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ABSTRACT

Context. Transit surveys, both ground- and space-based, have already accumulated a large number of light curves that span several
years.

Aims. The search for transiting planets in these long time series is computationally intensive. We wish to optimize the search for both
detection and computational efficiencies.

Methods. We assume that the searched systems can be described well by Keplerian orbits. We then propagate the effects of different
system parameters to the detection parameters.

Results. We show that the frequency information content of the light curve is primarily determined by the duty cycle of the transit
signal, and thus the optimal frequency sampling is found to be cubic and not linear. Further optimization is achieved by considering
duty-cycle dependent binning of the phased light curve. By using the (standard) BLS, one is either fairly insensitive to long-period
planets or less sensitive to short-period planets and computationally slower by a significant factor of ~330 (for a 3 yr long dataset).
We also show how the physical system parameters, such as the host star’s size and mass, directly affect transit detection. This under-
standing can then be used to optimize the search for every star individually.

Conclusions. By considering Keplerian dynamics explicitly rather than implicitly one can optimally search the BLS parameter space.
The presented Optimal BLS enhances the detectability of both very short and very long period planets, while allowing such searches

to be done with much reduced resources and time. The Matlab/Octave source code for Optimal BLS is made available.

Key words. methods: data analysis — planets and satellites: detection — planetary systems

1. Introduction

The BLS algorithm for identifying transiting exoplanets (Kovacs
et al. 2002, hereafter KZM) is very widely used. While this
work uses BLS as a concrete example, we stress that the main
questions we address here are related to the information content
of the data, and are therefore easily translatable to other detec-
tion algorithms. Compared to other period-searching algorithms,
such as Fourier transform or Lomb-Scargle periodograms, the
computational load of BLS is rather high. This is an opposite
conclusion to that of KZM since — as we show here — looking
for transits requires many more frequency steps than looking for
sine-like variations. Recently this situation has became particu-
larly grave since both space — and ground — based surveys now
span several years and have obtained hundreds of thousands of
light curves (if not millions) so that their BLS analysis quickly
becomes a challenge. In this paper we show that optimally scan-
ning the BLS parameters, even without changing the BLS core
technique, can produce very significant performance improve-
ments and improve sensitivity over standard practices at the
same time.

The BLS technique fits a box of some phase duration to a
light curve folded at some test frequency, at all possible start-
ing times — producing a three-dimensional search in orbital fre-
quency, reference phase and duty cycle. For this reason the

* The MATLAB code is only available at the CDS via anonymous
ftp to cdsarc.u-strasbg. fr (130.79.128.5) or via
http://cdsarc.u-strasbg. fr/viz-bin/qcat?]/A+A/561/A138
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current work is also similarly divided: after defining the duty
cycle in Sect. 2, we discuss the frequency search axis in Sect. 3,
and the reference phase and duty cycle search axes in Sect. 4.
Finally, we discuss whether and how to choose the best-fitting
frequency in Sect. 5 and conclude in Sect. 6.

2. The transit signal duty cycle

BLS aims at detecting a periodic sudden and short drop in the ob-
served flux, ostensibly caused by a transiting planet. The orbital
period of a test particle around the host star, such as a planet, is
given in Keplerian dynamics by

4n* .
= —a -
GM
Consequently, the phase duration, also known as the duty cy-
cle, of a central transit in a large (¢ > R) circular orbit with

a period P (1/orbital frequency f) around a star with mass and
radius M and R, respectively, is

P? (1

R (@m** R

q(va»R)’%E T (GM)]/—;

Vs 2)

where a is the orbital semimajor axis.

The observed duty cycle may be shorter than ¢(f, M, R), for
example in non-central transits, or even longer than g(f, M, R),
if R is underestimated or M is overestimated. Eccentric orbits
may further change the observed duty cycle to both shorter and
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longer than ¢(f, M, R), but eccentricity cannot (usually) be de-
tected or even constrained from photometry alone, so for the
remainder of this work we assume circular orbits. Still, the
quoted g(f, M, R) is our a priori expected duty cycle, and any
corrections for longer or shorter duty cycles — as discussed in
Sect. 4 — should be made relative to this number.

