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ABSTRACT

Context. The physical properties of the so-called Ostriker isothermal filament have been classically used as a benchmark to interpret
the stability of the filaments observed in nearby clouds. However, recent continuum studies have shown that the internal structure of
the filaments depart from the isothermality, typically exhibiting radially increasing temperature gradients.
Aims. The presence of internal temperature gradients within filaments suggests that the equilibrium configuration of these objects
should be therefore revisited. The main goal of this work is to theoretically explore how the equilibrium structure of a filament
changes in a nonisothermal configuration.
Methods. We solve the hydrostatic equilibrium equation by assuming temperature gradients similar to those derived from observa-
tions.
Results. We obtain a new set of equilibrium solutions for nonisothermal filaments with both linear and asymptotically constant tem-
perature gradients. For sufficiently large internal temperature gradients, our results show that a nonisothermal filament could present
significantly larger masses per unit length and shallower density profiles than the isothermal filament without collapsing by its own
gravity.
Conclusions. We conclude that filaments can reach an equilibrium configuration under nonisothermal conditions. Detailed studies of
both the internal mass distribution and temperature gradients within filaments are then needed to judge the physical state of filaments.
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1. Introduction

Although the observations of filaments within molecular clouds
have been reported for decades (e.g. Schneider & Elmegreen
1979), their presence has been recognized only recently as an
unique characteristic of the star-formation process. The latest
Herschel results have revealed the direct connection between
the filaments, dense cores, and stars in all kinds of environ-
ments along the Milky Way, ranging from low-mass and nearby
clouds (André et al. 2010) to the most distant and high-mass
star-forming regions (Molinari et al. 2010). As a consequence,
characterizing the physical properties of these filaments has been
revealed as key to our understanding of the origin of the stars
within molecular clouds.

Classically, filaments have been interpreted, assuming that
(i) they are isothermal; (ii) they are isolated; (iii) they can
be modeled as cylindrical structures with infinite length; and
(iv) that their support against gravity comes solely from ther-
mal pressure. However, observational evidence is mounting
that none of the above hypotheses can be considered strictly
valid: (i) Recent continuum observations of filaments in different
clouds have shown that the dust temperature gradually decreases
toward the main axis of these structures (e.g. Stepnik et al. 2003;
Palmeirim et al. 2013); (ii) filaments are typically found forming
intricate networks (e.g. hub-filament associations, Myers 2009)
or even compact bundles of small-scale filaments (Hacar et al.
2013); (iii) filaments with aspect ratios of ∼4−5 are not un-
common (Hacar & Tafalla 2011), and (iv) millimeter line stud-
ies show that the molecular emission arising from the filaments

exhibit superthermal linewidths, suggesting that the nonthermal
motions could play a non-negligible role in their stability (e.g.
Arzoumanian et al. 2013). The inclusion of any of these charac-
teristics could drastically change the interpretation of the phys-
ical state of the filaments. It is then clear that the equilibrium
properties of the filaments should be revisited.

In this paper, we concentrate on the theoretical study of non-
isothermal filaments. The main aim of this work is to show how
the equilibrium structure of a filament changes if the hypothesis
of isothermality is relaxed. In a companion paper (Recchi et al.,
in prep.), we investigate the stability and structure of nonisolated
filaments. In a future paper we will investigate the effect of non-
thermal pressure support within the filament.

2. Isothermal filaments

Starting from the seminal paper of Chandrasekhar & Fermi
(1953), the stability of isothermal filaments has been studied by
a number of authors. Stodólkiewicz (1963) and Ostriker (1964)
first demonstrated that the radial profile of an isothermal filament
in hydrostatic equilibrium can be described by

ρeq(r) = ρc

[
1 +

( r
H

)2
]−2

with H =

√
2c2

s

πGρc
, (1)

where r is the radial distance from the axis, ρc is the central
density (i.e., the density at the axis), and cs is the isothermal
sound speed (i.e. c2

s = p/ρ = kT/(μmH)). The mass per unit
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length (or linear mass) of this isothermal cylinder, known as the
Ostriker filament, is given by

Mlin ≡ Mcr =

∫ ∞

0
2πrρeq(r)dr =

2kT
GμmH

· (2)

Assuming a μ = 2.3 as a typical mean molecular weight in
molecular clouds and a temperature typical of the interstellar
medium of T = 10 K, the linear mass of an isothermal cylin-
der in equilibrium is then 16.6 M� pc−1. In filaments with larger
linear masses, equilibrium between pressure and self-gravity
cannot be established. Under these conditions, self-gravity pre-
vails, and the cylinder is destined to collapse into a spindle (e.g.
Inutsuka & Miyama 1992).

