
A&A 554, A112 (2013)
DOI: 10.1051/0004-6361/201321494
c© ESO 2013

Astronomy
&

Astrophysics

Libsharp – spherical harmonic transforms revisited

M. Reinecke1 and D. S. Seljebotn2

1 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
e-mail: martin@mpa-garching.mpg.de

2 Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo, Norway
e-mail: d.s.seljebotn@astro.uio.no

Received 18 March 2013 / Accepted 14 April 2013

ABSTRACT

We present libsharp, a code library for spherical harmonic transforms (SHTs), which evolved from the libpsht library and ad-
dresses several of its shortcomings, such as adding MPI support for distributed memory systems and SHTs of fields with arbitrary
spin, but also supporting new developments in CPU instruction sets like the Advanced Vector Extensions (AVX) or fused multiply-
accumulate (FMA) instructions. The library is implemented in portable C99 and provides an interface that can be easily accessed from
other programming languages such as C++, Fortran, Python, etc. Generally, libsharp’s performance is at least on par with that of its
predecessor; however, significant improvements were made to the algorithms for scalar SHTs, which are roughly twice as fast when
using the same CPU capabilities. The library is available at http://sourceforge.net/projects/libsharp/ under the terms of
the GNU General Public License.

Key words. methods: numerical – cosmic background radiation – large-scale structure of Universe

1. Motivation

While the original libpsht library presented by Reinecke
(2011) fulfilled most requirements on an implementation of
spherical harmonic transforms (SHTs) in the astrophysical con-
text at the time, it still left several points unaddressed. Some of
those were already mentioned in the original publication: sup-
port for SHTs of arbitrary spins and parallelisation on computers
with distributed memory.

Both of these features have been added to libpsht in the
meantime, but other, more technical, shortcomings of the library
have become obvious since its publication, which could not be
fixed within the libpsht framework.

One of these complications is that the library design did
not anticipate the rapid evolution of microprocessors during the
past few years. While the code supports both traditional scalar
arithmetic as well as SSE2 instructions, adding support for the
newly released Advanced Vector Extensions (AVX) and fused
multiply-accumulate instructions (FMA3/FMA4) would require
adding significant amounts of new code to the library, which is
inconvenient and very likely to become a maintenance burden in
the long run. Using proper abstraction techniques, adding a new
set of CPU instructions could be achieved by only very small
changes to the code, but the need for this was unfortunately not
anticipated when libpshtwas written.

Also, several new, highly efficient SHT implementations
have been published in the meantime; most notably Wavemoth
(Seljebotn 2012) and shtns (Schaeffer 2013). These codes
demonstrate that libpsht’s computational core did not make
the best possible use of the available CPU resources. Note that
Wavemoth is currently an experimental research code not meant
for general use.

To address both of these concerns, the library was redesigned
from scratch. The internal changes also led to a small loss

of functionality; the new code no longer supports multiple
simultaneous SHTs of different type (i.e. having different direc-
tions or different spins). Simultaneous transforms of identical
type are still available, however.

As a fortunate consequence of this slight reduction in func-
tionality, the user interface could be simplified dramatically,
which is especially helpful when interfacing the library with
other programming languages.

Since backward compatibility is lost, the new name
libsharp was chosen for the resulting code, as a shorthand for
“Spherical HARmonic Package”.

The decision to develop libsharp instead of simply using
shtns was taken for various reasons: shtns does not support
spin SHTs or allow MPI parallelisation, it requires more main
memory than libsharp, which can be problematic for high-
resolution runs, and it relies on the presence of the FFTW li-
brary. Also, shtns uses a syntax for expressing SIMD opera-
tions, which is currently only supported by the gcc and clang
compilers, thereby limiting its portability at least for the vec-
torised version. Finally, libsharp has support for partial spher-
ical coverage and a wide variety of spherical grids, including
Gauss-Legendre, ECP, and HEALPix.

2. Problem definition

This section contains a quick recapitulation of equations pre-
sented in Reinecke (2011), for easier reference.

We assume a spherical grid with Nϑ iso-latitude rings (in-
dexed by y). Each of these in turn consists of Nϕ,y pixels (indexed
by x), which are equally spaced in ϕ, the azimuth of the first ring
pixel being ϕ0,y.

A continuous spin-s function defined on the sphere with a
spectral band limit of lmax can be represented either as a set of
spherical harmonic coefficients salm, or a set of pixels pxy. These

Article published by EDP Sciences A112, page 1 of 9

http://dx.doi.org/10.1051/0004-6361/201321494
http://www.aanda.org
http://sourceforge.net/projects/libsharp/
http://www.edpsciences.org

A&A 554, A112 (2013)

two representations are connected by spherical harmonic synthe-
sis (or backward SHT):

pxy =

lmax∑
m=−lmax

lmax∑
l=|m|

salm sλlm(ϑy) exp

(
imϕ0,y +

2πimx
Nϕ,y

)
(1)

and spherical harmonic analysis (or forward SHT):

sâlm =

Nϑ−1∑
y=0

Nϕ,y−1∑
x=0

pxy wy sλlm(ϑy) exp

(
−imϕ0,y − 2πimx

Nϕ,y

)
, (2)

where sλlm(ϑ) := sYlm(ϑ, 0) and wy are quadrature weights.
Both transforms can be subdivided into two stages:

pxy =

lmax∑
m=−lmax

Fm,y exp

(
imϕ0,y +

2πimx
Nϕ,y

)
with (3)

Fm,y :=
lmax∑
l=|m|

salm sλlm(ϑy), and (4)

sâlm =

Nϑ−1∑
y=0

Gm,y sλlm(ϑy) with (5)

Gm,y := wy

Nϕ,y−1∑
x=0

pxy exp

(
−imϕ0,y − 2πimx

Nϕ,y

)
· (6)

Equations (3) and (6) can be computed using fast Fourier trans-
forms (FFTs), while Eqs. (4) and (5), which represent the bulk
of the computational load, are the main target for optimised im-
plementation in libsharp.