Important is that the typical targets for transit surveys are
solar-type stars which are all approximately similar in mass and
size (a factor of 2 in either is very significant), while the orbital
period can easily change over three orders of magnitudes — from
less than a day to a year and longer. Therefore, for optimizing
the transit search, the accuracy of the estimated M and R are far
less important, and for the remainder of this work we assume
solar values for these parameters when giving numerical results.
We note that while the original BLS did not require input of M
and R at all, assumptions about the stellar mass and radius were
always made, even if implicitly, by the definition of the other
search parameters. By making them explicit we allow correcting
for non-solar values, such as in proposed searches for transiting
planets around white dwarfs (Agol 2011).

3. The frequency axis
3.1. Search edges

The available dataset will be described by a single parameter: its
span in time, hereafter simply span and labeled S. The minimal
search frequency is naturally derived from the goal of detecting
periodic phenomena, so the maximum period can be no longer
than half of the data span, or fii, = % One may prefer to use a

more conservative fiin = % that will help to separate similar but
unrelated events from true periodicity by requiring observation
of a third event — but we will use the former definition below.
The maximal possible frequency could in principle be de-
rived from the Shannon-Nyquist sampling theorem had we
known the sampling frequency of our data, but a much more
stringent limit usually comes from astrophysical arguments. By
setting the orbital distance a in Eq. (1) to 3R (scale of the Roche
limit) one can determine the maximal frequency to search:

1 GM

fmax = ﬂ W

3)

Searching the range [ fmin, fmax] Will ensure that all relevant or-
bital periods are covered (down to about 14.5 h for the Sun).

3.2. Frequency resolution

When searching for transit signals it is commonly assumed
that one should uniformly sample the orbital frequency rather
than the orbital period (e.g. KZM). However, while this is true
for sine-like signals, including the additional information that
the transit duty cycle is also frequency-dependent changes that
picture.

The frequency resolution of uniformly-sampled sine signals
is % In the context of experimental data this is the width of the
Fourier transform peak. We wish to find the corresponding num-
ber for transit-like signals. We assume our signal was uniformly
sampled and that it has an exact box shape, i.e.: when folded on
the true frequency fiy only the points in a small phase range
spanning Gee(firue, M, R) are all at some definite non-zero value,
and all other points have a value of zero. We now consider an im-
perfect folding at some frequency fie + Af: in such a case each
point s shifted (relative to the exact case) by (Af-f) phase when ¢
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is the data point’s time. If the reference time is the beginning of
the dataset then on average points move by (Af - §/2) phase.
The probability that such a shift will move the point to out-
side the true box is approximately the ratio of the phase shift

to the box sizes %. Since the BLS score (labeled “Signal

Residue” by KZM) scales with the number of points in transit,
this is also the relative change in the BLS score due to Af. To
find the half width at half maximum (HWHM) of the BLS peak
(which is a measure of frequency resolution) we set the condi-

Afuwam-S/2 _ 1

tion for the BLS(?core to half its peak value: TR = 2
qtrues

or: Afgwum = #. In the presence of an unknown fi.
one needs to oversample this critical frequency resolution to be
sure that the peak is not just missed between frequency samples.
We therefore add a frequency oversampling parameter OS which
is the number of frequency points to calculate in the expected
HWHM range to give the final

q(ﬁl’uev M» R) .

Af =
/ S-0S8

“)
OS values of the order of a few (2-5) would suffice ensure the
true peak is not missed. It is now easy to see that the frequency
resolution Af is no longer constant — it depends on f itself due to
the physics of the problem. Also, one can compare this result to
the classical frequency resolution of % to find that in the frame-
work presented here sine functions of all frequencies have a con-
stant effective duty cycle of 1, and indeed sine waves are (almost)
always non-zero.

