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ABSTRACT

Context. Longitudinal filament oscillations recently attracted increasing attention, while the restoring force and the damping mecha-
nisms are still elusive.
Aims. We intend to investigate the underlying physics for coherent longitudinal oscillations of the entire filament body, including their
triggering mechanism, dominant restoring force, and damping mechanisms.
Methods. With the MPI-AMRVAC code, we carried out radiative hydrodynamic numerical simulations of the longitudinal prominence
oscillations. We modeled two types of perturbations of the prominence, impulsive heating at one leg of the loop and an impulsive
momentum deposition, which cause the prominence to oscillate. We studied the resulting oscillations for a large parameter scan,
including the chromospheric heating duration, initial velocity of the prominence, and field line geometry.
Results. We found that both microflare-sized impulsive heating at one leg of the loop and a suddenly imposed velocity perturbation
can propel the prominence to oscillate along the magnetic dip. Our extensive parameter survey resulted in a scaling law that shows
that the period of the oscillation, which weakly depends on the length and height of the prominence and on the amplitude of the per-
turbations, scales with

√
R/g�, where R represents the curvature radius of the dip, and g� is the gravitational acceleration of the Sun.

This is consistent with the linear theory of a pendulum, which implies that the field-aligned component of gravity is the main restoring
force for the prominence longitudinal oscillations, as confirmed by the force analysis. However, the gas pressure gradient becomes
significant for short prominences. The oscillation damps with time in the presence of non-adiabatic processes. Radiative cooling is
the dominant factor leading to damping. A scaling law for the damping timescale is derived, i.e., τ ∼ l1.63D0.66w−1.21v−0.30

0 , showing
strong dependence on the prominence length l, the geometry of the magnetic dip (characterized by the depth D and the width w), and
the velocity perturbation amplitude v0. The larger the amplitude, the faster the oscillation damps. We also found that mass drainage
significantly reduces the damping timescale when the perturbation is too strong.
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1. Introduction

Solar prominences, or filaments that appear on the solar
disk, are cold and dense plasmas suspended in the corona
(Tandberg-Hanssen 1995; Labrosse et al. 2010; Mackay et al.
2010). They are formed above the magnetic polarity inver-
sion lines. The denser material is believed to be supported by
the magnetic tension force of the dip-shaped magnetic field
lines (Kippenhahn & Schlüter 1957; Kuperus & Raadu 1974;
Guo et al. 2010; Zhang et al. 2012; Xu et al. 2012; Su &
van Ballegooijen 2012). These fascinating phenomena attracted
many simulation efforts from different aspects, such as their
formation, oscillations, and eruptions. For the formation, the
chromospheric evaporation plus coronal condensation model
has been studied widely with one-dimensional (1D) simulations
(e.g., Müller et al. 2004; Karpen et al. 2005, 2006; Karpen &
Antiochos 2008; Antolin et al. 2010; Xia et al. 2011; Luna
et al. 2012b), where no back-reaction on the field topology is
accounted for. This was for the first time extended to 2.5D by
Xia et al. (2012), who simulated the in situ formation of a fil-
ament in a sheared magnetic arcade and showed that the con-
densation self-consistently forms magnetic dips while ensuring
force-balance states. This finding strengthens the analysis per-
formed for prominence formation and evolutions, as adopted by

many authors to date. Once a prominence is formed, it might
be triggered to deviate from its equilibrium position and start to
oscillate.

Observations demonstrate that prominences are hardly static.
In addition to small-amplitude oscillations (Okamoto et al. 2007;
Ning et al. 2009), large-amplitude and long-period prominence
oscillations have been observed (e.g., Eto et al. 2002; Isobe &
Tripathi 2006; Gilbert et al. 2008; Chen et al. 2008; Tripathi et al.
2009; Hershaw et al. 2011; Bocchialini et al. 2011). The obser-
vations of the prominence oscillations led to the comprehensive
research topic of prominence seismology (Blokland & Keppens
2011a,b; Arregui & Ballester 2011; Arregui et al. 2012; Luna &
Karpen 2012; Luna et al. 2012a), and the long-term oscillations
were considered as one of the precursors for coronal mass ejec-
tions (CMEs; Chen et al. 2008; Chen 2011). Of particular inter-
est in this paper are the longitudinal oscillations along the axis of
prominences/filaments, which were first presented in the simula-
tion results of Antiochos et al. (2000) discovered from Hα obser-
vations by Jing et al. (2003). The phenomenon was investigated
in more detail in Jing et al. (2006) and Vršnak et al. (2007). Such
large-amplitude oscillations are triggered by small-scale solar
eruptions near the footpoints of the main filaments, such as mini-
filament eruptions, subflares, and flares. The initial velocities of
the oscillations are 30–100 km s−1. The oscillation period ranges
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from 40 min to 160 min and the damping times are ∼2–5 times
the oscillation period (Jing et al. 2006).