3. Technical improvements

3.1. General remarks

As the implementation language for the new library, ISO C99
was chosen. This version of the C language standard is more
flexible than the C89 one adopted for libpsht and has gained
ubiquitous compiler support by now. Most notably, C99 allows
definition of new variables anywhere in the code, which im-
proves readability and eliminates a common source of program-
ming mistakes. It also provides native data types for complex
numbers, which allows for a more concise notation in many
places. However, special care must be taken not to make use of
these data types in the library’s public interface, since this would
prevent interoperability with C++ codes (because C++ has a dif-
ferent approach to complex number support). Fortunately, this
drawback can be worked around fairly easily.

A new approach was required for dealing with the growing
variety of instruction sets for arithmetic operations, such as tradi-
tional scalar instructions, SSE2 and AVX. Rewriting the library
core for each of these alternatives would be cumbersome and
error-prone. Instead we introduced the concept of a generic “vec-
tor” type containing a number of double-precision IEEE val-
ues and defined a set of abstract operations (basic arithmetics,
negation, absolute value, multiply-accumulate, min/max, com-
parison, masking and blending) for this type. Depending on the
concrete instruction set used when compiling the code, these op-
erations are then expressed by means of the appropriate opera-
tors and intrinsic function calls. The only constraint on the num-
ber of values in the vector type is that it has to be a multiple of
the underlying instruction set’s native vector length (1 for scalar
arithmetic, 2 for SSE2, 4 for AVX).

Using this technique, adding support for new vector instruc-
tion sets is straightforward and carries little risk of breaking ex-
isting code. As a concrete example, support for the FMA4 in-
structions present in AMD’s Bulldozer CPUs was added and
successfully tested in less than an hour.

3.2. Improved loop structure

After publication of SHT implementations, which perform sig-
nificantly better than libpsht, especially for s = 0 transforms
(Seljebotn 2012; Schaeffer 2013), it became obvious that some
bottleneck must be present in libpsht’s implementation. This
was identified with libpsht’s approach of first computing a
whole l-vector of sλlm(ϑ) in one go, storing it to main mem-
ory, and afterwards re-reading it sequentially whenever needed.
While the l-vectors are small enough to fit into the CPU’s
Level-1 cache, the store and load operations nevertheless caused
some latency. For s = 0 transforms with their comparatively low
arithmetic operation count (compared to the amount of memory
accesses), this latency could not be hidden behind floating point
operations and so resulted in a slow-down. This is the most likely
explanation for the observation that libpsht’s s = 0 SHTs have
a much lower FLOP rate compared to those with s � 0.

It is possible to avoid the store/load overhead for the sλlm(ϑ)
by applying each value immediately after it has been computed,
and discarding it as soon as it is not needed any more. This ap-
proach is reflected in the loop structure shown in Figs. 1 and 2,
which differs from the one in Reinecke (2011) mainly by the
fusion of the central loops over l.

In this context another question must be addressed: the loops
marked as “SSE/AVX” in both figures are meant to be executed
in “blocks”, i.e. by processing several y indices simultaneously.
The block size is equivalent to the size of the generic vector
type described in Sect. 3.1. The best value for this parameter
depends on hardware characteristics of the underlying computer
and therefore cannot be determined a priori. Libsharp always
uses a multiple of the system’s natural vector length and esti-
mates the best value by running quick measurements whenever
a specific SHT is invoked for the first time. This auto-tuning step
approximately takes a tenth of a wall-clock second.

Due to the changed central loop of the SHT implementation,
it is no longer straightforward to support multiple simultaneous
transforms with differing spins and/or directions, as libpsht
did – this would lead to a combinatorial explosion of loop bodies
that have to be implemented. Consequently, libsharp, while
still supporting simultaneous SHTs, restricts them to have the
same spin and direction. Fortunately, this is a very common case
in many application scenarios.

3.3. Polar optimisation

As previously mentioned in Reinecke (2011), much CPU time
can be saved by simply not computing terms in Eqs. (4) and (5)
for which sλlm(ϑ) is so small that their contribution to the re-
sult lies well below the numerical accuracy. Since this situation
occurs for rings lying close to the poles and high values of m,
Schaeffer (2013) referred to it as “polar optimisation”.

To determine which terms can be omitted, libsharp uses
the approach described in Prézeau & Reinecke (2010). In short,
all terms for which

√
m2 + s2 − 2ms cosϑ − lmax sinϑ > T (7)

A112, page 2 of 9

M. Reinecke and D. S. Seljebotn: Libsharp – spherical harmonic transforms revisited

for b = <all submaps or "blocks">
for m = [0;mmax] // OpenMP
for l = [m;lmax]
precompute recursion coefficients

end l
for y = <all rings in submap b> // SSE/AVX
for l = [m;lmax]
compute s_lambda_lm(theta_y)
for j = <all jobs>
accumulate F(m,theta_y,j)

end j
end l

end y
end m

for y = <all rings in submap b> // OpenMP
for j = <all jobs>
compute map(x,y,j) using FFT

end j
end y

end b

Fig. 1. Schematic loop structure of libsharp’s shared-memory synthe-
sis code.

for b = <all submaps or "blocks">
for y = <all rings in submap b> // OpenMP
for j = <all jobs>
compute G(m,theta_y,j) using FFT

end j
end y

for m = [0;mmax] // OpenMP
for l = [m;lmax]
precompute recursion coefficients

end l
for y = <all rings in submap b> // SSE/AVX
for l = [m;lmax]
compute s_lambda_lm(theta_y)
for j = <all jobs>
compute contribution to a_lm(j)

end j
end l

end y
end m

end b

Fig. 2. Schematic loop structure of libsharp’s shared-memory analy-
sis code.

are skipped. The parameter T is tunable and determines the over-
all accuracy of the result. Libsharpmodels it as

T = max(100, 0.01lmax), (8)

which has been verified to produce results equivalent to those of
SHTs without polar optimisation.