3. Equilibrium solutions for nonisothermal
filaments

In parallel to the isothermal analysis, Ostriker (1964) also de-
veloped the theory of stability for nonisothermal cylinders. He
considered a generic polytropic equation of state (EOS) P =
Knρ

1+1/n (n corresponds to 1/(γ − 1), where γ is the ratio of
specific heats). By combining the equation of hydrostatic equi-
librium ∇P = ρ∇V (where V is the gravitational potential)
and the Poisson’s equation ∇2V = −4πGρ, he found the equa-
tion Kn(n + 1)∇2ρ1/n = −4πGρ. With the change of variables

r = aξ ≡
[

(n+1)Kn

4πGρ1−1/n
c

]1/2
ξ and σ = (ρ/ρc)1/n (originally defined

as θ by Ostriker), the resulting equation is simply

d2σ

dξ2
+

1
ξ

dσ
dξ
= −(σ)n, (3)

which is subject to the initial conditionsσ(0) = 1 and σ′(0) = 0.
Equation (3) has real solutions only if n ≥ −1, or equivalently
if γ ≥ 0 (but see Viala & Horedt 1974 for the case n < −1).
These solutions include the isothermal solution when n = +∞
(and γ = 1). Under these conditions, both the linear mass and
the radius of the filament in equilibrium reach a finite value (see
Ostriker 1964 for a discussion).

Nowadays, detailed observations of the dust emission in fil-
aments offer us the unique opportunity to directly estimate their
radial temperature profile (see Stepnik et al. 2003 for L1506 us-
ing PRONAOS; Nutter et al. 2008 for TMC-1 using SCUBA,
and, more recently; Arzoumanian et al. 2011 for IC 5146 or
Palmeirim et al. 2013 for B211 using Herschel). In contrast to
the temperature profiles expected for filaments in equilibrium
with polytropic EOS, the dust temperature gradients observed
in nearby molecular filaments show that it is radially increas-
ing (e.g. Stepnik et al. 2003; Palmeirim et al. 2013), probably
due to the radiation field incident on the exterior of the filament
complex. It is important to remark that it is impossible to ob-
tain radially increasing temperature profiles by solving Eq. (3)
for n > −1. In fact, T ∝ ρ1/n, hence T ∝ σ. For n > 0, both ρ
and σ (hence T ) decrease outwards. For n = 0, corresponding to
ρ = const., the well-known solution is σ = 1 − 1

4ξ
2 (decreasing

outwards). It is easy to verify numerically that σ and T still de-
crease outwards for −1 < n < 0, whereas ρ increases outwards
because ρ ∝ σn. The same result has been obtained by Viala
& Horedt (1974; see their Tables 11−13). It is also interesting to
remark that values of γ < 1 are expected for polytropic filaments
in gravitational collapse, according to simulations (Kawachi &
Hanawa 1998). As a result, the observation of these temperature
profiles has been interpreted as a signature of instability.

To take the observationally-based result of radially increas-
ing temperature gradients into account, we must thus adopt a
different approach. We assume that the gas temperature profile
T (r) is known and we recover the corresponding equilibrium
density profile. We still use the hydrostatic equilibrium relation
∇P = gρ, reminding, however, that now both T and ρ vary with
radius (we still assume μ to be constant). The resulting (integro-
differential) equation is

k
μmH
∇(ρT ) = ρ

⎛⎜⎜⎜⎜⎜⎜⎝−2G
∫ r

0
2πr̃ρ(r̃)dr̃

r

⎞⎟⎟⎟⎟⎟⎟⎠ · (4)

Here, we define ρ = θρc, T = τT0 and r = Hx, where ρc, and
T0 are the density and the temperature at the filament axis, re-
spectively, and H is given by Eq. (1) with T = T0. The resulting
normalized equation is

