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ABSTRACT

Context. Based on the rapidly increasing all-sky data of Faraday rotation measures and polarised synchrotron radiation, the Milky
Way’s magnetic field can now be modelled with an unprecedented level of detail and complexity.
Aims. We aim to complement this phenomenological approach with a physically motivated, quantitative dynamo model – a model
that moreover allows for the evolution of the system as a whole, instead of just solving the induction equation for a fixed static disc.
Methods. Building on the framework of mean-field magnetohydrodynamics and extending it to the realm of a hybrid evolution, we
performed three-dimensional global simulations of the Galactic disc. To eliminate free parameters, closure coefficients embodying
the mean-field dynamo were calibrated against resolved local simulations of supernova-driven interstellar turbulence.
Results. The emerging dynamo solutions comprise a mixture of the dominant axisymmetric S0 mode with even parity, and a sub-
dominant A0 mode with odd parity. Notably, this superposition of modes creates a strong localised vertical field on one side of the
Galactic disc. Moreover, we found significant radial pitch angles that decay with radius, which can be explained by flaring of the disc.
In accordance with previous work, magnetic instabilities appear to be restricted to the calmer outer Galactic disc. Their main effect
is to create strong fields at large radii such that the radial scale length of the magnetic field increases from 4 kpc (for a mean-field
dynamo alone) to about 10 kpc in the hybrid models – the latter being in much better agreement with observations.
Conclusions. There remain aspects (e.g., spiral arms, X-shaped halo fields, fluctuating fields) that are not captured by the current
model and that will require further development towards a fully dynamical evolution. Nevertheless, we demonstrate that a hybrid
modelling of the Galactic dynamo is feasible and can serve as a foundation for future efforts.
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1. Introduction

The Galactic magnetic field (GMF) can now be modelled with
an ever increasing level of detail (see e.g. Brown et al. 2007;
Jaffe et al. 2010, 2011; Fauvet et al. 2011; Van Eck et al. 2011;
Jansson & Farrar 2012a,b; Mao et al. 2012). This becomes possi-
ble with the availability of all-sky data of Faraday rotation mea-
sures (Oppermann et al. 2012) and polarised synchrotron emis-
sion obtained by space missions such as WMAP or Planck (see
Fauvet et al. 2012). The typical approach uses χ2 minimisation
for fitting a large number of free parameters.

Theoretical models for the GMF are largely heuristic and are
guided by existing knowledge, derived from external galaxies,
for example. Modelling assumptions such as the winding an-
gle of the spiral arms and its variation with radius (and near re-
versals) remain under debate (see e.g. the discussion in Brown
2010). From a theoretician’s point of view, these models still
provide a convenient link to observations and can serve as a
benchmark for dynamo models in the framework of mean-field
magnetohydrodynamics (MHD; Beck et al. 1996; Brandenburg
et al. 2012b). Despite the success of the heuristic description,
a thorough understanding of the underlying field amplification
mechanism appears desirable.

Different flavours of mean-field models have been stud-
ied for typical galaxies, but under many simplifying assump-
tions. Concerning models specifically designed for the GMF, the

most prominent difference of the Milky Way magnetic field in
comparison with external galaxies is the reversal of the mean
magnetic field in the radial direction. Whereas observationally
now well-supported for our own Galaxy (see e.g. the discussion
in Kronberg & Newton-McGee 2011), such a reversal has never
yet been observed in other galaxies1. Mean-field models allow
such field reversals in principle, depending on the seeding of
the dynamo process (Moss & Sokoloff 2012). Alternative ex-
planations include oscillating solutions due to a vertical depen-
dence of differential rotation (Ferrière & Schmitt 2000) or, as
we propose here, a vertical undulation of the Galactic midplane
combined with an antisymmetric vertical parity of the disc field,
which leads to apparent reversals. Yet another possibility, inves-
tigated here for the first time, is the mode interface between the
dynamo-dominated inner region and the instability-dominated
outer region of the Galaxy.

Another peculiarity of the GMF is the relatively small pitch
angle (<∼10◦) compared to many other galaxies with similarly
strong differential rotation and pitch angles of up to ∼45◦ as
are observed in M94 and M33, for instance (Chyży & Buta
2008; Tabatabaei et al. 2008). This dominance of the azimuthal
field appears to agree better with mean-field models than with
the large pitch angles observed in external galaxies. The mag-
netic field of mean-field dynamos is typically a stationary

1 However, it should be mentioned that we can only expect to unam-
biguously detect field reversals in a limited number of nearby galaxies.
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axisymmetric quadrupole. But for some cases such as weak
differential rotation or cases where the halo is included in the
dynamo process, dipolar and/or oscillatory solutions may oc-
cur (Elstner et al. 1992; Brandenburg et al. 1992; Moss et al.
2010). The flaring of the Galactic disc was usually ignored in the
modelling, but has been considered in some recent publications
(Moss et al. 2013; Chamandy et al. 2013a,b). This is despite ob-
servations seem to favour a non-flaring disc, at least in HII – see
Lazio & Cordes (1998), and the discussion in Moss et al. (2013).
Our own model is guided by more recent observations (Kalberla
& Dedes 2008) of the HI distribution, which is indeed found to
be flared.

A notable exception to dynamo models with constant scale
height is the work by Poezd et al. (1993), who assumed a flared
gas distribution and applied mean-field models in the thin-disc
approximation to the Milky Way, relying on an observed ro-
tation curve, and estimates for disc height, turbulent velocity,
correlation length, and gas density. They derived radial profiles
of the final magnetic field for regular and chaotic seed fields
with α quenching due to magnetic helicity. The maximum field
strength of the regular field appeared at about 6 kpc. For a strong
enough seed field (0.001 to 0.1 μG) they found reversals.

While these models have provided us with a wealth of quali-
tative understanding of the expected mode structure that appears
in αΩ-type disc dynamos, they lack a rigorous foundation for the
actual amplitude and spatial distribution of the imposed mean-
field effects. Recently, a quantitative measurement of the trans-
port coefficients has become possible by applying the so-called
test-field (TF) method (Schrinner et al. 2005) to realistic local
simulations of interstellar turbulence (Gressel et al. 2008b). This
also includes the determination of quenching functions (Gressel
et al. 2013), which are required to evolve the mean-field models
into the saturated regime. Based on this previous work, we here
present a quantitative mean-field dynamo model. By doing so,
we aim to provide a comprehensive description of the GMF that
is supported by observable properties of the Galaxy.

An additional improvement over existing work is the com-
bined evolution of the induction and momentum equations.
While there exist global 3D MHD simulations of galactic
gaseous discs (e.g. Dziourkevitch et al. 2004; Hanasz et al. 2009;
Kulpa-Dybeł et al. 2011; Machida et al. 2013), these simulations
typically do not account for the effects caused by the vigorous
supernova turbulence on scales unresolved on the global mesh.
On the other hand, in classical mean-field models, the velocity
field is kept fixed at its initially prescribed state. In contrast to
this, including the momentum equation allows the underlying
disc model to evolve in time. At the same time, solving the full
MHD equations (subject to parametrised enhanced dissipation)
permits the emergence of magnetic instabilities such as the mag-
netorotational instability (MRI) and buoyancy instabilities.

Clearly, our model still lacks important aspects of the evo-
lution of the Galactic disc: it currently ignores a self-consistent
prescription, for example, of self-regulatory star formation (SF),
formation of spiral arms via self-gravity, emergence of a Galactic
wind driven by a cosmic-ray (CR) component, or the multi-
phase nature of the interstellar medium (ISM). Nevertheless, the
presented framework can be regarded as a first step towards less
“static” dynamo models.