Unlike the transverse oscillations, whose restoring force is
known to be the magnetic tension force, the dominant restor-
ing force for the longitudinal oscillations still awaits to be clar-
ified. Jing et al. (2003) proposed several candidates for the
restoring force, i.e., gravity, pressure imbalance, and magnetic
tension force. Vršnak et al. (2007) suggested that the restor-
ing force is the magnetic pressure gradient along the filament
axis. With radiative hydrodynamic simulations, Luna & Karpen
(2012) and Zhang et al. (2012) suggested that the gravity com-
ponent along the magnetic field is the main restoring force. Li
& Zhang (2012), on the other hand, suggested that both gravity
and magnetic tension force contribute to the restoring force. As
for the damping mechanism, it really depends on the oscillation
mode. For the vertical oscillations, Hyder (1966) proposed that
the magnetic viscosity contributes to the decay. For the horizon-
tal transverse oscillations, Kleczek & Kuperus (1969) proposed
that the induced compressional wave in the surrounding corona
acts to seemingly dissipate the oscillatory power. More damping
mechanisms have been proposed, such as thermal conduction,
radiation, ion-neutral collisions, resonant absorption, and wave
leakage (see Tripathi et al. 2009 and Arregui et al. 2012, for
reviews). For the longitudinal oscillations, Zhang et al. (2012)
found that non-adiabatic terms such as the radiation and the heat
conduction contribute to the damping, but they might not be suf-
ficient to explain the observed shorter timescale. In their simu-
lations the chromospheric heating was switched off, so that the
prominence mass was nearly fixed. Conversely, Luna & Karpen
(2012) studied the prominence oscillations while keeping the
chromospheric heating and the resulting chromospheric evapo-
ration. As a result, the prominence was growing in length and
mass during oscillations. The authors found that there are two
damping timescales, a short one for the initial stage and a longer
one later. The analytical solution indicates that the mass accu-
mulation can explain the fast damping of the initial state. For the
later slower damping, they suggested non-adiabatic effects such
as radiation and heat conduction. A quantitative survey is neces-
sary to clarify how different geometrical and physical parameters
of the prominence affect the damping timescale.

Within the framework of gravity serving as the restoring
force for the longitudinal oscillations of the filament, in this pa-
per we perform a parameter survey with the aim to clarify how
the geometry of the magnetic field affects the oscillation period
and how the combined effects of radiation and heat conduction
contribute to the damping of the oscillations. We describe the
numerical method in Sect. 2. After showing the effects of the
perturbation type in Sect. 3, we display the results of our param-
eter survey in Sect. 4. Discussions and summary are presented
in Sects. 5 and 6.

2. Numerical method

High-resolution observations indicate that a filament/promi-
nence consists of many thin threads that are believed to be
aligned to the individual magnetic tubes (Lin et al. 2005). Since
the magnetic field inside the filament is quite strong (Schmieder
& Aulanier 2012), the plasma beta is very low (β ∼ 0.01–0.1)
(Antiochos et al. 2000; DeVore & Antiochos 2000; Aulanier
et al. 2006), and the thermal conduction is strongly prevented
across the field lines, the dynamics inside different magnetic
tubes can be considered to be independent. Therefore, the for-
mation and evolution of a filament thread can be treated as a
1D hydrodynamic problem. Following Xia et al. (2011), the

1D radiative hydrodynamic equations, shown as follows, are
numerically solved by the state-of-the-art MPI adaptive mesh
refinement versatile advection code (MPI-AMRVAC; Keppens
et al. 2003, 2012),

∂ρ

∂t
+
∂

∂s
(ρv) = 0 , (1)

∂

∂t
(ρv) +

∂

∂s
(ρv2 + p) = ρg‖(s) , (2)