θ′ = −θ
(
τ′

τ
+

8
τx

∫ x

0
sθds

)
, (5)

where primes indicate differentiation with respect to x. This
equation is subject to the initial condition θ(0) = 1 (i.e.,
ρ(x = 0) = ρc). This equation can be manipulated as follows:
Differentiate it with respect to x, and use Eq. (5) to get rid of the
integral. The resulting second-order ODE is

θ′′ =
(θ′)2

θ
− θ′

(
τ′

τ
+

1
x

)
− θ

(
τ′′

τ
+
τ′

τx

)
− 8
θ2

τ
, (6)

where it is easy to see that the isothermal Ostriker solution

θi =
[
1 + x2

]−2
(i.e., the normalized version of Eq. (1)) satis-

fies the above ODE if τ = 1 (i.e. T (x) = T0). This form of
the equation is more convenient than the Lane-Emden equation
(Eq. (3)) for the problem at hand. It is also important to note that
the above equation is subject to the initial conditions θ(0) = 1
and θ′(0) = −τ′(0). This initial condition is because the value of
the pressure gradient at the axis must be zero (see below). The
consequence of this initial condition is relevant: if the temper-
ature profiles have positive gradients at the axis (as it appears
from the observations), the density profiles must have negative
gradients. That is, they must show central cusps.

Another way to manipulate Eq. (4) is the following: Call η
the pressure, normalized to the central value (i.e. η = P/P0). The
obtained integro-differential equation for η is η′ = − ηxτ

∫ x

0
sη
τ ds.

Manipulating this equation exactly as done for Eq. (5), the fol-
lowing differential equation can be found:

η′′ =
(η′)2

η
− η′

(
1
x
+
τ′

τ

)
− 8

(
η

τ

)2
· (7)

The initial conditions are η(0) = 1 and η′(0) = 0. This second
initial condition is derived from the equation of hydrostatic equi-
librium ∇P = gρ, if we assume g(0) = 0. Given a temperature
profile τ(x), the density profile for a nonisothermal filament in
equilibrium θ(x) can be then derived solving Eqs. (6) or (7).

3.1. Filaments with linear temperature gradients

It is instructive to consider a simplified case, where the temper-
ature linearly increases with radius as follows:

τ(x) = 1 + Ax, (8)

where A is the normalized temperature gradient in units of the
normalized radius x. This linear increase in the temperature
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Fig. 1. Normalized density profiles θ = ρ/ρc (left panel) and values of α (right panel; see Sect. 3.1 for the definition of α) as a function of x = r/H
for models with temperature profiles as described by Eq. (8) for different normalized temperature gradients A. The reference isothermal profile is
also plotted in both panels.
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Fig. 2. As Fig. 1 but for models with temperature profiles as described by Eq. (10).

closely resembles the observations summarized at the beginning
of this section, at least for radii sufficiently close to the axis. We
have numerically solved Eq. (6) for different values of A. We
have also solved Eq. (7) and verified that the two solutions are
identical. This is a useful check of the consistency of our solu-
tion. The resulting density profiles θ(x) are shown in Fig. 1 (left
panel). We can notice from this figure that the density profile

tends, as expected, to the isothermal profile θi =
[
1 + x2

]−2
for

A → 0. Within the range of normalized temperature gradients
considered here (i.e., 0.01 ≤ A ≤ 0.5), the equilibrium configu-
ration derived from Eq. (6) closely resembles the Ostriker profile
at short radii (at least sufficiently close to the axis; i.e. x < 2).
In contrast, the derived density profiles clearly depart from the
equilibrium solution for an isothermal filament at larger radii un-
der the presence of temperature gradients with A ≥ 0.1. Indeed,
if A = 0.5 the density profile for an nonisothermal filament in
equilibrium can be more than one order of magnitude higher than
the expected value in the isothermal case at x ≥ 6.

To better characterize the density profile, we consider the
quantity α = d ln θ

d ln x . If the density profile can be approximated by
a power law, α clearly represents the exponent. The functions
α(x) for the different density profiles discussed above as a func-
tion of the normalized radius x are plotted in Fig. 1 (right panel).