4. Added functionality

4.1. SHTs with arbitrary spin

While the most widely used SHTs in cosmology are performed
on quantities of spins 0 and 2 (i.e. sky maps of Stokes I

and Q/U parameters), there is also a need for transforms at other
spins. Lensing computations require SHTs of spin-1 and spin-3
quantities (see, e.g., Lewis 2005). The most important motiva-
tion for high-spin SHTs, however, are all-sky convolution codes
(e.g. Wandelt & Górski 2001; Prézeau & Reinecke 2010) and de-
convolution map-makers (e.g. Keihänen & Reinecke 2012). The
computational cost of these algorithms is dominated by calculat-
ing expressions of the form

Rmk(ϑ) =
lmax∑

l=max(|m|,|k|)
almb∗lkdl

mk(ϑ), (9)

where a and b denote two sets of spherical harmonic coeffi-
cients (typically of the sky and a beam pattern) and d are the
Wigner d matrix elements. These expressions can be interpreted
and solved efficiently as a set of (slightly modified) SHTs with
spins ranging from 0 to kmax ≤ lmax, which in today’s applica-
tions can take on values much higher than 2.

As was discussed in Reinecke (2011), the algorithms used
by libpsht for spin-1 and spin-2 SHTs become inefficient
and inaccurate for higher spins. To support such transforms in
libsharp, another approach was therefore implemented, which
is based on the recursion for Wigner d matrix elements presented
in Prézeau & Reinecke (2010).

Generally, the spin-weighted spherical harmonics are related
to the Wigner d matrix elements via

sλlm(ϑ) = (−1)m

√
2l + 1

4π
dl
−ms(ϑ) (10)

(Goldberg et al. 1967). It is possible to compute the dl
mm′(ϑ)

using a three-term recursion in l very similar to that for the
scalar Ylm(ϑ):[

cosϑ − mm′

l(l + 1)

]
dl

mm′(ϑ) =

√
(l2 − m2)(l2 − m′2)

l(2l + 1)
dl−1

mm′(ϑ)

+

√
[(l + 1)2 − m2][(l + 1)2 − m′2]

(l + 1)(2l + 1)
dl+1

mm′(ϑ) (11)

(Kostelec & Rockmore 2008). The terms depending only on
l, m, and m′ can be re-used for different colatitudes, so that
the real cost of a recursion step is two additions and three
multiplications.

In contrast to the statements made in McEwen & Wiaux
(2011), this recursion is numerically stable when performed in
the direction of increasing l; see, e.g., Sect. 5.1.2 for a practical
confirmation. It is necessary, however, to use a digital floating-
point representation with enhanced exponent range to avoid un-
derflow during the recursion, as is discussed in some detail in
Prézeau & Reinecke (2010).

4.2. Distributed memory parallelisation

When considering that, in current research, the required band
limit for SHTs practically never exceeds lmax = 104, it seems
at first glance unnecessary to provide an implementation sup-
porting multiple nodes. Such SHTs fit easily into the memory
of a single typical compute node and are carried out within a
few seconds of wall clock time. The need for additional paral-
lelisation becomes apparent, however, as soon as the SHT is no
longer considered in isolation, but as a (potentially small) part
of another algorithm, which is libsharp’s main usage scenario.
In such a situation, large amounts of memory may be occupied

A112, page 3 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321494&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321494&pdf_id=2

A&A 554, A112 (2013)

for m = <all local m> // OpenMP
for l = [m;lmax]
precompute recursion coefficients

end l
for y = <all rings in the map> // SSE/AVX
for l = [m;lmax]
compute s_lambda_lm(theta_y)
for j = <all jobs>
accumulate F(m,theta_y,j)

end j
end l

end y
end m

rearrange F(m,theta_y,j) among tasks // MPI

for y = <all local rings> // OpenMP
for j = <all jobs>
compute map(x,y,j) using FFT

end j
end y

Fig. 3. Schematic loop structure of libsharp’s distributed-memory
synthesis code.

by data sets unrelated to the SHT, therefore requiring distribu-
tion over multiple nodes. Moreover, there is sometimes the need
for very many SHTs in sequence, e.g. if they are part of a sam-
pling process or an iterative solver. Here, the parallelisation to
a very large number of CPUs may be the only way of reduc-
ing the time-to-solution to acceptable levels. Illustrative exam-
ples for this are the Commander code (Eriksen et al. 2008) and
the artDeco deconvolution mapmaker (Keihänen & Reinecke
2012); for the processing of high-resolution Planck data, the lat-
ter is expected to require over 100GB of memory and several
hundred CPU cores.
Libsharp provides an interface that allows collective execu-

tion of SHTs on multiple machines with distributed memory. It
makes use of the MPI1 interface to perform the necessary inter-
process communication.

In contrast to the standard, shared-memory algorithms, it
is the responsibility of the library user to distribute map data
and alm over the individual computers in a way that ensures
proper load balancing. A very straightforward and reliable way
to achieve this is a “round robin” strategy: assuming N com-
puting nodes, the map is distributed such that node i hosts the
map rings i, i + N, i + 2N, etc. (and their counterparts on the
other hemisphere). Similarly, for the spherical harmonic coeffi-
cients, node i would hold all alm for m = i, i + N, i + 2N, etc.
Other efficient distribution strategies do of course exist and may
be advantageous, depending on the circumstances under which
libsharp is called. The only requirement the library has is that
the alm are distributed by m and that the map is distributed by
rings, as described in Figs. 3 and 4.