2. Methods

As outlined above, we aim to derive a quantitative model for
the Galactic dynamo that is based, as directly as possible, on
observable quantities. Instead of solving the induction equation

with a given stationary velocity field, ū, we perform simulations
of the full mean-field MHD equations

∂t�̄ + ∇·(�̄ ū) = 0, (1)

∂t(�̄ ū) + ∇ ·
[
�̄ ū ū + p̄�I − B̄B̄

]
= −�̄∇Φ + ∇·τ, (2)

∂t B̄ − ∇ ×
[
ū× B̄ + Ē − ηt∇× B̄

]
= 0, (3)

where the viscous stress tensor is given by τ = �̄ νt [∇ū+ (∇ū)� −
2/3 (∇· ū) I] with kinematic viscosity νt, and p̄� denotes the to-
tal pressure p̄ + B̄2/2. As made explicit by writing vertical bars
over the constituent variables, Eqs. (1)−(3) are mean-field equa-
tions governing the evolution of large-scale quantities. We em-
phasise that the given set of equations still neglects a number
of additional “micro-physics” that will be important to consider
in the future (see Sect. 2.2.1 for a discussion). As justified by
the immense Reynolds numbers within the ISM, we further-
more ignored contributions to the dissipation coefficients stem-
ming from molecular effects. In this sense, ηt and νt represent
the turbulent diffusivity and kinematic viscosity, respectively.
Induction effects stemming from unresolved scales are included
in Eq. (3) in the form of a mean electromotive force, Ē, which
we specify in Sect. 2.2.2. We modified the publicly available
nirvana-iii code (Ziegler 2004, 2011) to include this additional
EMF and have verified our implementation against the bench-
mark described in Jouve et al. (2008).

For the simulations presented here, we chose a domain size
of r ∈ [1.5, 21.5] kpc, θ ∈ [0.415, 0.585] π, and φ ∈ [0, 2] π. Note
that, owing to the use of polar coordinates, the central region
of the disc is excluded for reasons of computational expedience.
We typically employed a resolution of 256×48×64 grid points in
the radial, latitudinal, and azimuthal directions, respectively. For
the static 2D simulations, we also checked convergence when in-
creasing the resolution to 512 × 96 grid points. For the fully dy-
namic 3D simulations we ran simulations up to 384 × 72 × 96.
The hydrodynamic boundary conditions (BCs) are of the stan-
dard outflow type; as an example, for the lower θ boundary this
implies setting ∂θvθ = 0 if vθ < 0, and enforcing vθ = 0 oth-
erwise. We furthermore solved for hydrostatic/dynamic balance
in the vertical and radial directions, respectively, and imposed
the equilibrium rotation profile at the inner radial boundary.
For the magnetic field we employed both pseudo-vacuum (i.e.,
B‖ = E⊥ = 0) and perfect-conductor (B⊥ = E‖ = 0) boundary
conditions. We moreover imposed the initial net-vertical field on
the boundaries, if present.

In the following, we begin our formulation by specifying a
complete disc model. We then prescribe turbulent closure coef-
ficients subsuming effects due to the turbulence driven by super-
novae (SNe).

2.1. Equilibrium-disc model

The initial density profile and rotation curve were constructed to
be in a stationary hydrodynamic equilibrium with a given grav-
itational potential, consisting of a standard Navarro, Frenk, &
White (NFW) dark-matter halo, a component due to a stellar disc
(Miyamoto & Nagai 1975), and a central bulge. We chose these
simplified prescriptions because they are commonly used for fit-
ting observational data, allowing a reasonable constraint of the
shape parameters. For simplicity, we ignored the contributions
from the central bar and the self-gravity of the gaseous disc.
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2.1.1. External gravity

The gravitational potential due to the Galactic dark-matter halo
can be approximated by (Navarro et al. 1997)

ΦDM = −G MH

RH
g(c)

ln (1 − cx)
x

, x ≡ r/RH, (4)

with r the spherical radius, g(c) the NFW shape function, and
where we have chosen a concentration parameter of c = 13,
and RH = 213 kpc, and MH = 1012 M� are the assumed virial
radius and the virial mass of the Milky Way dark-matter halo (cf.
Xue et al. 2008), respectively. For the stellar disc, we assumed a
parametrisation according to Miyamoto & Nagai (1975), with

Φ� =
G M�√

R2 +
[
a +
√

z2 + b2
]2
, (5)

where R ≡ r sin(θ) is now the cylindrical radius and z ≡ r cos(θ)
is the vertical coordinate. We adopted a total mass of Mdisc =
7 × 1010 M� and shape parameters a = 3.5 kpc and b = 0.18 kpc
in accordance with the potential used in our local-box simula-
tions situated at R = 8.5 kpc (cf. Gressel et al. 2008b). For a sim-
plified representation of the Galactic bulge (Flynn et al. 1996)
with an assumed mass Mbulge = 1.6×1010 M�, we again used ex-
pression (5), but now with a = 0 kpc and b = 0.42 kpc, resulting
in a spherically symmetric potential. Ignoring the self-gravity of
the gas, the effective gravitational potential we used is given by
Φ(R, z) ≡ ΦDM + Φdisc + Φbulge.

2.1.2. Disc model and rotation curve

Our hydrodynamic model is based on the flaring HI disc of the
Milky Way, which has recently been constrained observationally
by Kalberla & Dedes (2008). Improving their simple exponential
fit for the radial profile of the surface density, we propose a split
profile with a radial break, yielding2

�̄(R, z) = �̄(Rbr, 0) e−Φz/c2
s ×

⎧⎪⎪⎨⎪⎪⎩
exp(−R−Rbr

Rexp
) for R < Rbr(

R
Rbr

)p
for R ≥ Rbr

(6)

for the initial density distribution in hydrostatic equilibrium.
Here the vertical disc structure is given by exp(−Φz/c2

s ), that is,
by setting the thermal pressure in balance with the function

Φz(R, z) ≡ Φ(R, z) −Φ(R, z = 0), (7)

expressing the vertical potential difference (cf. Wang et al.
2010). Furthermore, the reference density �̄(Rbr, 0) is specified at
the break radius Rbr = 13 kpc, and we used Rexp = 4 kpc, which
is somewhat less steep than the 3.75 kpc proposed by Kalberla &
Dedes. For our fiducial model, we chose an exponent p = −6.5,
and we note that the power-law closely reproduces the upward
curvature seen in Figs. 3−6 of Kalberla & Dedes (2008), which
cannot be matched by a single exponential. The disc surface den-
sity of our model is shown in Fig. 1, where we also plot the
flaring scale height, h(R), of the disc. The flaring of the disc is
controlled by prescribing a radial temperature profile such that

c2
s (R, z) = c2

s0

(
R
R0

)q

(8)

2 For reasons of compact notation we here use various coordinate sys-
tems. All simulations were performed in a spherical-polar mesh (r,θ,φ).

Fig. 1. Midplane rotation curve (dotted line = 220 km s−1) and disc sur-
face density. The inset shows the flaring scale-height of the HI gas
disc. Dashed lines indicate observational approximations suggested by
Kalberla & Dedes (2008).

is a power-law function of R. To be more specific, a value q =
−1 would produce a disc with constant opening angle, whereas
q � 0 would lead to a globally isothermal, flaring disc. Limited
by numerical feasibility, we here chose q = −0.5 and h/R = 0.15
(at R0 = 10 kpc), which leads to a more inflated disc (see inset
Fig. 1), but still provides a reasonable fit to the observed h(R) –
also cf. Fig. 7 in Kalberla & Dedes (2008). A discussion of the
effect of a radially non-uniform scale height on the dynamo can
be found in Sect. VII.6 of Ruzmaikin et al. (1988).