For the isothermal profile θi(x) it is easy to see that α = − 4x2

1+x2 ,
with α tending to −4 for x→ ∞. Compared to the Ostriker solu-
tion, the equilibrium configuration for a nonisothermal filament
with A > 0 presents, therefore, shallower profiles at large radii.
Particularly for 0.1 ≤ A ≤ 0.5, the filaments tend to present
slopes with−3 � α � −2 for normalized radii within 4 < x < 10.

The presence of density profiles shallower than the Ostriker
solution has important implications in the linear mass that can
be supported by these nonisothermal filaments. As can be seen
in Fig. 1, α tends to increase at large values of x. Indeed, it is pos-
sible to show (see Appendix A) that α must asymptotically tend
to a value αlim ∈] − 2,−1[. This implies also that the normalized
linear mass

Π =

∫ ∞

0
2πxθ(x)dx, (9)

diverges. This can be explained because the temperature tends
to infinity for x→ ∞, so the increasingly large thermal pressure
at large radii must be counterbalanced by an increasingly large
gravity. As a consequence, the linear mass for a nonisothermal
filament in equilibrium presenting a linear temperature gradient
can be arbitrarily large. To avoid the divergence of the linear
mass, a filament described by a temperature profile as in Eq. (8)
has to be necessarily pressure-truncated at some radius.
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Finally, we notice that the properties of the nonisothermal
filaments that are derived above resemble the equilibrium con-
figuration found in turbulent dominated filaments. Gehman et al.
(1996) demonstrated that an isothermal filament with a radially
increasing turbulent pressure presents a shallower density profile
and larger linear mass than the equivalent Ostriker-like filament
at the same temperature. Compared to the nonisothermal con-
figuration, in these models the increasing gravitational energy
is balanced by a pressure generated from the radial increase of
the nonthermal motions, while the filament is always thermally
supported in our case.

3.2. Filaments presenting asymptotically constant
temperature gradients

It is also useful to look for a temperature profile resembling
Eq. (8) for small values of x but tending to a finite value for
x → ∞. These kinds of profiles are similar to those found in
the observations, where the temperature flattens out for large
radii (typically at radii ∼0.4−0.5 pc; see Stepnik et al. 2003;
Palmeirim et al. 2013). A function with such properties could be

τ(x) =
1 + (1 + B)x

1 + x
, (10)

where τ(x) tends to (1 + B) for x → ∞. The density profiles and
the slopes α(x) for this temperature profile are shown in Fig. 2.
As can be seen in the figure, the density profiles obtained for fil-
aments described by Eq. (10) are closer to the isothermal profile
when compared to the linear case if B is small (i.e. B � 0.2),
while they only become significantly different to the Ostriker
profile at large radii under the presence of large gradients (i.e.,
with B ∼ 0.5). Additionally for all the B values, the slopes of the
density profiles decrease monotonically, with values of α < −3.5
for normalized radii x > 8.

For those nonisothermal filaments in equilibrium with a tem-
perature structure described by Eq. (10), it is possible to show
(see again Appendix A) that α must be smaller than −2. In con-
trast to the linear case, this implies also that the integral in Eq. (9)
defining the linear mass is converging.

In this sense, we have also numerically calculated the rela-
tion between both the linear massΠ and the half-mass radius x1/2
(the radius within which the mass is 0.5Π) of a filament de-
scribed by Eq. (10) as a function of B, comparing them with the
equivalent values for the linear mass (which turns out to be equal
to π) and the half-mass radius (=1) for the Ostriker filament. Our
results show that these two quantities can be well approximated
by the following quadratic fits

Π − π � 0.681B− 0.067B2, (11)

x1/2 − 1 � 0.441B+ 0.092B2. (12)

We can thus see that a nonisothermal filament (with temperature
increasing outwards but tending to a constant value) can sustain
again more mass than an isothermal Ostriker-like filament with-
out being gravitationally unstable. However, the differences in
the linear mass between these two models in this case are not
very large (typically of less than 20−30%).