The SHT algorithm for distributed memory architectures is
analogous to the one used in the S2HAT package2 and first pub-
lished in Szydlarski et al. (2013); its structure is sketched in
Figs. 3 and 4. In addition to the S2HAT implementation, the
SHT will be broken down into smaller chunks if the average

1 http://en.wikipedia.org/wiki/
Message_Passing_Interface
2 http://code.google.com/p/s2hat-library/

for y = <all local rings> // OpenMP
for j = <all jobs>
compute G(m,theta_y,j) using FFT

end j
end y

rearrange G(m,theta_y,j) among tasks // MPI

for m = <all local m> // OpenMP
for l = [m;lmax]
precompute recursion coefficients

end l
for y = <all rings in the map> // SSE/AVX
for l = [m;lmax]
compute s_lambda_lm(theta_y)
for j = <all jobs>
compute contribution to a_lm(j)

end j
end l

end y
end m

Fig. 4. Schematic loop structure of libsharp’s distributed-memory
analysis code.

number of map rings per MPI task exceeds a certain threshold.
This is analogous to the use of chunks in the scalar and OpenMP-
parallel implementations and reduces the memory overhead
caused by temporary variables.

It should be noted that libsharp supports hybrid MPI and
OpenMP parallelisation, which allows, e.g., running an SHT
on eight nodes with four CPU cores each, by specifying eight
MPI tasks, each of them consisting of four OpenMP threads.
In general, OpenMP should be preferred over MPI whenever
shared memory is available (i.e. at the computing node level),
since the OpenMP algorithms contain dynamic load balancing
and have a smaller communication overhead.

4.3. Map synthesis of first derivatives

Generating maps of first derivatives from a set of alm is closely
related to performing an SHT of spin 1. A specialised SHT mode
was added to libsharp for this purpose; it takes as input a
set of spin-0 alm and produces two maps containing ∂ f /∂ϑ and
∂ f /(∂ϕ sinϑ), respectively.

4.4. Support for additional spherical grids

Direct support for certain classes of spherical grids has been ex-
tended in comparison to libpsht; these additions are listed be-
low in detail. It must be stressed, however, that libsharp can –
very much as libpsht does – perform SHTs on any iso-latitude
grid with equidistant pixels on each ring. This very general class
of pixelisations includes, e.g., certain types of partial spherical
coverage. For these general grids, however, the user is responsi-
ble for providing correct quadrature weights when performing a
spherical harmonic analysis.

A112, page 4 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321494&pdf_id=3
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://code.google.com/p/s2hat-library/
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321494&pdf_id=4

M. Reinecke and D. S. Seljebotn: Libsharp – spherical harmonic transforms revisited

4.4.1. Extended support for ECP grids

Libpsht provides explicit support for HEALPix grids,
Gauss-Legendre grids, and a subset of equidistant cylindrical
projection (ECP) grids. The latter are limited to an even num-
ber of rings at the colatitudes

ϑn =
(n + 0.5)π

N
, n ∈ [0; N − 1]. (12)

The associated quadrature weights are given by Fejér’s first rule
(Fejér 1933; Gautschi 1967).
Libsharp extends ECP grid support to allow even and odd

numbers of rings, as well as the colatitude distributions

ϑn =
nπ
N

, n ∈ [1; N − 1] (13)

(corresponding to Fejér’s second rule), and

ϑn =
nπ
N

, n ∈ [0; N] (14)

(corresponding to Clenshaw-Curtis quadrature). This last pixeli-
sation is identical to the one adopted in Huffenberger & Wandelt
(2010).

Accurate computation of the quadrature weights for these
pixelisations is nontrivial; libsharp adopts the FFT-based ap-
proach described in Waldvogel (2006) for this purpose.

4.4.2. Reduced Gauss-Legendre grid

The polar optimisation described in Sect. 3.3 implies that it
is possible to reduce the number of pixels per ring below the
theoretically required value of 2lmax + 1 close to the poles.
Equation (7) can be solved for m (at a given s, lmax and ϑ), and
using 2m + 1 equidistant pixels in the corresponding map ring
results in a pixelisation that can represent a band-limited func-
tion up to the desired precision, although it is no longer exact
in a mathematical sense. If this number is further increased to
the next number composed entirely of small prime factors (2,
3, and 5 are used in libsharp’s case), this has the additional
advantage of allowing very efficient FFTs.
Libsharp supports this pixel reduction technique in the

form of a thinned-out Gauss-Legendre grid. At moderate to high
resolutions (lmax > 1000), more than 30% of pixels can be saved,
which can be significant in various applications.

It should be noted that working with reduced Gauss-
Legendre grids, while saving considerable amounts of mem-
ory, does not change SHT execution times significantly; all po-
tential savings are already taken into account, for all grids, by
libsharp’s implementation of polar optimisation.

4.5. Adjoint and real SHTs

Since Eq. (1) is a linear transform, we can introduce the notation

p = Ya (15)

for a vector a of spherical harmonic coefficients and correspond-
ing vector p of pixels. Similarly, one can write Eq. (2) as

a = Y†Wp, (16)

where W is a diagonal matrix of quadrature weights. When in-
cluding SHTs as operators in linear systems, one will often need
the adjoint spherical harmonic synthesis, Y†, and the adjoint

spherical harmonic analysis, WY. For instance, if a is a ran-
dom vector with covariance matrix C in the spherical harmonic
domain, then its pixel representation Ya has the covariance ma-
trix YCY†. Multiplication by this matrix requires the use of the
adjoint synthesis, which corresponds to analysis with a differ-
ent choice of weights. Libsharp includes routines for adjoint
SHTs, which is more user-friendly than having to compensate
for the wrong choice of weights in user code, and also avoids an
extra pass over the data.