The above result means that if one chooses a uniform fre-
quency sampling with A funitorm that is suitable for short-period
signals (i.e., large Af) a large portion of the long-period sig-
nals will be missed between frequency samples and will not be
detected. Conversely, if one chooses a uniform frequency sam-
pling with A finiform than is suitable for long-period signals (i.e.,
small Af), the computation time will be artificially increased by
a large factor (see next subsection).

Actually, the latter choice will not just be slow to calculate
but also it will be less sensitive to real signals by being too sen-
sitive to noise: such a choice will allow “detection” of signals
that are extremely unlikely to be transits. For e.g.: a low duty
cycle ¢ = 1073 is quite possible for a lyr planet, but the same ¢
means a <4.5 min long transit for a 3 d period — so by allowing
such g values one becomes sensitive to phenomena that are more
likely to be noise than signals, and so the BLS background noise
increases.

3.3. Optimal frequency sampling

Since it was shown above that a uniform frequency sampling law
is not optimal, we wish to find the optimal frequency sampling
sequence. This means solving the differential equation (Eq. (4)):

df
A

= Af
Qem*? R 1
© (GM)'3S-0S

&)

By introducing a temporary variable x = 1,2, 3, ... which is the
index number of the sequence of f values, we solve Eq. (5):

3

f(x) = (%x + c)

A
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Fig.1. Number of frequency steps required by a uniform sampling
scheme (upper, blue line) and the optimal sampling scheme (lower,
greem line). Vertical dashed lines represent the time span of some ex-
isting and expected ground- and space-based datasets.

Where C is the constant of integration, and by requiring that the
first value in the sequence (x = 1) to be f, its value is deter-
mined. This is a non-trivial result: we have shown that for transit
surveys the optimal frequency sampling is cubic in frequency,
and not linear.

Now we can count the number of frequency steps in the
above optimal sampling:

A)3
3/A

For comparison, uniform sampling suitable for long periods de-

(N

_ 1/3 1/3
Nfreq,optimal = ( m‘{lx - fmin +

tection has Af = M =A fz/ 3 which translates to number
of steps of:
Jmax = fmin
Nfreq, uniform = — mm (8)
A fz/x
min

For a numerical example, in the case of a 3 yr light curve of
a Sun-like star (which is typical of the available Kepler data)
this means that using uniform sampling is % = 39 times
slower than using optimal frequency sampling (see Fig. 1), while
not offering improved sensitivity relative to the optimal sampling
(actually, the other way around, see Sect. 3.2).

Finally, we comment that since different frequencies can be
evaluated independently the Optimal BLS code we make avail-
able also allows for parallel evaluation of BLS in the frequency
axis on different threads'. The contribution of multithreading
to Optimal BLS performance obviously depends on the used
computer system. However, we observed a less than linear per-
formance gain when scaling the thread count, and we guess
it is related to the fact that each one of the many frequencies
(>10° frequencies for a 3 yr data) takes only a very short time
to calculate so the communication overhead is significant. We
therefore recommend using multithreading only for the the man-
ual evaluation of one/few objects, which is required when more
attention is given to specific systems. For large scale processing
we recommend using the different threads to process different

' Multithreading can be controled by changing the code from parfor

to for and vice versa.

groups (which requires no communication, and also strength-
ens the case for not-too-large groups, where the concept of BLS
groups is explained in Sect. 4.4).

4. On the folded light curve

KZM showed that computing the BLS metric using the original
data points is computationally wasteful since virtually the same
result can be obtained using phase-binned data — as long as the
bin size is small enough so that at least one bin would fall com-
pletely in-transit, and not only partially so. We therefore describe
below the binless and binned BLS parameters, where the former
describes more accurately the possible true signals and the latter
is the corresponding parametrization of Optimal BLS.