The functional form of (6) is not differentiable at Rbr, which
implies a slight jump in the azimuthal velocity, which we derive
as

v̄2φ(R, z) =

(
∂ ln �̄
∂ ln R

∣∣∣∣∣
z=0
+ q

)
c2

s + R
∂Φ

∂R

∣∣∣∣∣
z=0
+ qΦz(R, z). (9)

For q � 0, the last term will lead to a vertical variation of the ro-
tation profile. Because the prescribed gravitational potential has
been designed as a fit to the Galactic rotation curve, it suffices to
say that Eq. (9) reproduces the classical Brandt-type curve with
a plateau at v̄φ � 220 km s−1, as also shown in Fig. 1, where we
plot the rotation curve in the disc midplane. This completes the
description of our hydrodynamic disc model. We verified that
the inviscid model can be evolved stably for times exceeding the
age of the universe. When including turbulent viscosity, the disc
evolves viscously on a secular time scale.

2.2. Turbulent closure parameters

Using a mean-field approach, we aimed to simulate the com-
mon evolution of the regular magnetic field and the large-scale
flow of the Galactic gas disc. Conceptually, this implies that
we solve the full MHD equations subject to turbulent trans-
port coefficients, that is, we prescribe a turbulent diffusivity
in the induction equation along with a corresponding turbu-
lent viscosity in the momentum equation. These turbulent dis-
sipation coefficients, as well as the prescribed α effect (see
Sect. 2.2.2), were derived from a series of resolved direct nu-
merical simulations (DNS). The basic setup, which assumes a
local-box geometry and uses realistic driving of interstellar tur-
bulence via injection of localised supernova explosions, is de-
scribed in detail in Gressel (2009). Scaling relations for mean-
field effects were derived from a set of models with box size
0.8 kpc × 0.8 kpc × ±2.1 kpc, and more accurate vertical shapes
were obtained using a larger 1.6 kpc×1.6 kpc×±6.4 kpc domain
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(Gressel et al. 2011). The requirement to resolve individual ex-
plosions demands grid resolutions below 10 pc, which is met in
the box simulations, but will remain unaffordable in global sim-
ulations for some time.

Since in the DNS we only measure ηt, but not νt, we had
to assume a turbulent magnetic Prandtl number, Pmt = νt/ηt of
unity. This assumption is backed by recent numerical investiga-
tions that found very little deviation from this value (Guan &
Gammie 2009; Fromang & Stone 2009). Note that unlike for a
classical α viscosity, we prescribed νt(R, z) directly as a function
of space, that is, independent of the gas pressure. This is because
(for consistency with the mean induction equation) we assumed
the turbulent velocity field to be given a priori as a consequence
of the underlying SNe distribution. To avoid restrictive time-step
constraints arising from high values of the diffusion coefficients,
we implemented the super-time-stepping scheme, introduced by
Alexiades, Amiez, & Gremaud (1996), for the viscous and dif-
fusive updates.

2.2.1. Neglected effects

Turbulent viscosity is by no means the only mean-field effect in
the momentum equation but, in fact, is a crude oversimplifica-
tion. For reasons of tractability, we had to ignore more involved
contributions, however, such as the turbulent kinetic pressure or
the turbulent contribution to the Lorentz force in our current con-
siderations. A rudimentary attempt to allow the former effect to
self-consistently launch a Galactic wind (driven by the gradient
in the turbulence intensity) led to unacceptable mass-loss rates.
This is because in our mean-field model, the single-phase den-
sity field cannot properly capture the multi-phase nature of the
ISM: ultimately, what we described as a wind really is a fountain
flow, that is, tenuous gas being blown out of the Galaxy, while
high-density clumps raining down compensate the overall mass
balance. Ultimately, it will be of great interest to study related
effects. We speculate that the suppression of the turbulent mag-
netic pressure by mean fields (Kleeorin et al. 1989; Brandenburg
et al. 2012a) may also be of importance in a Galactic context,
potentially leading to an increased heterogeneity of the observed
field (but see also Fletcher et al. 2009).

To be able to use periodic boundary conditions, an impor-
tant simplification of our local box simulations was to ignore
any large-scale radial structure, for example, in the gas density
or supernova rate. Even though we were able to vary quantities
like the midplane density, rotation rate, or shearing rate for each
of the individual runs (i.e. to adjust to the situation at different
locations within the Galaxy), we could not obtain contributions
in the dynamo tensor due to radial gradients.

2.2.2. Dynamo tensor

We here focus on a well-studied effect appearing in the mean
induction equation, that is, the turbulent electromotive force
Ē = u′×B′, where primes denote fluctuating quantities. We im-
plemented this term by means of the classic tensor prescription

Ēi = αi j B̄ j i, j ∈ [
r, θ, φ

]
, (10)

that is, with an α tensor locally relating the mean EMF to the
mean magnetic field. We argue that the good quantitative agree-
ment between DNS and 1D mean-field simulations (Gressel
2009) warrants the neglect of non-local (Brandenburg et al.
2008) as well as non-instantaneous (Hubbard & Brandenburg
2009) contributions to the closure. As laid out below, αi j is

Table 1. Scaling exponents for the dynamo α tensor, the turbulent dif-
fusivity and viscosity, and vertical fountain flow, vz(ζ).

Amplitude σ/σ0 Ω/Ω0 �̄/�̄0

αφφ 2 km s−1 0.4 0.5 −0.1
αφr ,−αrφ −12.5 km s−1 0.45 −0.2 0.3
vz 8 km s−1 0.4 – –
ηt, νt 2 kpc km s−1 0.4 0.25 a 0.4

Notes. Amplitudes refer to shape functions α̂(ζ), γ̂(ζ), and η̂(ζ), which
we matched to the TF profiles shown in Fig. 2 (cf. also Gressel et al.
2011). (a) Revised exponent from new analysis.

parametrised according to coefficients measured within a com-
prehensive set of DNS of SN-driven ISM turbulence by means
of the TF method (Schrinner et al. 2005, 2007).

Because of our flaring disc model and for reasons of simplic-
ity, we identified the x, y, and z direction in these local Cartesian
box simulations (Gressel et al. 2008a, 2009) with spherical po-
lar coordinates r, φ (azimuth), and θ (co-latitude), respectively.
To reflect the geometry of the disc, shape functions were defined
with respect to a flaring coordinate ζ ≡ z/h(r) such as to follow
the local scale-height of the HI gas disc. At a spherical radius, r,
the latitudinal variation was approximated by the profiles shown
in Fig. 2. In accordance with our box model, the aspect ratio,
h(R)/R, for the vertical profiles of the dynamo tensor is about a
factor of two larger than that for the HI disc shown in the inset
of Fig. 2, resulting in a scale height of ∼1 kpc at R � 10 kpc.

The tensor components αrr � αφφ � 5αθθ, and αrφ � −αφr ,
which we directly measured in the DNS, were parametrised ac-
cording to their inferred dependence on the supernova rateσ/σ0,
rotation rateΩ/Ω0, and disc midplane density �̄/�̄0. To addition-
ally reduce the number of free parameters, we identified σ/σ0
with the star formation rate and linked it to the local surface
density by means of a Kennicutt-Schmidt law

σ/σ0 = (�̄/�̄0)1.4 (11)

(Kennicutt 1998). Scaling exponents are listed for reference in
Table 1. For reasons of completeness, we include the radial and
vertical diagonal elements of the tensor, even though we found
these terms to be negligible compared to the αΩ mechanism
driven via3 αφφ.