For linear algebra computations, the vector a must also in-
clude alm with m < 0, even if libsharp will only compute
the coefficients for m ≥ 0. The use of the real spherical har-
monics convention is a convenient way to include negative m
without increasing the computational workload by duplicating
all coefficients. For the definition we refer to the appendix of
de Oliveira-Costa et al. (2004). The convention is supported di-
rectly in libsharp, although with a restriction in the storage
scheme: The coefficients for m < 0 must be stored in the same
locations as the corresponding imaginary parts of the complex
coefficients, so that the pattern in memory is [al,m, al,−m].

5. Evaluation

Most tests were performed on the SuperMUC Petascale System
located at the Leibniz-Rechenzentrum Garching. This system
consists of nodes containing 32GB of main memory and 16 Intel
Xeon E5-2680 cores running at 2.7GHz. The exception is the
comparison with Wavemoth, which was performed on the Abel
cluster at the University of Oslo on very similar hardware; Xeon
E5-2670 at 2.6 GHz.

The code was compiled with gcc version 4.7.2. The Intel
compiler (version 12.1.6) was also tested, but produced slightly
inferior code.

Except where noted otherwise, test calculations were per-
formed using the reduced Gauss-Legendre grid (see Sect. 4.4.2)
to represent spherical map data. This was done for the pragmatic
purpose of minimising the tests’ memory usage, which allowed
going to higher band limits in some cases, as well as to demon-
strate the viability of this pixelisation.

The band limits adopted for the tests all obey lmax = 2n − 1
with n ∈ N (except for those presented in Sect. 5.2.2). This is
done in analogy to most other papers on the subject, but leads to
some unfamiliar numbers especially at very high lmax.

The number of cores used for any particular run always is a
power of 2.

5.1. Accuracy tests

5.1.1. Comparison with other implementations

The numerical equivalence of libsharp’s SHTs to existing im-
plementations was verified by running spherical harmonic syn-
thesis transforms on a Gauss-Legendre grid at lmax = 50 and
spins 0, 1, and 2 with both libsharp and libpsht, and com-
paring the results. The differences of the results lay well within
the expected levels of numerical errors caused by the finite preci-
sion of IEEE numbers. Spherical harmonic analysis is implicitly
tested by the experiments in the following sections.

5.1.2. Evaluation of SHT pairs

To test the accuracy of libsharp’s transforms, sets of
spin = 0 alm coefficients were generated by setting their real
and imaginary parts to numbers drawn from a uniform random

A112, page 5 of 9

A&A 554, A112 (2013)

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

100 101 102 103 104 105

S
H

T
 e

rr
or

lmax

lmaxl max
3/2

εrms
εmax

Fig. 5. Maximum and rms errors for inverse/forward spin = 0 SHT pairs
at different lmax.

distribution in the range [−1; 1[(with exception of the imaginary
parts for m = 0, which have to be zero for symmetry reasons).
This data set was transformed onto a reduced Gauss-Legendre
grid and back to spherical harmonic space again, resulting in âlm.

The rms and maximum errors of this inverse/forward trans-
form pair can be written as

εrms :=

√∑
lm |salm − sâlm|2∑

lm |salm|2 and (17)

εmax := max
lm
|salm − sâlm| . (18)

Figure 5 shows the measured errors for a wide range of band
limits. As expected, the numbers are close to the accuracy limit
of double precision IEEE numbers for low lmax; rms errors in-
crease roughly linearly with the band limit, while the maximum
error seems to exhibit an l3/2max scaling. Even at lmax = 262 143
(which is extremely high compared to values typically required
in cosmology), the errors are still negligible compared with the
uncertainties in the input data in today’s experiments.

Analogous experiments were performed for spins 2 and 37,
with very similar results (not shown).

5.2. Performance tests

Determining reliable execution times for SHTs is nontrivial at
low band limits, since intermittent operating system activity can
significantly distort the measurement of short time scales. All
libsharp timings shown in the following sections were ob-
tained using the following procedure: the SHT pair in question
is executed repeatedly until the accumulated wall-clock time ex-
ceeds 2 s. Then the shortest measured wall-clock time for syn-
thesis and analysis is selected from the available set.

5.2.1. Strong-scaling test

To assess strong-scaling behaviour (i.e. run time scaling for a
given problem with fixed total workload), a spin = 2 SHT with
lmax = 16 383 was carried out with differing degrees of paral-
lelisation. The accumulated wall-clock time of these transforms
(synthesis + analysis) is shown in Fig. 6. It is evident that the
scaling is nearly ideal up to 16 cores, which implies that paral-
lelisation overhead is negligible in this range. Beyond 16 cores,
MPI communication has to be used for inter-node communica-
tion, and this most likely accounts for the sudden jump in accu-
mulated time. At even higher core counts, linear scaling is again

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 10 100 1000

T
w

al
l N

co
re

 [h
]

Ncore

Fig. 6. Strong-scaling scenario: accumulated wall-clock time for a
spin = 2 SHT pair with lmax = 16 383 run on various numbers of cores.

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000

T
w

al
l [

s]

Ncore

Fig. 7. Weak-scaling scenario: wall-clock time for a spin = 0 SHT pair
run on various numbers of cores, with constant amount of work per core
(lmax(N) = 4096N1/3 − 1).

reached, although with a poorer proportionality factor than in the
intra-node case. Finally, for 1024 and more cores, the communi-
cation time dominates the actual computation, and scalability is
lost.