4. Conclusions

The steep radial profile, which is typically ∝r−4, and the char-
acteristic mass per unit length with 16.6 M� pc−1 at 10 K of
the the isothermal Ostriker filament have been used to define the

equilibrium state of the filaments within molecular clouds. As
shown in Sect. 3, the nonisothermal nature of the filaments in-
troduce an additional support for the stability of these objects
compared to their isothermal counterparts. Indeed, these results
illustrate how the nonisothermal filaments could present larger
linear masses and shallower radial profiles than the Ostriker-like
filaments without being necessary unstable, where these differ-
ences increase under the presence of large temperature gradients.

Available observations suggest shallow dust temperature
gradients. For instance, the temperature gradient of the fila-
ment B211/3 derived by Palmeirim et al. (2013) indicates A �
0.022. However, dust and gas temperatures are not likely to
be well coupled in filaments. This happens for densities larger
than ∼3 × 104 cm−3 (Galli et al. 2002). The derived central den-
sity in B211/3 is ∼4.5 × 104 cm−3 (Palmeirim et al. 2013, see
their footnote 2); thus, dust and gas temperatures are probably
very similar close to the axis. They decouple at some distance
from the axis with cosmic rays ionization playing a role in heat-
ing up the gas. It is thus reasonable to expect gas temperature
profiles that are steeper than what dust measurements indicate.
This analytic work illustrates how only dedicated and combined
studies of both the mass distribution and thermal structure within
these objects (in addition to simulations) can be then used to de-
termine the physical state of filaments in molecular clouds.
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Appendix A: The asymptotic slope of the density
profile

In this appendix, we study the asymptotic behavior of the density
profile θ(x). A similar problem has been previously discussed in
Ostriker (1964) and Gehman et al. (1996) for filaments in equi-
librium ruled by different EOS. In this case, we aim to investigate
the asymptotic behavior of the normalized radial profile (θ) and
linear mass (Π) of a nonisothermal filament in equilibrium with
a temperature structure described by Eqs. (8) or (10).

Let us first assume a temperature profile like Eq. (8). As ex-
plained in Sect. 3, if we assume a power law dependence θ ∼ xα,
then α = d ln θ

d ln x . From Eq. (8), we transform Eq. (5) to calculate
the quantity d ln θ

d ln x =
xθ′
θ . Assuming that θ(x) can be well approxi-

mated by a power law only for x > x∗, one then obtains

xθ′

θ
= − Ax

1 + Ax
− 8

1 + Ax

∫ x∗

0
sθ(s)ds − 8

1 + Ax

∫ ∞

x∗
sα+1ds.

(A.1)

For x → ∞, the left hand side tends to α; the first term on the
right hand side tends to −1; the second tends to 0, and the third
is proportional to xα−1 if α � −2 and to ln x

x if α = −2. We see
now that α cannot be larger than −1; otherwise, the right hand
side diverges. It cannot also be smaller than (or equal to) −2,
since α would tend to −1 in this case. This would contradict the
assumption that α ≤ −2. A more careful analysis, based on the
assumption that θ(x) = xα + R(x), where R(x) is a small residual
function, leads to the conclusion that α ∈]−2,−1[. Consequently,
the integral Π =

∫
2πxθ(x)dx is divergent.
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We employ now the temperature profile from Eq. (10). From
it, Eq. (5) then becomes

θ′

θ
=− B

(1+x)[1+ (B + 1)x]
− 8(1 + x)

x[1 + (B + 1)x]

∫ x

0
sθ(s)ds. (A.2)

Proceeding as before, it is easy to see that

α � − 8
B + 1

lim
x→∞

∫ x

0
sθ(s)ds. (A.3)

We define now I as
∫ x∗

0
sθ(s)ds. It is easy to obtain

α � − 8
B + 1

· lim
x→∞

⎧⎪⎪⎨⎪⎪⎩(I + xα+2−(x∗)α+2

α+2 ) α � −2
(I + ln x − ln x∗) α = −2

. (A.4)

The case α = −2 can be immediately ruled out because, the right
hand side of (A.4) explodes to −∞ for x → ∞, and analogously
we cannot accept values of α larger than−2. Hence, we conclude
that α < −2 necessarily. This range of values for α is particularly
relevant in that it implies finite masses. In fact, the integral Π =∫ ∞

0
2πxθ(x)dx does not diverge in this case.
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