Another important result from our local simulations was the
existence of a vertical fountain flow, vz, which was discerned to
balance the effect of the turbulent pumping. The vertical profile
vz(ζ) we adopted in our mean-field prescription consists of two
parts: a contribution linear in ζ, and a characteristic modulation
(cf. Fig. 2 in Gressel et al. 2009), that roughly coincides with
αrφ(ζ). It is important to note that the mean flow vz – for rea-
sons discussed in Sect. 2.2.1 – only contributes to the induction
equation, but is not included in the momentum equation.

2.2.3. Quenching functions

Avoiding a more complex description relating to the (approxi-
mate) conservation of magnetic helicity (see e.g. discussion in
Moss & Sokoloff 2011), we here resorted to a simple algebraic
expression for the α quenching as justified by our recent analysis
(Gressel et al. 2013). Unlike in many previous studies, we ex-
plicitly included a quenching for the ηt (and νt) coefficient (see

3 Also note that Gressel et al. (2008a) found the α2 dynamo to be only
marginally excited for the coefficients measured in DNS.
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Fig. 2. Vertical profiles of TF coefficients αφφ (left), γz (centre), and ηt (right panel) measured from DNS (light colours); shaded areas indicate 1σ
fluctuations. Black curves show model profiles α̂(ζ), γ̂(ζ), and η̂(ζ) used for the simulation with (dashed line) and without (solid line) a halo
dynamo.

also Yousef et al. 2003). Adopting an isotropic quenching for the
α tensor, we used

αi j (B̄) =
αi j (B̄=0)

1 + qα β2
, νt(B̄) = ηt(B̄) =

ηt(B̄=0)
1 + qη β

(12)

with β ≡ |B̄|/Beq, and coefficients qα = 10, and qη = 5 approxi-
mating the results from direct simulations (Gressel et al. 2013).
Because of the close correspondence of αrφ and the characteris-
tic modulation seen in the mean flow (cf. Fig. 3b in Gressel et al.
2013), we chose to apply quenching only to the modulation in v̄z
and left the underlying linear profile unquenched.

For consistency, we moreover computed the equipartition
field strength B2

eq ≡ μ0�̄ v
2
rms from a turbulent velocity profile

vrms(ζ) that was itself derived from the (unquenched) ηt(ζ) pro-
file, assuming the classical relation ηt =

1
3τc v

2
rms, and where we

have used a constant τc = 3.5 Myr in consistence with DNS.
It is essential that the α effect and the turbulent diffusion

are quenched differently. This becomes obvious by evaluating
Cα ≡ αφφhη−1

t , and CΩ = sΩh2η−1
t (with s ≡ d lnΩ/d lnr).

Curiously, the resulting dynamo number D ≡ CαCΩ is asymptot-
ically independent of |B|. In practice, however, we have qα > qη,
which implies that α is quenched earlier. Estimating tan(p) �
(Cα/CΩ)1/2 ∝ |B|−1, we see that a quenched αΩ dynamo is dom-
inated by differential rotation, leading to a vanishing radial pitch
angle. The loss of pitch angle in the saturated state can be cir-
cumvented if the dynamo is saturated at high Cα – for instance,
via the vertical wind (see Elstner et al. 2009).

3. Results

In the following, we present results from a comprehensive suite
of simulations. After we have attempted to eliminate as many
free parameters from our model as possible, there remain only
two major aspects that require testing: (i) the disc mass, which
represents the central input parameter governing the SF rate; and
(ii) the initial topology of the magnetic field. Moreover, we aim
to study non-axisymmetric modes, and whether the inclusion
of the Navier-Stokes (NS) equation has an effect on the evolu-
tion of the Galaxy as a whole. In particular, we are interested
in whether the MRI or convective instabilities can emerge on
scales long enough not to be immediately affected by turbulent
diffusion.

A compilation of the main results can be found in Table 2,
where we also list the input parameters of our setup. Models

Fig. 3. Saturated regular magnetic field for model X1s-0.5; colour-
coded toroidal field, B̄φ, overlaid vectors show the poloidal field. Short
line segments indicate the latitudinal positions of slices in Fig. 5.

labelled “s” are what we refer to as static, which means that the
density and velocity field were kept fixed during the evolution
of the model. This is commonly assumed for the kinematic dy-
namo problem, albeit one of course includes a back-reaction of
the field to obtain saturation of the dynamo. For some of the
3D models, we furthermore evolved the full MHD equations
including the density and velocity field; these simulations are
labelled “d” for dynamic. For our fiducial axisymmetric (“X”)
model X1s, we varied the disc mass in steps of 0.5 times the
fiducial mass of 1.14 × 1010 M� (see first four rows of Table 2).
With models X2s-halo and X3s-VF, we studied the influence of
a halo dynamo and vertical-field seeding, respectively. The fidu-
cial non-axisymmetric (“N”) models N1s and N1d probed the
effects of various seed-field geometries. With the exception of
the two models N2d-noD (without any α effect, but including
turbulent diffusion) and N2d-MRI (without any prescribed tur-
bulence effects), all simulations include mean-field (MF) effects
as described in Sect. 2.2 above. Generally, the MF dynamo re-
mains dominant for these models, but subtle differences arise,
for example, due to the long-term evolution of the density distri-
bution, which indirectly enters the MF prescription.

To be as unrestrictive as possible on the emerging dynamo
mode, we generally applied a white-noise (WN) initial field, re-
sulting in approximately equal amounts of energy in all permis-
sive modes. Moreover, for the 2D models, we alternatively ap-
plied a net-vertical field (VF), which might be hypothesised as
a plausible seed topology. Finally, in the 3D case, it furthermore
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Table 2. Simulation parameters and results.

Model Dim MF NS Halo Mgas Seed Parity pin pout τe |Bsat| Comments
[1010 M�] [ ◦ ] [ ◦ ] [Gyr] [μG]

X1s-0.5 2D • ◦ ◦ 0.57 WN S0/A0 −11.6 −4.7 0.374 1.44 see Fig. 3
X1s 2D • ◦ ◦ 1.14 WN S0a −11.0 −4.6 0.503 3.75 see Figs. 4, 5
X1s-1.5 2D • ◦ ◦ 1.70 WN S0a −10.8 −4.6 0.547 6.34
X1s-2.0 2D • ◦ ◦ 2.27 WN S0 −10.7 −4.3 0.593 9.07

X2s-halo 2D • ◦ • 1.14 WN S0a −11.7 −4.8 0.358 4.05
X3s-VF 2D • ◦ ◦ 1.14 VF A0→S0 −11.0 −4.5 0.539 3.75

N1s/d-HF
〈 3D • ◦ ◦ 1.14

HF
S0 −11.0 −3.2 – 3.75

3D • • ◦ 1.14 S0 −9.9 −2.6 – 2.52

N1s/d-VF
〈 3D • ◦ ◦ 1.14

VF, B̄φ
S0 −11.0 −6.1 0.409 3.75

3D • • ◦ 1.14 S0 −9.9 −2.7 0.407 2.65 see Fig. 12

N2d-noD 3D ◦b • ◦ 1.14 HF+VF A0 −1.7 −1.6 – 0.82c see Fig. 7
N2d-MRI 3D ◦ • ◦ 1.14 HF+VF A0 −0.4 −0.5 – 4.25 see Fig. 7
N3d-VF 3D • • ◦ 1.14 VF S0/A0 −10.2 −3.4 – 3.46 see Figs. 7, 9, 10

Notes. (a) Subdominant A0 outside R � 10 kpc; (b) includes ηt, and νt; (c) obtained outside R � 15 kpc. All 2D runs are axisymmetric; mean-field
(MF) effects include those described in Sect. 2.2; runs including “NS” evolve the Navier-Stokes equation. The “halo” dynamo is shown as a
dashed line in Fig. 2. The column labelled Mgas gives the normalisation for the disc mass. For seed fields we used white noise (WN) with 0.15 nG
rms amplitude, net-vertical field (VF) of 0.1 nG, or net-horizontal field (HF) of 0.01 μG. Pitch angles are given for the inner disc (i.e., where the
magnetic field strength peaks) and for the outer disc (average for R > 10 kpc) separately. Growth rates are for the magnetic field |B| during an
interval for which exponential growth can be identified.

becomes possible to test a configuration with an initially hori-
zontal field (HF); even though this topology is generally found
to be impractical because of the winding-up effect of the differ-
ential rotation (Moss & Sokoloff 2012).