5.2.2. Weak-scaling test

Weak-scaling behaviour of the algorithm is investigated by
choosing problem sizes that keep the total work per core con-
stant, in contrast to a fixed total workload. Assuming an SHT
complexity of O(l3max), the band limits were derived from the
employed number of cores N via lmax(N) = 4096N1/3 − 1. The
results are shown in Fig. 7. Ideal scaling corresponds to a hori-
zontal line. Again, the transition from one to several computing
nodes degrades performance, whereas scaling on a single node,
as well as in the multi-node range, is very good. By keeping the
amount of work per core constant, the breakdown of scalabil-
ity is shifted to 4096 cores, compared with 1024 in the strong-
scaling test.

It is interesting to note that the scaling within a single node
is actually slightly superlinear; this is most likely because in this
setup, the amount of memory per core decreases with increasing
problem size, which in turn can improve the amount of cache
re-use and reduce memory bandwidth per core.

5.2.3. General scaling and efficiency

The preceding two sections did not cover cases with small
SHTs. This scenario is interesting, however, since in the limit

A112, page 6 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321494&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321494&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321494&pdf_id=7

M. Reinecke and D. S. Seljebotn: Libsharp – spherical harmonic transforms revisited

10-6

10-4

10-2

100

102

104

106

108

100 101 102 103 104 105

T
w

al
l N

co
re

 [s
]

lmax

l max
3

s=0
s=2

Ncore=1
Ncore=16
Ncore=64

Ncore=512
Ncore=4096

Fig. 8. Accumulated wall-clock time for spin = 0 and spin = 2 SHT
pairs at a wide range of different band limits. For every run the number
of cores was chosen sufficiently small to keep parallelisation overhead
low.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

100 101 102 103 104 105

fr
ac

tio
n

of
 th

eo
re

tic
al

 p
ea

k

lmax

s=0
s=2

Ncore=1
Ncore=16
Ncore=64

Ncore=512
Ncore=4096

Fig. 9. Fraction of theoretical peak-performance reached by various
SHT pairs. For every run the number of cores was chosen sufficiently
small to keep parallelisation overhead low.

of small lmax those components of the SHT implementation with
complexities lower than O(l3max) (like the FFT steps of Eqs. (3)
and (6)) may begin to dominate execution time. Figure 8 shows
the total wall-clock time for SHT pairs over a very wide range
of band limits; to minimise the impact of communication, the
degree of parallelisation was kept as low as possible for the runs
in question. As expected, the l3max scaling is a very good model
for the execution times at lmax ≥ 511. Below this limit, the FFTs,
precomputations for the spherical harmonic recursion, memory
copy operations and other parts of the code begin to dominate.

In analogy to one of the tests described in Reinecke (2011),
we computed a lower limit for the number of executed floating-
point operations per second in libsharp’s SHTs and compared
the result with the theoretical peak performance achievable on
the given hardware, which is eight operations per clock cycle
(four additions and four multiplications) or 21.6 GFlops/s per
core. Figue 9 shows the results. In contrast to libpsht, which
reached approximately 22% for s = 0 and 43% for s = 2, both
scalar and tensor harmonic transforms exhibit very similar per-
formance levels and almost reach 70% of theoretical peak in the
most favourable regime, thanks to the changed structure of the
inner loops. For the lmax range that is typically required in cos-
mological applications, performance exceeds 50% (even when
MPI is used), which is very high for a practically useful algo-
rithm on this kind of computer architecture.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1 2 3 4 5 6 7 8 9 10

sp
ee

du
p

fa
ct

or

nsht

s=0
s=2

Fig. 10. Relative speed-up when performing several SHTs simultane-
ously, compared with sequential execution. The SHT had a band limit
of lmax = 8191.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

104 105

m
em

or
y

ov
er

he
ad

 [%
]

lmax

s=0
s=2

Fig. 11. Relative memory overhead, i.e. the fraction of total memory
that is not occupied by input and output data of the SHT. For low lmax

this is dominated by the program binary, for high lmax by temporary
arrays.

5.2.4. Multiple simultaneous SHTs

The computation of the sλlm(ϑ) coefficients accounts for roughly
half the arithmetic operations in an SHT. If several SHTs with
identical grid geometry and band limit are computed simultane-
ously, it is possible to re-use these coefficients, thereby reduc-
ing the overall operation count. Figure 10 shows the speed-ups
compared to sequential execution for various scenarios, which
increase with the number of transforms and reach saturation
around a factor of 1.6. This value is lower than the naïvely ex-
pected asymptotic factor of 2 (corresponding to avoiding half of
the arithmetic operations), since the changed algorithm requires
more memory transfers between Level-1 cache and CPU regis-
ters and therefore operates at a lower percentage of theoretical
peak performance. Nevertheless, running SHTs simultaneously
is evidently beneficial and should be used whenever possible.

5.2.5. Memory overhead

Especially at high band limits, it is important that the SHT li-
brary does not consume a large amount of main memory, to
avoid memory exhaustion and subsequent swapping or code
crashes. Libsharp is designed with the goal to keep the size of
its auxiliary data structures much lower than the combined size
of any SHT’s input and output arrays. A measurement is shown
in Fig. 11. Below the lowest shown band limit of 2047, memory

A112, page 7 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321494&pdf_id=8
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321494&pdf_id=9
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321494&pdf_id=10
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321494&pdf_id=11

A&A 554, A112 (2013)

Table 1. Performance comparison with other implementations at lmax = 2047, ncore = 1.