4.1. Binless BLS

Duty cycle axis: in this section we assume that the data was
already folded at some test frequency fi.s;. We therefore expect
that a central transit would have a duty cycle of g(fiest, M, R).
However, as mentioned above, the observed transit can be both
longer or shorter. Importantly, extreme circumstances are re-
quired for the observed transit to be more than a few times longer
or shorter than the expected g(fiest, M, R). We can therefore pa-
rameterize factors 1/Qmin > 1 and Qnax > 1 such that we wish
to look at test duty cycles g in the range

1 < test
Omin Q(ﬁesls M, R)
and expect that both 1/Qnin and Qmax to have a value of a few:

probably no more than about 3, and with only extreme cases
reaching to 5 or higher values.

< Qmax (9)

The reference phase axis: the reference phase (the mid-transit
phase) can have any value between 0 and 1, and all points should
be checked in principle. However, there is little gain in setting
the reference phase resolution to much smaller than g( fies;, M, R)
itself, since the number of in-transit points will not change
significantly.

4.2. BLS with binning

Duty cycle axis: when one bins the data one loses some sen-
sitivity by not optimally using the data in the bins that contain
either the ingress or the egress. This effect can be minimized by
using a large number of small bins, but then the computational
benefit of binning erodes. We show how to properly choose the
bin size to find a good balance between the speed of computation
and sensitivity. The binless Qnin and Omax parameters above are
used to define their binned counterparts MinBin and NumBins
in the following way: since one needs at least one bin to be
completely in-transit the minimum bin size should be smaller
than the smallest expect transit g( fiest, M, R)/Omin by some fac-
tor MinBin. Larger expected transits up to Qmax would be fit-
ted using an integer number of this minimum-sized bin given by
NumBins. Mathematically this means that

CI(ftest’ M» R)/Qmin .
MinBin

smallest bin size =

(10)

MinBin should be larger than 2 to be sensitive to transits
q(fiests M, R)/Omin long regardless of the true transit phase, and
should have a value of a few (i.e., not a large number) to reduce
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the computational load. To avoid confusion, we stress that Qpin
and Qnax describe the underlying transit signals that we want to
search for, while MinBin and NumBins describe the search grid.

Longer transits will be searched using groups of bins, or a
bin width of an integer multiple of this smallest bin size. The
longest expected transit would have a duration that is Qi - Omax
times the shortest expected transit, so the largest number of bins
to be searched is

NumBins = Qmin : Qmax' (1 1)

The reference phase axis: using such a binning scheme would
allow signals to be readily detected even if their reference time is
shifted with respect to the used bins grid, since there will always
be at least one bin which is completely in-transit. One therefore
still has to check all possible reference phases, but now at a re-
duced resolution of the bins, which is automatically not much
smaller than g( fiest, M, R).

4.3. The computational load

The configurations that need to be checked are all NumBins pos-
sible widths, starting from all (smallest bin size)~! possible ref-
erence phases. Importantly, when optimally binning, the com-
putational load of the individual test frequencies also depends
on ¢( fiest, M, R), meaning that again the choice of a constant bin
size incurs penalties. Specifically, the number of configurations
to check by using optimal binning is:

MinBin - Qmin
q(fiests M, R)

A uniform binning scheme suitable for lone-periods detection
would have to scan a different number of configurations:
MinBin - Qmin
Q(f min» M, R)
Note that by definition of this scheme as uniform it does not
have dependency on fi.. The total computational load is just

the integration of the number of configurations that need to be
checked over all frequencies:

NumBins MinBin Qin -1/3 ~1/3
A%S OS 3~ Saad’) (A4
NumBins MinBin Qmin  finax — fimin
A2S OS 3
The total speedup of using optimal sampling and binning is
therefore:

Neonf..optimal (ftest) = NumBins - (12)

Nconfl,uniform (ﬁesl) = NumBins -

(13)

N, conf.,optimal =

5)

N, conf.,uniform =

N conf.,uniform f max — f min
speedup = = :

o - 3 (- ~
Nconf‘,optlmal 3_}‘::{“ (fmiln/3 - mz}f)

Which for a 3 yr dataset is a very significant speedup factor
of 337. For a 8yr dataset the speedup factor is even higher
at >880.