3.1. Vertical parity and growth rates

In agreement with many previous studies (see e.g. Beck et al.
1996), we found the axisymmetric (i.e., m = 0, hence “0”) mode
with symmetric vertical parity (“S”) to be the fastest-growing
dynamo mode (see column 8 in Table 2). Notably, in the low-
density part of the disc (beyond R � 10 kpc), a weak anti-
symmetric (“A”) mode emerges. This is illustrated in Fig. 3,
which shows the saturated magnetic field for model X1s-0.5
(with lower disc mass), where the A0 mode is seen to be most
pronounced. Possible reasons for this may be a combination of
pumping and wind, as well as the disc flaring. In most models,
the A0 contribution remains subdominant, but appears during
a transitional phase in the case of a vertical-field initial con-
dition (e.g. model X3s-VF). Note that the mixed S0+A0 leads
to a radially confined, strong vertical field on only one side
of the Galactic disc. This is consistent with radio observations
of extragalactic Faraday rotation at high Galactic latitude by
Mao et al. (2010), who found a vertical field consistent with
(0.00±0.02) μG towards the north, and (0.31±0.03) μG towards
the south Galactic pole, respectively.

Exponential growth times of the mean-field dynamo are pre-
sented in Col. 11 of Table 2. Generally, we found τe to be of the
order of half a Gyr, which is sufficient to explain the present-day
field strength of the Galaxy based on reasonable assumptions on
the initial seed field. Neronov & Vovk (2010) estimated from
Fermi observations a lower bound of 3 × 10−16 G for the inter-
galactic field on Mpc scales. A possible explanation of the gen-
eration process was recently given by Schlickeiser (2012). The
formation of the protogalaxy leads to a further amplification to
3×10−12 G (Lesch & Chiba 1995), such that after ∼7 Gyr the dy-
namo has reached its equipartition field strength of several μG.

Prior to the epoch of star formation, the MRI may grow unhin-
dered by turbulence from SNe and hence serve as a seed-field
mechanism, as suggested by Kitchatinov & Rüdiger (2004).

For the fiducial model X1s, we found a trend to faster growth
for lighter-disc models. This is presumably due to the reduced
turbulent diffusivity at lower SF activity. For lighter disc models
we also expect the wind to dominate the vertical pumping, result-
ing in weaker saturated fields and larger magnetic pitch angles.
The fastest growth of τe = 0.358 Gyr was found in model X2s-
halo, including a non-zero α effect at high Galactic latitude (cf.
dashed line in Fig. 2). Compared with the standard model X1s,
which is seeded from white noise, model X3s-VF with a vertical-
field initial condition shows a slightly slower growth rate of
τe = 0.539, which can be identified with the A0 eigenmode.
Faster growth can be obtained if one starts with the S0 mode
directly – cf. model N1s-VF, where a combined vertical and az-
imuthal field is applied.

3.2. Radial structure

The amount of quantitative information that can be confidently
extracted from radio observations of the Milky Way or nearby
galaxies is very limited. In particular, reliable positional infor-
mation is restricted to considering the radial variation of az-
imuthally and vertically averaged quantities. In the interest of
direct quantitative comparison with observations, we here dis-
cuss the magnetic field strength and its inclination with respect
to the toroidal direction.

3.2.1. Magnetic pitch angle

One major observable derived from radio polarisation maps is
the radial pitch angle, p ≡ tan−1(B̄R/B̄φ) of the mean magnetic
field. Because values of |p| ∼>10◦ are hard to explain in the pres-
ence of differential rotation alone, large pitch angles are gener-
ally interpreted as the hallmark of an α-effect dynamo. Our mod-
els generally show moderately large pitch angles close to −10◦
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Fig. 4. Radial pitch angle p ≡ tan−1(B̄R/B̄φ) for model X1s at the end of
the simulation. The observed radial trend is well approximated by the
crude estimate p � l0 h−1 (Fletcher 2010), with l0 = 120 pc.

(see Col. 9 of Table 2) in the inner region of the Galactic disc,
that is, where the magnetic energy is highest. The models N1d-
HF/VF, including evolution of the disc, show somewhat reduced
pitch angles. This may be related to the long-term viscous evo-
lution of the radial gas density profile, which reduces the SF rate
that enters our dynamo prescription, and hence the strength of
the MF dynamo near the Galactic centre. It is interesting to note
that we did not see a significant change of pitch angle during the
simulation – implying a saturation at high Cα, most likely caused
by the action of the vertical fountain flow (cf. Elstner et al. 2009).

Fletcher (2010) pointed out the systematic variation of the
magnetic pitch angle with radius, which he ascribed to the flar-
ing of the disc. Similarly, Rae & Brown (2010) observed a
vanishingly small pitch angle for the outer Galaxy. In Fig. 4,
we plot the radial profile of the pitch angle (in the disc mid-
plane) for the fiducial model X1s. The large angles of the or-
der of −30◦ in the inner part should be ignored since the mean
field is significantly lower than the equipartition value there (cf.
Fig. 5), which makes them very hard to detect in polarised syn-
chrotron emission. Consistent with observations (see e.g. Fig. 4
in Fletcher 2010), the pitch angle in our simulations decreases
roughly like R−1. Crudely estimating p � l0 h−1, with a correla-
tion length, l0, of the turbulence, this behaviour can conveniently
be explained by the flaring of the gas disc (cf. Fig. 1). The good
match is somewhat deceiving because the allegedly more accu-
rate estimate

p � tan−1
√

CαC−1
Ω

(13)

in fact provides a much poorer description of the actual result.
Whereas Fig. 4 shows the pitch angle in the Galactic midplane,
the peculiar shape of the dynamo A0 mode in the outer Galaxy
(seen in Fig. 3) suggests that one should look at latitudinal slices
away from the midplane – and, in fact, the pitch angle of the A0
mode follows Eq. (13) more closely. Concluding this section, we
point out that the two models N2d-noD and N2d-MRI without
prescribed dynamo action produce vanishingly small pitch an-
gles. This may be because the initial magnetic field is compara-
tively weak and accordingly the unstable modes lie close to the
diffusive border of the unstable region. In this case, the unstable
mode is characterised by a dominant toroidal field (Kitchatinov
& Rüdiger 2004). The pitch angle is larger for model N3d-VF
with the stronger initial field of 0.1 μG, however.

Fig. 5. Saturated regular magnetic field for model X1s for various cuts
of constant co-latitude. The midplane field peaks at about 4 μG. Dashed
lines show exponentials with scale lengths of 3 and 4 kpc, respectively.