Code Version Grid Spin nSHT RAVX RSSE2 Rscalar

shtns 2.31 Gauss-Legendre 0 1 0.84 0.88 0.91
Wavemoth (brute-force) Nov. 2011 HEALPix (Nside = 1024) 0 1 1.63 0.98 –
′′ ′′ ′′ 0 5 1.59 1.09 –
Wavemoth (butterfly) Nov. 2011 HEALPix (Nside = 1024) 0 5 0.96 0.66 –
libpsht Jan. 2011 Gauss-Legendre 0 1 4.06 2.30 2.30
′′ ′′ ′′ 0 5 2.66 1.75 1.62
′′ ′′ ′′ 2 1 2.50 1.48 1.20
′′ ′′ ′′ 2 5 2.15 1.44 1.08
spinsfast r104 ECP (Clenshaw-Curtis) 0 1 57.04 32.12 15.31
′′ ′′ ′′ 0 5 28.39 18.72 9.38
′′ ′′ ′′ 2 1 16.99 10.20 4.73
′′ ′′ ′′ 2 5 8.60 5.66 2.56
SSHT 1.0b1 MW sampling theorem 0 1 20.91 15.60 9.46
′′ ′′ ′′ 2 1 13.40 9.29 4.99
S2HAT 2.55beta HEALPix (Nside = 1024) 0 1 12.33 7.33 3.60
Glesp 2 Gauss-Legendre 0 1 55.32 31.26 14.95

Notes. All tests had a band limit of lmax = 2047 and were carried out on a single core. The grids used by libsharp and the respective comparison
code were identical in each run. RAVX denotes the quotient of wall-clock times for the respective code and libsharp in the presence of the
AVX instruction set, RSSE2 is the quotient when SSE2 (but not AVX) is supported, and Rscalar was measured with both SSE2 and AVX disabled. The
libsharp support for the MW sampling theorem used for the SSHT comparisons is experimental. For Wavemoth, butterfly matrix compression
can optionally be enabled. In the benchmark given we requested an accuracy of 10−4, which led to an extra requirement of 4 GB of precomputed
data in memory. Note that when running on a single core, Wavemoth is at an advantage compared to the normal situation where the memory bus
is shared between multiple cores.

overhead quickly climbs to almost 100%, since in this regime
memory consumption is dominated by the executable and the
constant overhead of the communication libraries, which on the
testing machine amounts to approximately 50MB. In the impor-
tant range (lmax ≥ 2047), memory overhead lies below 45%.

5.2.6. Comparison with existing implementations

Table 1 shows a performance comparison of synthesis/analysis
SHT pairs between libsharp and various other SHT implemen-
tations. In addition to the already mentioned shtns, Wavemoth,
S2HAT and libpsht codes, we also included spinsfast
(Huffenberger & Wandelt 2010), SSHT (McEwen & Wiaux
2011) and Glesp (Doroshkevich et al. 2005) in the comparison.
All computations shared a common band limit of 2047 and were
executed on a single core, since the corresponding SHTs are sup-
ported by all libraries and are very likely carried out with a com-
paratively high efficiency by all of them. The large overall num-
ber of possible parameters (lmax, spin, number of simultaneous
transforms, degree and kind of parallelisation, choice of grid,
etc.) prevented a truly comprehensive study.

Overall, libsharp’s performance is very satisfactory and
exhibits speed-ups of more than an order of magnitude in sev-
eral cases. The table also demonstrates libsharp’s flexibility,
since it supports all of the other codes’ “native” grid geometries,
which is required for direct comparisons.

The three last columns list time ratios measured under dif-
ferent assumptions: RAVX reflects values that can be expected
on modern (2012 and later) AMD/Intel CPUs supporting AVX,
RSSE2 applies to older (2001 and later) CPUs with the SSE2 in-
struction set. Rscalar should be used for CPUs from other vendors
like IBM or ARM, since libsharp does not yet support vectori-
sation for these architectures.

Figure 12 shows the relative performance of identical
SHT pairs on a full Gauss-Legendre grid with s = 0 for
libsharp and shtns. For these measurements the bench-
marking code delivered with shtns was adjusted to measure

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

101 102 103 104

tim
e

ra
tio

 s
ht

ns
/li

bs
ha

rp

lmax

scalar
Ncore=4
Ncore=8

Ncore=16

Fig. 12. Performance comparison between libsharp and shtns for
varying lmax and number of OpenMP threads. Note that reduced au-
totuning was used for shtns at lmax=16 383 (see text).

SHT times in a similar fashion as was described above. The
plotted quantity is shtns wall-clock time divided by libsharp
wall-clock time for varying lmax and number of OpenMP threads.
It is evident that shtns has a significant advantage for small
band limits (almost an order of magnitude) and maintains a slight
edge up to lmax = 8191. It must be noted, however, that the mea-
sured times do not include the overhead for auto-tuning and nec-
essary precalculations, which in the case of shtns are about an
order of magnitude more expensive than the SHTs themselves.
As a consequence, its performance advantage only pays off if
many identical SHT operations are performed within one run.
The origin of shtns’s performance advantage has not been stud-
ied in depth; however, a quick analysis shows that the measured
time differences scale roughly like l2max, so the following expla-
nations are likely candidates:

– libsharp performs all of its precomputations as part of the
time-measured SHT;

A112, page 8 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321494&pdf_id=12

M. Reinecke and D. S. Seljebotn: Libsharp – spherical harmonic transforms revisited

– libsharp’s flexibility with regard to pixelisation and stor-
age arrangement of input and output data requires some ad-
ditional copy operations;

– at low band limits the inferior performance of libsharp’s
FFT implementation has a noticeable impact on overall run
times.

The relative performance of both libraries is remarkably insen-
sitive to the number of OpenMP threads; this indicates that the
performance differences are located in parallel code regions as
opposed to sequential ones.

