.003 and
δ = 42.2264◦ ± 0.0002, respectively.

5.3. Parameters for (1) Ceres

Qualified as a minor planet, (1) Ceres, is the most massive object
of the asteroid belt, accounting for one third of the main asteroid
belt mass. The spacecraft DAWN should normally be placed in
orbit around it in 2015. As for (4) Vesta, we expect precious data
about its internal structure (McCord et al. 2011). However, from
ground-based observations and the Hubble Space Telescope, its
shape is well defined, and we can already assume some solid
hypotheses: with a mean radius of 467.6 ± 2.2 km, (1) Ceres
has a spheroid shape with a small oblateness as terrestrial plan-
ets (Carry et al. 2008). Recent data indicate that (1) Ceres has
undergone a thermal evolution and that we can suppose a dif-
ferentiated model of the internal structure (Castillo-Rogez &
McCord 2010). Because of these new observations, it is more
appropriate to call it a protoplanet in comparison with with
other asteroids. From these assertions, Rambaux (2013) stud-
ied the free rotational motion of (1) Ceres after calculating its
moments of inertia. Carry et al. (2008) provide us the spin
pole orientation with a precision of ±5◦, and Chamberlain et al.
(2007) furnish the rotational period with six-digit accuracy: T =
9.074170 h ± 0.000002.

For different models of internal structure, McCord & Sautin
(2005) give a range of possible values of the largest moment
of intertia C. With an estimation of the shape, Bills & Nimmo
(2011) and Lara et al. (2011) have calculated the values of the
three moments of inertia with the formula (30). At last, using
a dedicated model of internal structure, Rambaux et al. (2011)
calculated the mean moment of inertia and the three principal
moments A, B, and C. All these results are presented in Table 2.

Table 2. Moments of inertia of (1) Ceres, according to four biblio-
graphic sources.

Authors A B C
McCord & Sautin (2005) – – 0.304 to 0.4
Bills & Nimmo (2011) 0.3899 0.3899 0.4202
Lara et al. (2011) 0.39096 0.39105 0.41799
Rambaux et al. (2011) 0.347 0.3394 0.3623

Therefore, even though (1) Ceres has not yet been explored
by a space mission, that data looks precise enough to give an
accurate modeling of its rotational motion.

6. Results

6.1. Precession-nutation characteristics

In the previous sections we have presented an analytical model
for calculating the rotational motion of any of the asteroids that
were considered here. Thanks to this model and accurate data
provided either by up-to-date ground-based observations (for
(1) Ceres) or by recent space missions (for the other four as-
teroids), we present the three fundamental parameters that are
necessary for this calculation in Table 4. In particular, we show
the values for each asteroid of our determinations for the obliq-
uity ε = −I and the dynamical ellipticiy Hd. We call that Hd
characterizes the flattening of the body, which is not established
from its axes lengths but starting from its moments of inertia A,
B, C. More precisely,

Hd =
C − (A + B)/2

C
· (33)

In addition we give the scaling factor K, which is directly pro-
portional to Hd, to the mean motion n, and to the inverse of
the spin angular velocity ωa, according to (9). For the aster-
oids (433) Eros and (25143) Itokawa, both characterized by a
very irregular shape, the scaling factor K is particularly big, with
values 22.3 times and 65.0 times greater than for (1) Ceres. Then
we could expect for these two cases a high value of the nutation
coefficients and of the precession rate.

Finally we report in Table 4 the precession rate calculated by
the formula (25), as well as the amplitudes of the leading nuta-
tion coefficients in longitude and obliquity, respectively, as cal-
culated from the formulas (23) and (24). We used the same IAU
conventions for the sign of the precession as for the Earth, which
means that a negative value of ψ̇ corresponds to a prograde mo-
tion. This is the case of (25143) Itokawa and (2867) Steins, in
contrast to the three other asteroids showing a retrograde preces-
sion motion as for our planet.