3.2.2. Saturated field strength

Most of the nearby spiral galaxies are believed to be observed
in the saturated state of the dynamo (Beck et al. 1996). With
increasingly detailed observations, it becomes possible to deter-
mine the radial profile of the field strength (see e.g. Beck 2007).
Based on this, one can then estimate the relative importance
of magnetic forces on the overall rotational balance within the
Galactic disc (see Sánchez-Salcedo & Santillán 2013). Because
we started from a quantitative disc model, we can hope to make
meaningful predictions about the radial distribution of the mag-
netic field. Accordingly, in Fig. 5 we present radial profiles of
the fiducial model X1s in the saturated state. As one can see
in Fig. 3 above, the dominant dynamo mode has a character-
istic V-shape, which makes it instructive to plot radial cuts at
various angles θ away from the midplane. The different curves
are within 0−15◦ below the midplane (in steps of δθ = 2.5◦)
and cuts farther away from the midplane are shown in increas-
ingly lighter colour. The positions of the cuts are also indicated
in Fig. 3 by short line segments. The profiles are steepest near
the midplane, and roughly follow exponential curves with scale
lengths between 3−4 kpc, as indicated by dashed lines in Fig. 5.
This scale appears to be partly inherited from the equipartition
profile, which is itself a consequence of the disc model and the
scaling relations entering via ηt(r, θ). Owing to the rather restric-
tive quenching factor of qα = 10, our dynamo solutions remain
well below equipartition strength (dark line), but peak values of
a few μG are obtained nevertheless (see Col. 12 in Table 2). The
final field strength shows substantial variation, illustrating the
dependence on the disc model. The highest absolute value (i.e.,
9 μG) of the mean field is found in the high disc-mass case –
with a trend to weaker fields for less-massive gas discs. This
trend also explains the lower saturated field strength of �2.5 μG
in model N1d-HF (and similarly N1d-VF) compared to �3.8 μG
in N1s-HF (and N1s-VF), which does not include the evolution
of the disc’s surface density.

3.3. Role of dynamical instabilities

One key aspect of the simulations presented in this paper is
the inclusion of the Navier-Stokes equations in the modelling,
which enabled us to capture dynamical instabilities occurring
on large length scales. It has been suggested by Sellwood
& Balbus (1999) that turbulence created via MRI may play
a role in the outer Galactic disc, that is, in the absence of
significant star-formation activity and the associated enhanced
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Fig. 6. Vertical-field Alfvén speed for the initial configuration of model
N3d-VF (with Bz = 0.1 μG), along with marginal stability lines ac-
cording to the diffusive limit (solid) and strong-field limit (dashed line),
represented by the left- and right-hand sides of Eq. (14), respectively.

diffusion. In view of this, it is interesting to study the hypotheti-
cal case of a Galactic disc without any star-formation activity,
for which one can perform simple MHD simulations without
any prescribed mean-field effects from unresolved scales (see
e.g. Dziourkevitch et al. 2004; Machida et al. 2013). Such sim-
ulations should be interpreted with care, however, since they ne-
glect the dominant source of energy input to the system, namely
that from SNe.

The occurrence of MRI – subject to pre-existing turbulence
from SNe – can easily be gauged from linear theory. According
to the local criterion derived in Appendix A of Kitchatinov &
Rüdiger (2004), who studied the linear stability of MRI in a
global cylindrical disc of semi-thickness H, instability is ob-
tained within a range

√
2 − s

s
ηt

H ∼< vA ∼<
√

2s HΩ, (14)

where vA ≡ |Bz| ρ−1/2 is with respect to the vertical field. For a
flat rotation curve with s = 1, this yields ηt H−1 < vA < 1.4HΩ,
implying that already for CΩ > 1, there exists a magnetic field
unstable to MRI. This is illustrated in Fig. 6, where we show the
marginal stability lines for our model N3d-VF with a moderately
strong initial field of 0.1 μG. For R∼< 8 kpc, the region of possi-
ble MRI activity is significantly restricted, while the outer disc
clearly shows the potential to develop the instability.

In the three panels of Fig. 7, we aim to illustrate the interplay
of prescribed small-scale effects with dynamical instabilities.
In the upper panel of that figure, we present model N2d-MRI,
where no dynamo-effects or turbulent diffusivity have been pre-
scribed and where dynamo activity is caused by magnetic insta-
bilities such as the MRI and convection. This case corresponds
to the MHD simulations of Machida et al. (2013). In contrast
to the static dynamo simulation discussed earlier (see Fig. 5), it
is worth mentioning that in this case one obtains a much flatter
radial dependence of the mean magnetic field strength, which
agrees better with observations (see e.g. Beck 2007, who inves-
tigated the external galaxy NGC 6946, however).

Because isolated MRI is a highly idealised scenario, we now
turn to the more realistic case where the MRI is affected by tur-
bulence resulting from SNe. In a general context, the effect of
Ohmic diffusion on growing MRI modes has been studied in the
framework of linear perturbation (Jin 1996), and based on this,
Gressel et al. (2008b) have argued that the turbulent diffusion
from SNe should be sufficient to damp the MRI at the solar ra-
dius (also cf. Fig. 6). Whether the simple picture of “enhanced”
diffusion is viable needs to be scrutinised. Simulations combin-
ing hydrodynamic forcing with the non-linear evolution of the

Fig. 7. Same as Fig. 5, but for different dynamical models. Top panel:
model N2d-MRI without prescribed MF effects; the radial scale length
of the magnetic field is �10 kpc. Middle panel: model N2d-noD without
α effect, but including turbulent diffusion (which suppresses the MRI
for R∼< 15 kpc). Bottom panel: model N3d with combined α effect and
MRI, at t = 3.9 Gyr, i.e., when the S0 mode dominates (cf. Fig. 9b).

MRI (Workman & Armitage 2008), produce a rather varied pic-
ture. However, for moderately strong small-scale forcing, the au-
thors indeed concluded that MRI may be suppressed by preexist-
ing turbulence. A similar conclusion was reached by Korpi et al.
(2010), who ran shearing-box simulations with finite Ohmic re-
sistivity and, alternatively, with small-scale forcing. The authors
demonstrated that, assuming a typical ηt(R), MRI turbulence can
be sustained inside the Galactic disc outside R � 14 kpc. This
finding turns out to be in excellent agreement with our model
N2d-noD, where we applied turbulent diffusion (and viscosity),
but disabled the mean-field dynamo. The resulting radial field
profiles are plotted in the middle panel of Fig. 7.

As an aside, we note that in MRI turbulence, the velocity
dispersion is typically found to be linked to the Alfvén speed
(Dziourkevitch et al. 2004). As can be seen in Fig. 7, out-
side �15 kpc the MRI indeed leads to super-equipartition field
strengths with respect to the turbulent kinetic energy input from
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Fig. 8. Alfvén velocity based on the azimuthal field, B̄φ, for model N3d-
VF at time t = 3.9 Gyr. Velocities are surprisingly uniform, reaching
moderate values of several tens of km s−1.

SNe4. Furthermore, in agreement with the profiles obtained for
NGC 6946 (Beck 2007), the radial scale length of the regular
field exceeds the scale length of the turbulence – this is unlikely
for the dynamo-only case (cf. Fig. 5).

Regarding the general field morphology (also see Sect. 3.4
below), we found that anti-symmetric parity of the emerg-
ing mean field prevails. This is despite linear theory predicts
quadrupolar-like (i.e., S0) parity (Kitchatinov & Rüdiger 2004)
for MRI – albeit for a non-flaring disc of constant thickness.
Because of the dominance of the A0 mode, the peak value of
approximately 1 μG is reached away from the disc midplane.
Returning to the importance of pre-existing turbulence, we em-
phasise that for model N2d-noD, turbulent diffusion dominates
in the inner disc (i.e., for R∼< 15 kpc); there the mean magnetic
field remains at the initial seed-field level. Away from the disc
midplane, where the prescribed turbulent diffusion is stronger,
the field is diffused-in from the MRI-active outer region.