(16)

4.4. Phase folding

Apart from discussing the BLS calculation on the folded light
curve we note that the phase-folding step itself is computation-
ally intensive. When applied to simulated continuous 3 yr long
Kepler-like dataset, our optimized implementation spent ~2/3 of
the time phase-folding the data. Since for the vast majority of
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Timing ratio: groups of 1, 10 and 100 stars
(blue, green and red) and prediction (black)

Speedup factor (Uniform/Optimal)

Span [d]

Fig.2. Speedup factor of Optimal BLS relative to the unoptimized
BLS vs. the span of the simulated dataset (10, 20, 40, 80, 160 and 320
days). The different lines are the ratio of run times measured for dif-
ferent runs, each one for a different group size (1, 10 and 100 stars per
group, in blue circles, green squares and red triangles respectively). The
solid black line is the predicted speedup factor from Eq. (16) and is not
a fit. See text for further discussion.

targets in a transit survey there is near-perfect overlap in time
stamps (every image of a given field is common to nearly all
its targets), these are mostly redundant calculations. Importantly,
these redundant calculation will significantly dilute the benefits
of Optimal BLS and cause the actual run-time to be longer than
suggested by Eq. (16) since phase-folding of the data is sped up
only by the factor given by dividing Eq. (8) by Eq. (7).

We therefore allowed for parallel execution of all the BLS
calculation steps on multiple stars — so multiple stars are evalu-
ated at each test frequency — and the phase folding is done once
for each such group. From practical standpoint, such a group
should typically contain several tens of stars (maybe up to a hun-
dred or so) which virtually nullifies the relative time penalty for
phase folding, but without incurring a memory penalty by in-
cluding too large groups. Avoiding too large groups is advisable
also since one may not always find enough stars with similar-
enough masses and radii (which affect the frequency sampling
and phase binning schemes).

When comparing the actual time it takes to calculate BLS on
one group using our original and optimized versions, one would
expect that due to the above effects the observed speedup factor
will be lower than that predicted by Eq. (16) for “groups” of one
light curve. On the other hand, the observed speedup factor will
approach Eq. (16) for large-enough groups since for them the
relative time spent on phase-folding was reduced. This expecta-
tion, as well as the speedup scaling with data span (which is the
main result of this work), were observed in actual calculations
spanning a factor >30 in data spans and a factor of 100 in group
sizes (Fig. 2), validating the above analysis.

5. Choosing the best-fitting frequency
5.1. Normalization

Obviously, the best-fitting frequency is the one with the highest
significance above the background of other tested frequencies.
We now consider how to choose this best-fitting frequency, and
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Fig. 3. Panel a) optimal BLS spectrum of Kepler’s KOI 1574 (blue) and its BLSema (red) after removing planet candidate KOI 1574.01 using
all available data through Quarter 13. Panel b) same, after removing BLS,¢,q. Panels ¢), d) two zoomed-in regions with significant local peaks.
Optimal frequency sampling is evident by the fact that each peak is sampled with similar number of samples despite the large difference in width.

determine its significance. The first question appears to be trivial
as one may simply answer that it would be the frequency with the
corresponding highest numerical value of the above BLS run. A
first-order answer to the second question was given already by
KZM: they defined the signal detection efficiency (SDE) met-
ric by first subtracting the mean of the BLS values and than
normalizing to the scatter of the resultant data. This made the
SDE naturally scaled: an SDE value of X means that the this par-
ticular period is more significant by Xo- than the bulk of checked
orbital frequencies.