In the case of (433) Eros, because of the coefficient cos ε at
the righthand side of the formula (25), with ε = 89◦, the value of
the precession rate becomes in fact very low. On the opposite, we
also notice that for (25143) Itokawa, the precession motion with
a value of ψ̇ = −(461.52 ± 6.57)′′/yr, reaches more than one de-
gree in eight years. By comparison, we recall that the precession
rate of the Earth owing to the sole effect of the Sun (as it is deter-
mined here) participates roughly one third of the lunisolar pre-
cession rate, that is to say, 15′′/cy. Therefore the ratio for Itokawa
roughly corresponds to 30 times this value. Thus, we could ex-
pect an observational detection of the modification of the spin
orientation of (25143) Itokawa over a period of a few decades,
owing to the precession, which has still never been done for any
asteroid. This should be all the more possible since the synthetic
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Table 3. Physical parameters used for the rotational study of the five selected asteroids.

Asteroid Shape (km) Spin-rate (h) RA(J2000) (deg) Dec(J2000) (deg) Moments of intertia (km2)
(433) Eros 36 × 15 × 13 5.27025547 11.3692 17.2273 17.09 × 71.79 × 74.49
(2867) Steins 6.83 × 5.70 × 4.42 6.049 99 −59 26.01 × 33.09 × 39.57
(25143) Itokawa 535 × 298 × 244 m 12.132 128.5 −89.66 0.06 × 0.16 × 0.19
(4) Vesta 282 × 267 × 221 5.3421 309.031 42.2264 0.3433 × 0.3546 × 0.42
(1) Ceres 479.7 × 479.7 × 444.4 9.07410 288 66 0.3394 × 0.3394 × 0.3623

Table 4. Parameters of the rotational motion.

Asteroid Obliquity (◦) Hd K [′′/y] ψ̇ [′′/y] Δψ [′′] Δε [′′] RmΔψ [m] RmΔε [m]
(433) Eros 89.00 0.4034 304.0953 2.8456 0.7437 27.3351 3.3300.10−2 1.2240
(2867) Steins 161.84 0.2717 55.3000 –27.1470 13.8229 2.8589 1.7759.10−1 3.6730 .10−2

(25143) Itokawa 157.30 0.3828 885.7308 –461.5208 138.7273 28.2561 1.0761.10−1 2.1918.10−2

(4) Vesta 27.46 0.1692 30.4449 13.6728 5.1460 2.2122 6.5540 2.8175
(1) Ceres 3.91 7.1652.10−2 13.6224 6.8584 3.1834 0.1813 7.2169 0.4150

Table 5. Nutation in longitude for (4) Vesta.

Sin (′′) Cos (′′) Amp (′′) Period (year) Arg
2.3787 0.2431 1.1027 3.6287 M
–2.6121 –2.6481 1.7154 1.8143 2M
–0.5676 –0.5576 0.3669 1.2096 3M
–0.0939 –0.0914 0.0604 0.9072 4M
–0.0144 –0.0139 0.0092 0.7257 5M
–0.0021 –0.0020 0.0013 0.6048 6M

light curves for Itokawa are a priori very well constrained thanks
to the data concerning the shape and albedo, obtained from the
Hayabusa mission.

In Table 4, it is also interesting to point out that (4) Vesta has
an obliquity that is almost identical to that of the Earth (27.◦46
instead of 23.◦45) and that the amplitude of the precession rate is
very close when compared with the part due to the solar effect
for our planet already mentioned above, i.e., ≈15′′/y. In the last
columns, we have reported the amplitude of the real nutation
amplitude of the asteroids in space, by scaling it to the size of
the asteroid. Only (1) Ceres and (4) Vesta present a significant
surface displacement of several meters, owing to their relatively
big size.

In Fig. 4 (top), we plot as a function of the time the
combined precession-nutation motion in longitude ψ + Δψ of
(25143) Itokawa and (2867) Steins, for which this motion is by
far more important than for the three other bodies considered. In
Fig. 4 (bottom), we present the corresponding plot for our set of
five asteroids excepted (25143) Itokawa, for which the motion is
drastically more important than any other one, and cannot be put
on the same scale.