∂ε

∂t
+
∂

∂s
(εv + pv) = ρg‖v + H − nHneΛ(T ) +

∂

∂s

(
κ
∂T
∂s

)
, (3)

where ρ is the mass density, T is the temperature, s is the dis-
tance along the loop, v is the velocity of plasma, p is the gas
pressure, ε = ρv2/2 + p/(γ − 1) is the total energy density, nH is
the number density of hydrogen, ne is the number density of
electrons, and g‖(s) is the component of gravity at a distance
s along the magnetic loop, which is determined by the geome-
try of the magnetic loop. Furthermore, γ = 5/3 is the ratio of
the specific heats, Λ(T ) is the radiative loss coefficient for the
optically thin emission, H(s) is the volumetric heating rate, and
κ = 10−6T 5/2 erg cm−1 s−1 K−1 is the Spitzer heat conductivity.
As in the previous works mentioned in Sect. 1, we assumed a
fully ionized plasma and adopted a one-fluid model. Considering
the helium abundance (nHe/nH = 0.1), we took ρ = 1.4mpnH
and p = 2.3nHkBT , where mp is the proton mass and kB is
the Boltzmann constant. The above equations are different from
those in Luna & Karpen (2012) in that a uniform cross section
was assumed here for the flux tube for simplicity, whereas ex-
panding flux tubes based on given, immobile 3D magnetic fields
were adopted in Luna & Karpen (2012). The radiative hydro-
dynamic Eqs. (1)–(3) were numerically solved with the MPI-
AMRVAC code, where the heat conduction term is solved with
an implicit scheme separately from other terms. To include the
radiative loss, we interpolated with the second-order polynomial
to compile a high-resolution table based on the radiative-loss cal-
culations using updated element abundances and better atomic
models over a wide temperature range (Colgan et al. 2008).
The corresponding values in this table are systematically higher
by almost two times than the previous radiative loss function
adopted by Luna & Karpen (2012).

It is often believed that a prominence is hosted at the dip
of a magnetic loop, supported by the magnetic tension force.
Therefore, we adopted a loop geometry with a magnetic dip that
is symmetric about the midpoint, as shown in Fig. 1. The loop
consists of two vertical legs with a length of s1, two quarter-
circular shoulders with a radius r (the length of each arc, s2 − s1,
is πr/2), and a quasi-sinusoidal-shaped dip with a half-length
of w. The height of the dip is expressed as y = D−D cos(πx/2w)
if the local coordinates (x, y) are centered at the midpoint of the
dip. The dip has a depth of D below the apex of the loop. This
geometry determines the field-aligned component of the gravity,
whose distribution along the left half of the magnetic loop is
expressed as follows:

g‖(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−g�, s � s1;

−g� cos

(
π

2
s − s1

s2 − s1

)
, s1 < s � s2;

g�
πD

2(L/2 − s2)
sin

(
π

s − s2

L/2 − s2

)
, s2 < s � L/2,

(4)

where the gravity at the solar surface g� = 2.7 × 102 m s−2, the
total length of the loop L, the length of each vertical segment
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Fig. 1. Magnetic loop used for the 1D radiative hydrodynamic simu-
lations of the prominence oscillations. The horizontal and the vertical
sizes are not to scale.

s1 = 5 Mm, and s2 = s1 + πr/2 Mm. The total length of the dip
is 2w = L − 2s2. The field-aligned component of the gravity in
the right half is symmetric to the left half. The parameter h =
s1 + r − D gives the height of the central dip above the lower
boundary.

Our simulations start from a thermal and force-balanced
equilibrium state where the background heating is balanced by
radiative loss and thermal conduction, and the plasma in the
loop is quiescent. The simulations are divided into three steps.
(1) Prominence formation: A prominence forms and grows near
the center of the magnetic dip as chromospheric material is evap-
orated into the corona and condensates due to thermal insta-
bility after chromospheric heating is introduced near the foot-
points of the loop. (2) Prominence relaxation: the prominence
relaxes to a thermal and force-balanced equilibrium state as the
localized heating is halted and the chromospheric evaporation
ceases. (3) Prominence oscillation subjected to perturbations:
The prominence starts to oscillate with a damping amplitude
after perturbations are introduced. In step 1, which lasts for a
time interval of Δt1, the heating term H(s) in Eq. (3) is com-
posed of two terms, the steady background heating H0(s) and
the localized chromospheric heating H1(s), which are expressed
as follows:

H0(s) =

{
E0 exp(−s/Hm), s < L/2;
E0 exp[−(L − s)/Hm], L/2 � s < L;

(5)

H1(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

E1, s � str;
E1 exp[−(s − str)/λ], str < s � L/2;
E1 exp[−(L − str − s)/λ], L/2 < s � L − str;
E1, s > L − str;