However, the BLS spectrum of real targets has two important
structures that make these choices sub-optimal: (1) there is a ris-
ing trend of the BLS values towards lower frequencies, i.e.: the
local average of the periodogramrises; (2) there is a rising scatter
towards lower frequencies, i.e.: the local scatter around the lo-
cal average of periodogram increases towards lower frequencies.
These two frequency dependencies are expected: as datasets get
longer the tested orbital frequencies get lower and so the ex-
pected duty cycle at each of these test frequencies g(fiest, M, R)
gets smaller. This means that a progressively smaller number of
points are actually required to be in-transit, and so the probabil-
ity that the mean value of smaller groups of random points will
be different from the global mean will increase, driving both the
mean value and the scatter of the raw BLS spectrum up. Also, the
sensitivity to a small number of anomalies or ill-corrected dis-
continuities will be significantly increased as test frequencies de-
crease as there will be less data points “in-transit” to average-out
such instances. All the above will result in an accelerating rate
of changes in the “background” BLS spectrum towards lower
frequencies.

In order to solve these problems we slightly generalize the
way SDE is calculated:

— instead of removing the mean value, we remove the median-
filtered periodogram. We note that due to the optimal sam-
pling of the frequency axis, peaks at all frequencies now
include a similar number of points, so by choosing a me-
dian filter with window size much larger (>10 times) than
the oversampling parameter OS one ensures the peaks of
interest are not filtered or attenuated. We label this curve
as BLSema(f);

— after removing BLSng We wish to evaluate the local scatter
of the data. For that we simply evaluate abs(diff(BLS)) —
the absolute value of the point-to-point difference of the

periodogram. We then median-smooth that data similarly to
the way it was done above, to obtain the local scatter curve —
and we label this as curve as BLScatter(f);

— our genaralized SDE is now: SDE(f) = %{W-

Now the SDE is normalized to better reflect the true signifi-
cance of a given peak over its local background, even if one
chooses a different technique of estimating the local BLS trend
and BLS scatter. Some of these effects can be see in Fig. 3: this
is the raw Optimal BLS spectrum of a typical target (Kepler’s
KIC 10028792, or KOI 1574) spanning 1141 d, after SARS de-
correlation (Ofir et al. 2010) and removal of its known giant
planet candidate (KOI 1574.01, Batalha et al. 2012). It is easy
to see that:

— there is a sharp rise of BLS towards low frequencies: the BLS
trend is near-constant above 1072 d~!, or on more than 99%
of the frequency range, and practically all the BLS trend
variability is below that threshold;

— the local scatter is also increasing towards lower frequen-
cies — from a value of about 1.2 to a value of 3 and more in
this particular case. This is best seen by looking at the local
scatter of the BLS trend curve;

— the highest peak (at f = 2.615 x 1073 d™') is the first har-
monic of of the 191d planet candidate reported by Ofir &
Dreizler (2013). Notably, the width of the peak is a few
times 107® d=!' (panel c). This width can be compared to
another peak (panel d) at P ~ 5.83 d (f ~ 0.171d7hH
which has a width of ~10~* d~!, or several tens of times
wider. With SDE > 32 this additional peak is not noise: it
(and the adjacent peak at f ~ 0.111 too) correspond to two
new candidate that were not detected by the Kepler pipeline”
and are now reported in (Ofir et al., in prep.), despite their
raw BLS score being much lower than the corresponding
low-frequency background;

— apart from the general trend, there are several additional
rather sharp breaks in the BLS spectrum (especially visi-
ble on the trend curve). Due to these jumps the BLS trend
curve cannot be well-modeled by a simple function like a
polynomial, and a numerical function like a median filter
(but not limited to it) may perform better.

2 At the time this paper was submitted.
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Table 1. Parameter definition and source of value.

Parameter name  Meaning

Value choser by

M [kg] target star mass external data (if available)
R [m] target star radius external data (if available)
S [s] span of data from the light curve
fls™1 test frequency Eq. (6)

Snin [s71] lowest searched frequency 2/S or 3/S

Snax [571] highest searched frequency Eq. (3)

oS frequency oversampling

order of a few (3-5)
order of a few (3-5)
order of a few (3-5)
order of a few (3-5)
Eq. (11)

Omin shortest expected transit relative to g
Omax longest expected transit relative to g
MinBin smallest used bin size relative to Quin
NumBins maximum number of smallest bins
10° £ - E
The
107 5
107 E
o
= _3
o 10 EEl
<
107t E
107°L B
107k E

max(SDE)

Fig. 4. The (absolute value) fractional difference between injected and
detected period, vs. SDE for 1000 simulated signals in 100 d long light
curves. The vertical separation between good detections (lower points
cloud) and misses (upper points cloud) increases as the data span in-
creases, and here these are already well separated. Importantly, there is
not a single missed signal with SDE > 15.