Both of the two previously described scenarios only tell part
of the story. The models without any explicit mean-field effects
(upper panel of Fig. 7) and without an α effect (middle panel)
instead should be contrasted with the case of a combined evo-
lution of mean-field effects and dynamical instabilities on large
scales – this is shown in the lower panel of the same figure. In
the inner disc (R∼< 8 kpc), the S0 dynamo mode prevails, with
strong fields near the midplane. In the range 8 kpc∼<R∼< 10 kpc,
the A0 dynamo mode results in weak fields near z = 0, whereas
for R∼> 14 kpc the magnetic field is mostly caused by MRI ac-
tivity. Unlike in the case without prescribed dynamo effects, at
late times, that is, after t = 3.9 Gyr, the MRI now reaches in
to about R∼> 9 kpc – probably assisted by field-amplification via
the α-effect dynamo. Observationally, the resulting radial scale
length would most likely appear considerably larger than for a
pure dynamo field (cf. Fig. 5).

Returning to the question concerning effects of the reg-
ular magnetic field on the Galactic rotation curve (see
Sánchez-Salcedo & Santillán 2013), we point out that the rel-
ative importance of magnetic fields in the overall force bal-
ance can be roughly estimated by considering the strength of
the field with respect to the gas density. Accordingly, in Fig. 8,
we plot the azimuthal-field Alfvén velocity for the third case
discussed above. Most notably, vA is very uniform throughout
the outer Galactic disc. With values of several tens of km s−1,
the effect of the Lorentz force on the rotation curve can be pre-
dicted to remain low and within current observational uncertain-
ties. Near the magnetic reversal at R � 10 kpc, a minor deviation
of �+10 km s−1 is seen in the rotational velocity at intermediate

4 Note, however, that the corresponding line does not contain the tur-
bulent kinetic energy created via the MRI itself.

(a)

(b)

Fig. 9. Poloidal cuts through model N3d-VF, with colour-coded B̄φ and
vectors indicating the in-plane field. Panel a), at t = 2.7 Gyr, shows
the initial A0 mode and strong fields created by the combined action of
MRI and convection outside R � 10 kpc. In panel b), at t = 3.9 Gyr, the
S0 appears, and MRI is now somewhat weaker.

Galactic latitude. This potential correlation between a field re-
versal and a peak in the rotation curve may be a promising future
target for combined optical and radio-polarimetric observations.

3.4. Morphology of fully dynamical discs

The emergence of the MRI in our simulations is limited by vari-
ous factors. Weak seed fields, for example, imply that the plasma
parameter βP ≡ 2 p̄/B̄2 falls into a range where MRI only ap-
pears at high wavenumbers and only far up in the disc where the
gas pressure is low. To circumvent limitations due to insufficient
numerical resolution, we ran an additional scenario N3d-VF,
which is identical to N1d-VF, but has a higher initial net-vertical
magnetic field of Bz = 0.1 μG, and adopts a higher resolution
of 384 × 72 × 96 grid cells. With this model, we aim to study
the combined effects of the mean-field dynamo and secondary
instabilities, as illustrated in the previous section.

A more detailed evolution of this model is presented in
Fig. 9, where we show vertical cuts through the domain. The
B̄φ field created by the MRI (visible in the outer disc) has
the opposite polarity from the A0 dynamo mode (seen be-
tween 5 kpc∼<R∼< 10 kpc). This leads to a distinct radius where
the field is zero (which is also clearly visible in the derived po-
larisation map – see Fig. 12). While this would provide a natural
explanation for the observed field reversal in our own Galaxy, it
is currently unclear whether the antagonism between the MRI
mode and the dynamo mode is random or systematic in our
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Fig. 10. Projected θ-φ-slice of the azimuthal magnetic field at r =
16 kpc. The dominant wavelength along the field lines is on the order of
30 kpc.

model. A careful study of what determines the prevalent mode
structure in the presence of combined MRI and mean-field ef-
fects is certainly called for.

Owing to the lower βP, the MRI develops closer to the disc
midplane. There the density is strongly stratified, which in turn
seems to lead to a Parker-type convective instability (Newcomb
1961; Foglizzo & Tagger 1994, 1995) visible in the form of field
arcs. As a consequence, the vertical undulation of the antisym-
metric B̄φ creates apparent radial reversals of the field direc-
tion in the disc midplane. It would be interesting to investigate
whether such a field distribution is consistent with all-sky data
of Faraday rotation and polarised emission (see e.g. Jaffe et al.
2010). Clearly, this type of reversal would be very difficult to
observe in external galaxies – which may conveniently explain
why the Milky Way appears unusual in this regard.

Our claim that a Parker-like buoyant instability is operating
in the regions of strong field creation has so far largely been
guided by visual appearance. In the following we therefore try to
assess in a semi-quantitative manner the requirements for buoy-
ancy instabilities to occur. It is well established that the con-
vective instability (Newcomb 1961) works to interchange neigh-
bouring segments of field lines. Because magnetic tension forces
oppose line bending, the interchange will preferably occur on
long segments. With dominant B̄φ fields, one would thus expect
perturbations that have higher wave numbers in the radial direc-
tion compared to the azimuthal direction. This is illustrated for
model N3d-VF in Fig. 10, where we show a θ-φ slice of the B̄φ
field component (for the same point in time as for panel a in
Fig. 9). Note that Fig. 10 does not preserve the aspect ratio and
the azimuthal coordinate y′ is strongly compressed compared to
the poloidal slice in the previous figure. The dominant azimuthal
mode appears to be m = 3, which corresponds to a wavelength
of λy � 30 kpc. In agreement with local simulations by Johansen
& Levin (2008), this is about a factor of 10−20 larger than the
radial wavelength λx � 2 kpc. By order of magnitude (Newcomb
1961), one would expect 2πL/λy ∼ 1, where L is the scale height
of the total pressure p̄� ≡ p̄ + B̄2/2. In agreement with this es-
timate, we inferred a value of L � 5 kpc. Based on our simu-
lation data, we moreover evaluated the basic stability criterion
for convective stability (assuming γ = 1), the fastest-growing
wave number (λy ∼ 10 kpc), and growth rates (τe ∼ 100 Myr).
While a quantitative comparison is hampered by the fact that
we cannot isolate the unperturbed background state, the overall
numbers support the notion that convective perturbations in the

Fig. 11. Logarithmic power spectrum of B̄φ as function of radius for
model N3d-VF at time t = 3.9 Gyr. The dynamo field is purely axi-
symmetric, while outside R � 9 kpc MRI turbulence is able to produce
significant non-axisymmetric features.

disc are indeed created by magnetic buoyancy. We point out that
including a non-isothermal equation of state may have a stabil-
ising effect on the system, which means that our current models
may overestimate related effects. On the other hand, this type of
instability has been argued to be enhanced by the presence of a
cosmic-ray component (Parker 1992; Hanasz et al. 2004). As a
concluding remark, we note that observational support for such
buoyant arcs remains largely unavailable – although claims have
been made for magnetic loops in the inner Galactic disc (Fukui
et al. 2006).

To illustrate the very distinctive character of the dynamo-
generated field on one hand and the field resulting from dy-
namical magnetic instabilities on the other hand, we show in
Fig. 11 the vertically averaged azimuthal power spectrum of the
magnetic field. The spectrum is taken from model N3d-VF at
time t = 3.9 Gyr and was normalised to a maximum of one. The
logarithmic colour-coding spans the available dynamic range of
the double-precision floating point numbers used in the simu-
lation, ranging from essentially zero (blue) to maximum (dark
red). The dynamo field is characterised by a perfectly axisym-
metric m = 0 mode. Outside R � 9 kpc, we find significant
non-axisymmetric modes, but without any particular mode num-
ber dominating. In the transition region between the αΩ dynamo
and the MRI-dominated region, we see power at odd overtones
as well as a peak at m = 2.