6.2. The nutation motion

Thanks to Eqs. (23) and (24), we can directly present the values
of the coefficients of nutation respectively in longitude and in
obliquity one by one. Thus for (4) Vesta, we present the tables
of nutation both in longitude (Table 5) and in obliquity (Table 6)
in detail as a series of sinusoidal components with arguments
that are multiples of the mean anomaly M of the asteroid. We
can see that the semi-annual term dominates, with a secondary
annual component comparatively much bigger in longitude than
in obliquity.

Fig. 4. Top: nutation motion in longitude added to the precession for
(25143) Itokawa (black) and (2867) Steins (blue). Bottom: nutation
motion in longitude added to the precession for (433) Eros (green),
(2867) Steins (blue), (4) Vesta (pink), and (1) Ceres (red).

We also present the tables of nutation for (1) Ceres in
Tables 7 and 8, which is the next target of the DAWN spacecraft.
As already noted when commenting on Table 4, the amplitude
of the nutation motion is fairly small. Nevertheless, it is close to
the amplitude of the solar nutation on the Earth, that is to say,
one arcsecond.
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Table 6. Nutation in obliquity for (4) Vesta.

Sin (′′) Cos (′′) Amp (′′) Period (year) Arg
–0.1263 0.1317 0.1823 3.6287 M
1.3764 –1.4321 1.9862 1.8143 2M
0.2898 –0.3015 0.4182 1.2096 3M
0.0475 –0.0494 0.0685 0.9072 4M
0.0072 –0.0075 0.0104 0.7257 5M
0.0010 –0.0011 0.0015 0.6048 6M

Table 7. Nutation in longitude for (1) Ceres.

Sin (′′) Cos (′′) Amp (′′) Period (year) Arg
1.3362 –0.1138 0.0915 4.6010 M
–1.9198 1.4305 0.1634 2.3005 2M
–0.3591 0.2621 0.0303 1.5337 3M
–0.0515 0.0374 0.0043 1.1503 4M
–0.0068 0.0049 0.0006 0.9202 5M
–0.0068 0.0007 0.0001 0.7668 6M

Table 8. Nutation in obliquity for (1) Ceres.

Sin (′′) Cos (′′) Amp (′′) Period (year) Arg
0.0078 0.0108 0.0133 4.6010 M
–0.0979 –0.1361 0.1676 2.3005 2M
–0.0179 –0.0249 0.0307 1.5337 3M
–0.0026 –0.0036 0.0044 1.1503 4M
–0.0003 0.0005 0.0006 0.9202 5M
–0.0000 –0.0001 0.0001 0.7668 6M

Table 9. Amplitude of the nutation in longitude Δψ sin ε for (4) Vesta
with our model (Cols. 1–2), and result given by Rambaux (2013)
(Cols. 3–4).

Our model Rambaux (2013)
Amp (mas) Per (days) Amp (mas) Per (days)
1102.73 1325.3803 1091.97 1325.7251
1715.42 662.6902 1718.27 662.8275
366.95 441.7934 364.65 441.9033
60.41 331.3451 59.59 331.4342
9.24 265.0761 8.83 265.1506

In the next step, we can compare our results with Rambaux
(2013) who made calculations starting from an Eulerian formal-
ism, instead of our Hamiltonian one. We developed the nutation
at the fourth order of the eccentricity and as a sum of cosine
and sine of arguments multiple of the mean anomaly of Vesta,
whereas Rambaux (2013) give their results as a sum of cosine or
sine of multiple of the longitude of (4) Vesta. The bias between
the two kinds of arguments (mean anomaly and longitude) cor-
responds to the argument of the perihelion, which can be set as
constant in our study as already pointed out.