For lmax = 16 383, the time required by the default shtns
autotuner becomes very long (on the order of wall-clock hours),
so that we decided to invoke it with an option for reduced tuning.
It is likely a consequence of this missed optimisation that, at this
band limit, libsharp is the better-performing code.

6. Conclusions

Judging from the benchmarks presented in the preceding sec-
tion, the goals that were set for the libsharp library have been
reached: it exceeds libpsht in terms of performance, supports
recent developments in microprocessor technology, allows using
distributed memory systems for a wider range of applications,
and is slightly easier to use. On the developer side, the modular
design of the code makes it much more straightforward to add
support for new instruction sets and other functionality.

In some specific scenarios, especially for SHTs with com-
paratively low band limits, libsharp does not provide the best
performance of all available implementations, but given its ex-
treme flexibility concerning grid types and the memory layout
of its input/output data, as well as its compactness (≈8000 lines
of portable and easily maintainable source code without external
dependencies), this compromise certainly seems acceptable.

The library has been successfully integrated into version 3.1
of the HEALPix C++ and Fortran packages. There also exists
an experimental version of the SSHT3 package with libsharp
replacing the library’s original SHT engine. Libsharp is also
used as SHT engine in an upcoming version of the Python pack-
age NIFTy4 for signal inference (Selig et al. 2013). Recently,
the total convolution code conviqt (Prézeau & Reinecke 2010),
which is a central component of the Planck simulation pipeline
(Reinecke et al. 2006), has been updated and is now based

3 http://www.mrao.cam.ac.uk/~jdm57/ssht/index.html
4 http://www.mpa-garching.mpg.de/ift/nifty/

on libsharp SHTs. There are plans for a similar update of
the artDeco deconvolution map maker (Keihänen & Reinecke
2012).

A potential future field of work is porting libsharp to
Intel’s “many integrated cores” architecture5, once sufficient
compiler support for this platform has been established. The
hardware appears to be very well suited for running SHTs, and
the porting by itself would provide a welcome test for the adapt-
ability of the library’s code design.

Acknowledgements. We thank our referee Nathanaël Schaeffer for his construc-
tive remarks and especially for pointing out a missed optimisation opportu-
nity in our shtns installation, which had a significant effect on some bench-
mark results. M.R. is supported by the German Aeronautics Center and Space
Agency (DLR), under program 50-OP-0901, funded by the Federal Ministry
of Economics and Technology. D.S.S. is supported by the European Research
Council, grant StG2010-257080. The presented benchmarks were performed as
project pr89yi at the Leibniz Computing Center Garching.

References
de Oliveira-Costa, A., Tegmark, M., Zaldarriaga, M., & Hamilton, A. 2004,

Phys. Rev. D, 69, 063516
Doroshkevich, A. G., Naselsky, P. D., Verkhodanov, O. V., et al. 2005, Int. J.

Mod. Phys. D, 14, 275
Eriksen, H. K., Jewell, J. B., Dickinson, C., et al. 2008, ApJ, 676, 10
Fejér, L. 1933, Mathematische Zeitschrift, 37, 287
Gautschi, W. 1967, SIAM J. Numerical Analysis, 4, 357
Goldberg, J. N., Macfarlane, A. J., Newman, E. T., Rohrlich, F., & Sudarshan,

E. C. G. 1967, J. Math. Phys., 8, 2155
Huffenberger, K. M., & Wandelt, B. D. 2010, ApJS, 189, 255
Keihänen, E., & Reinecke, M. 2012, A&A, 548, A110
Kostelec, P., & Rockmore, D. 2008, J. Fourier Analysis and Applications, 14,

145
Lewis, A. 2005, Phys. Rev. D, 71, 083008
McEwen, J. D., & Wiaux, Y. 2011, IEEE Trans. Signal Proc., 59, 5876
Prézeau, G., & Reinecke, M. 2010, ApJS, 190, 267
Reinecke, M. 2011, A&A, 526, A108
Reinecke, M., Dolag, K., Hell, R., Bartelmann, M., & Enßlin, T. A. 2006, A&A,

445, 373
Schaeffer, N. 2013, Geochem. Geophys. Geosyst., 14
Selig, M., Bell, M. R., Junklewitz, H., et al. 2013, IEEE Trans. Inf. Theory,

submitted [arXiv:1301.4499]
Seljebotn, D. S. 2012, ApJS, 199, 5
Szydlarski, M., Esterie, P., Falcou, J., Grigori, L., & Stompor, R. 2013,

Concurrency and Computation: Practice and Experience
Waldvogel, J. 2006, BIT Numerical Mathematics, 46, 195
Wandelt, B. D., & Górski, K. M. 2001, Phys. Rev. D, 63, 123002

5 http://en.wikipedia.org/wiki/Intel_MIC

A112, page 9 of 9

http://www.mrao.cam.ac.uk/~jdm57/ssht/index.html
http://www.mpa-garching.mpg.de/ift/nifty/
http://arxiv.org/abs/1301.4499
http://en.wikipedia.org/wiki/Intel_MIC

	Motivation
	Problem definition
	Technical improvements
	General remarks
	Improved loop structure
	Polar optimisation

	Added functionality
	SHTs with arbitrary spin
	Distributed memory parallelisation
	Map synthesis of first derivatives
	Support for additional spherical grids
	Extended support for ECP grids
	Reduced Gauss-Legendre grid

	Adjoint and real SHTs

	Evaluation
	Accuracy tests
	Comparison with other implementations
	Evaluation of SHT pairs

	Performance tests
	Strong-scaling test
	Weak-scaling test
	General scaling and efficiency
	Multiple simultaneous SHTs
	Memory overhead
	Comparison with existing implementations

	Conclusions
	References