This feature is also seen in Fig. 12, where we show a
very basic polarisation map created from the saturated state of
model N3d-VF. This synthetic radio map integrates polarised
synchrotron emission along the line of sight, ignoring effects
of Faraday-rotation and -depolarisation, and assuming a flaring
disc (of scale height hrel = 1.5 kpc at R = 10 kpc) for the den-
sity nrel of relativistic electrons. In the edge-on projection, we
inferred a radial scale length of the total intensity of about 5 kpc
if we assume a radially constant nrel. If we assume a correla-
tion nrel ∝ B̄2, this is naturally reduced to 2.5 kpc. Needless
to say, both results are consistent with the radial scale length
of 10 kpc seen for the magnetic field in Fig. 7. We remark that
these estimates refer to the strong fields created in the outer disc
by the MRI in combination with buoyancy and the mean-field
dynamo. We conclude that a potential field reversal at a mode
interface will make it difficult to infer a meaningful global scale
length from observations. This is in any case difficult for the
Milky Way itself, but slightly higher values have been obtained
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Fig. 12. Synthetic polarisation maps for model N3d-VF at t = 3.9 Gyr,
i.e., corresponding to the lower panel in Fig. 9. Colour-coding shows
the Stokes-I parameter, and compass needles indicate the direction of
polarisation (rotated by 90◦).

for NGC 6946 (Beck 2007), for example, where a scale length
of 14 kpc has been found for the total magnetic field.

Ultimately, we aim to compare polarisation maps such as
in Fig. 12 to observation-based models for the GMF, such as
the face-on view (top panel) of the heuristic model derived by
Jansson & Farrar (2012a, their Fig. 9). We see that our dynamo
field is less centrally-confined than the best-fit to the all-sky
polarisation maps, and obviously lacks the precise spiral fea-
tures. More significantly, in the edge-on view (see lower panel of
Fig. 12), we do not see any X-shaped field topology. Even though
our dynamo models do produce significant vertical field, these
are always dominated by stronger radial and azimuthal fields. In
the edge-on projection, the polarisation vectors are accordingly
aligned with the horizontal direction.

4. Summary of results

With mean-field coefficients calibrated from direct SN simula-
tions (see Table 1), and with quenching functions determined
quantitatively (Gressel et al. 2013), we are left with essentially
no free input parameters other than the initial geometry of the
magnetic seed field. This of course precludes the possibility of
deriving a bifurcation diagram for dynamo modes or critical dy-
namo numbers (Brandenburg et al. 1992). On the other hand,
it is satisfying that without tuning of any parameters, the out-
come of our simulations indeed agrees well with observational
constraints.

– In all our models, we found a dominant S0 mode for the
dynamo, but with a subdominant A0 mode situated in the

outer disc. In the case of a low disc mass, the A0 mode is
most pronounced. Moreover, we found antisymmetric parity
(notably of the opposite sign) for the dominant MRI mode.

– The mixed S0+A0 dynamo mode leads to a localised region
of strong vertical field, which is enforced by the requirement
of a zero divergence. Because of the mixed parity, the vertical
field only appears on one side of the disc, as is consistent
with recent observations by Mao et al. (2010).

– Consistent with a topical compilation of observations by
Fletcher (2010), the radial profile of the magnetic pitch an-
gle emerging from our model decreases with inverse radius.
This is very well approximated by p � l0h−1, with h the local
scale-height of the flaring disc.

– Vertical undulations caused by magnetic instabilities, in con-
nection with an anti-symmetric vertical parity, can create ap-
parent radial reversals near the disc midplane. The resulting
field topology needs to be tested against available data of ro-
tation measures in the Galactic plane. A reversal is also seen
at the interface between the dynamo and MRI modes.

– The most pronounced effect of allowing magnetic instabili-
ties is to significantly enhance the radial scale length of the
magnetic energy in the outer disc. Such shallow profiles,
where the scale length of the field exceeds that of the tur-
bulence, have been observed in NGC 6946 (Beck 2007).

– There has been renewed interest in the radial dependence of
the magnetic-field strength and its influence on the rotation
curve (Sánchez-Salcedo & Santillán 2013). In our dynamo
models, we found exponential scale lengths of ∼3−4 kpc,
which is somewhat shorter than expected. A shallower radial
profile is seen in the disc halo, as well as in cases where the
MRI leads to strong fields in the outer disc. Even there, devi-
ations from the initial rotation curve stay well below current
observational uncertainties.

5. Conclusions

We have described a new, comprehensive modelling approach
for global mean-field simulations of the Galactic dynamo. To be
able to make quantitative predictions, we aimed to constrain all
relevant input parameters in a rigorous way. Our model for the
gaseous disc was derived in a self-consistent way, based on the
observed gravitational potential of the Galaxy, and its measured
HI distribution. The prescription of mean-field effects (stemming
from spatial scales unresolved in the global simulation) was
parametrised from a comprehensive set of resolved shearing-box
simulations including the treatment of the multi-phase ISM and
energy input from SNe.

In a further step towards improving the generality of our
mean-field models, we moreover solved the complete MHD
equations instead of keeping the flow field fixed. This was nec-
essary to capture magnetic instabilities such as the MRI and
convective instabilities. These arise on scales that are large com-
pared to the outer scale of the SN-driven turbulence, where tur-
bulent diffusion is less and less efficient. Another prospect of
solving the MHD equations is the future extension of the model
towards a self-consistent galaxy evolution model. Such a model
could potentially include spiral arm features (via self-gravity of
a stellar N-body population or the gas disc itself), effects from
accretion of material onto the galaxy, from galaxy encounters, or
ram-pressure stripping. For all of these, including mean-field ef-
fects appears to be mandatory, as has recently been demonstrated
for the latter case by Moss et al. (2012).

We stress that our model should only be regarded as a very
first step towards a fully comprehensive approach. Clearly there
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remain discrepancies with respect to observations. For exam-
ple, the only way to produce X-shaped polarisation vectors in
edge-on polarisation maps is to start with a strong vertical field
that is already present (and to prescribe a differential wind in
the radial direction). This is because in the edge-on projection
the horizontal disc field always dominates. We hence conjecture
that the X-shaped fields seen in edge-on galaxies are possibly
not the result of a disc dynamo. In contrast, dynamo simulations
that show X-like field configurations typically include the po-
lar regions of the spherical domain – something that is currently
lacking in our own description. Examples include the work by
Brandenburg et al. (1993), who also assumed a much stronger
wind. More recently, Moss et al. (2010) have obtained X-shaped
topologies in simulations including an α effect in the halo itself
(cf. also Moss & Sokoloff 2008). Such a spherical halo dynamo
has originally been proposed by Sokoloff& Shukurov (1990). In
the absence of such an effect, a strong outflow (such as seen in
NGC 253, Heesen et al. 2009, 2011) is probably required to ex-
plain these field geometries. One way to explore this in more de-
tail will be global MHD simulations that incorporate both mean-
field effects from small-scale turbulence and the effect of CRs
and SNe in form of a nuclear star-burst (Melioli et al. 2013) and
super-bubbles. However, such simulations must account for the
multi-phase nature of the ISM (via an appropriate cooling func-
tion), and are highly demanding in terms of CPU resources.
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