Therefore although the arguments are different, we can com-
pare the amplitude of motion by summing the squared values of
cosine and sine of the previous table to evaluate the amplitude
of the motion of nutation at a given frequency. We present the
results obtained by our model and those by the semi-analytical
model of Rambaux (2013) in Tables 7 and 8. However, it is ap-
propriate to compare the terms over periods, and we find good
agreement.

Finally for each asteroid, we compute the sole nutation part
for both components (Δψ and Δε) as a function of time. As a

Table 10. Amplitude of the nutation in longitude Δε for (4) Vesta with
our model (Cols. 1–2), and result given by Rambaux (2013) (Cols. 3–4).

Our model Rambaux (2013)
Amp (mas) Per (days) Amp (mas) Per (days)
182.36 1325.3803 181.51 1325.7251
1986.24 662.6902 1987.23 662.8275
418.24 441.7934 415.41 441.9033
68.55 331.3451 67.59 331.4342
10.41 265.0761 9.99 265.1506

result we present in Fig. 5 the bidimensional nutation motion
projected onto the equatorial plane for each asteroid. In all cases
the spin axis describes a periodic closed loop whose amplitude is
altered mainly by the value of the obliquity. The structure of the
loop is obviously generated by the combination of two or three
leading sinusoidal components. The scales along the axes have
been adjusted according to the amplitudes. We point out that for
(433) Eros and (25143) Itokawa, the amplitudes are significantly
large at the level of 30′′ and 60′′, respectively, whereas they are
on the order of 1′′ or less for the three other bodies. In the case
of (433) Eros, our results in particular the feature of the nutation
loop, agree completely with the previous study by Souchay et al.
(2003a). This confirms the validity of our computations.

7. Conclusion

In this paper, we have applied an analytical model to calculat-
ing the precession-nutation components of the rotational motion
of five asteroids based on Kinoshita’s theory (Kinoshita 1977).
Four of the asteroids, (4) Vesta, (433) Eros, (2867) Steins, and
(25143) have been explored by a space probe and in consequence
offer very accurate physical and rotational parameters as used in
our computations, such as the moments of inertia, the orienta-
tion of the pole axis and the spin angular rate. (1) Ceres will
soon be subjected to a flyby by the DAWN probe, but its param-
eters above are already very well constrained by ground-based
observations. In consequence, as an output of our computations,
we could show the evolution of the obliquity and precession of
the longitude of the node of each asteroid very accurately, as
well as the loops described by their polar axis by taking the sole
effect of the nutation. These results can be considered as a con-
tinuation of the work done by Lhotka et al. (2013) for a larger set
of 100 asteroids but based on less accurate data for the majority
of these 100 asteroids.

It is true that the effects underlined here will maybe stay be-
low the detection level, as already been pointed out by Rambaux
et al. (2011, 2013) for (1) Ceres and (4) Vesta. Nevertheless,
we show that for instance in the case of (25143) Itokawa, the
general precession rate ψ̇ = −(461.52±6.57)′′/yr corresponds to
roughly 1◦/ in eight years and might be detectable within a rather
small time interval. Our analytical expresions used here could
be applied to any other asteroid in the future, once we know
its physical and rotational characteristics. We restricted our de-
velopments here to the fourth order of the eccentricity, but they
could be easily extended to the highest order.

At last some extensions of this work could be carried out, for
instance, by evaluating the Oppolzer terms that separate the mo-
tion of the axis of figure from the one of axis of rotation, or by
studying the effect of the triaxial comonent of the potential, done
by Souchay et al. (2003b) for (433) Eros. Long-term study of the
rotational evolution should also be undertaken by numerical in-
tegration following the same canonical equations as in this paper
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Fig. 5. Bi-dimensional nutation motion projected onto the equatorial plane. From top to bottom and from left to right: (433) Eros, (25143) Itokawa,
(2867) Steins, (4) Vesta and (1) Ceres.

but by taking the direct perturbing effect of the planets into ac-
count, as well as their indirect effect on the orbit of the asteroid
itself.
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