The last remaining issue is to determine the threshold value
above which candidate signals should be considered as probable
real detections.

5.2. Significance threshold

We simulated 1000 light curves, all spanning 100 d and con-
taining transit signals of various periods, durations and depths
both above and below the detection threshold. The light curves
were rather benign in the sense that they included white noise
only, and no jumps or discontinuities were simulated. We then
compared the detected and simulated periods, and plotted the
absolute value of their fractional difference against the SDE (as
defined above) of that detected period (see Fig. 4). The sepa-
ration between good detection and misses is clear. Importantly,
all the misses also had low SDE, so the false alarm rate (a de-
tection when there is no signal) is very low for SDE > 15. We
conclude that detections of approximately this significance and
higher should be promoted to the next level of checks (which is
beyond the scope of this paper).
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6. Discussion

Kepler public archive® currently includes about
200000 stars monitored for about three years. The ground-
based SuperWASP survey public archive* is much larger,
holding almost 1.8 x 107 unique light curves and spanning
a longer time base (though not continuously as Kepler), and
there are many other publicly available datasets. For scale,
we note that the Kepler transiting planets search is performed
on the Pleiades — NASA’s most powerful supercomputer —
which runs at over one petaflop. These resources are hardly
commonly available, so if one wishes to make an independent
search for transiting planets in the Kepler dataset (e.g. Ofir &
Dreizler 2013) one should try to use the available resources
efficiently. In this paper we show that by assuming Keplerian
dynamics one can simultaneously reduce the computation time
by two to (almost) three orders of magnitude and improve the
sensitivity for shallow transit signals.

We explained in detail the physical meaning of all parame-
ters to aid the understanding of the parameters used in the con-
text of the problem of transit detection. The range of freedom
for the algorithm to try fitting many box-shaped models to the
data is given in the form of a series of normalized parameters
that all have a suggested value of a few. This formulation al-
lows for a “hands-free” application of BLS — it will be applied
optimally fast and with optimal sensitivity to all light curves re-
gardless of their span. Furthermore, if one happens to have ex-
ternal information on the target stars (roughly estimated mass
and/or radius) the information can be incorporated to further tai-
lor the search for this particular target, including non-standard
configurations such as planets around white dwarfs (Agol 2011).
Importantly, the stellar parameters are not new — they were sim-
ply implicitly assumed when setting the search parameters on
the unoptimized BLS.

Importantly, significant speedup can be obtained by using
unmodified BLS code by simply sampling the frequency axis op-
timally (see Fig. 1) instead of uniformly. Further optimizations
can be attained by optimal binning (small changes to the code)
and common phase folding (larger modifications). In any case,
we make the Matlab/Octave source code for Optimal BLS freely
available. Another result of formulating all parameters relative
to Keplerian orbits is that well-understood trade-offs are now
possible. For example, one may be willing to lose some sensitiv-
ity to planets with long transits caused by high eccentricities —

3 http://archive.stsci.edu/kepler/
4 http://www.wasp.le.ac.uk/public/
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these are likely to be rejected later as suspected EBs — in order
to speed up calculations.

While the importance of optimizing the search for long-
period planets is almost obvious, we note that the improved sen-
sitivity to short-period signals recently became also important as
anew sub-population of very hot and very small planets — that do
not exist on the solar system — is now being detected. The first
members in this group were CoRoT-7b and Kepler-10b (Léger
et al. 2009; and Batalha et al. 2011, respectively), but now it also
includes a number of compact multi-planet systems that all have
periods of a few days or even less than a day, such as the KOI 961
system (Muirhead et al. 2012).
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