(6)

where the quiescent heating term H0 is adopted to maintain the
hot corona with the amplitude E0 = 3 × 10−4 erg cm−3 s−1 and
the scale-height Hm = L/2, and the localized heating term H1 is
adopted to generate chromospheric evaporation into the corona
with the amplitude E1 = 10−2 erg cm−3 s−1, the transition region
height str = 6 Mm, and the scale height λ = 10 Mm. The heating
is taken to be symmetric so that it forms a static prominence near
the magnetic dip center, so that we can easily control the manner
how the prominence is triggered to oscillate. Our methodology
is different from that in Luna & Karpen (2012), who used asym-
metric heating that spontaneously leads to the oscillation once
the prominence is formed. In step 2, H1 is switched off. Owing
to the absence of the chromospheric evaporation, the gas pres-
sure inside the magnetic loop drops, so the compressed promi-
nence expands until a new equilibrium is reached, which takes
less than approximately 2.4 h. In step 3, a perturbation is intro-
duced to the prominence to trigger its oscillation. Note that H0
remains throughout the simulations.

From the observational point of view, there might be
two types of perturbations. The first one is an impulsive
momentum injected into the magnetic loop as the magnetic re-
connection near the footpoints rearranges the magnetic loop
rapidly. The second is impulsive heating due to subflares (e.g.,

Jing et al. 2003; Vršnak et al. 2007; Li & Zhang 2012) or mi-
croflares (Fang et al. 2006) near the footpoints of the magnetic
loop where a large amount of magnetic energy is impulsively
released through magnetic reconnection. The gas pressure is
greatly increased, which could propel the prominence to oscil-
late along the dip-shaped field lines. In our 1D simulations, we
separated the two effects to see their difference. In one case, a ve-
locity perturbation with the following distribution was imposed
to the prominence,

v(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, s < spl − δ;
v0(s − spl + δ)/δ, spl − δ � s � spl;
v0, spl � s � spr;
v0(−s + spr + δ)/δ, spr � s � spr + δ;
0, s > spr,

(7)

where spl and spr are the coordinates of the left and right bound-
aries of the prominence, δ = 10 Mm is the buffer zone that
allows that the perturbation velocity varies smoothly in space,
and v0 is the perturbation amplitude. In the other case, impulsive
heating (H2), as described as follows, was introduced near the
right-hand footpoint of the magnetic loop,

H2(s) = E2 exp

⎡⎢⎢⎢⎢⎣− (s − speak)2

s2
scale

− (t − tpeak)2

t2
scale

⎤⎥⎥⎥⎥⎦, (8)

where the heating spatial scale sscale = 2.5 Mm, the peak location
speak = 245 Mm, the heating timescale tscale = 5 min, and the
peak time tpeak = 15 min. The heating increases to the peak for
15 min and then decreases to 0.

As for the boundary conditions, all variables at the two foot-
points of the magnetic loop are fixed, which is justified because
the density in the low atmosphere is more than four orders of
magnitude higher than that in the corona. The same approach has
been adopted by Ofman & Wang (2002) and Xia et al. (2011),
assuming that the coronal dynamics has little effect on the low
atmosphere. The approach was verified by Hood (1986) with the
parameters being far from the marginal stability. The violation of
the rigid wall conditions in certain cases was discussed by van
der Linden et al. (1994).

3. Effects of the perturbation type

To check how the two types of perturbation described in Sect. 2
influence the characteristics of the prominence oscillations, we
performed simulations of oscillations that are excited by the two
types of perturbation while keeping Δt1 = 7.2 h, r = 20 Mm,
D = 10 Mm, and L = 260 Mm.

In case A, the prominence oscillation is triggered by a ve-
locity perturbation over the whole prominence body. With v0 =
−40 km s−1 (the minus means that the velocity is toward the
left), the temporal evolution of the plasma temperature distri-
bution along the magnetic loop is displayed in the left panel of
Fig. 2. In response to the perturbation, the prominence, signified
by the low temperature, starts to oscillate around the equilibrium
position. The oscillation amplitude decays with time. Fitting the
trajectory of the mass center of the oscillating prominence with
a decayed sine function

s = s0 + A0 sin

(
2π
P

t + φ0

)
exp (−t/τ), (9)

we find the initial amplitude A0 = 34.9 Mm, the oscillation pe-
riod P = 84.3 min, and the damping timescale τ = 272 min.
Assuming that the prominence thread has a cross-section area of
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Fig. 2. Comparison of the evolutions of the loop temperature be-
tween the two types of perturbations. The left panel corresponds to
the case with velocity perturbations with v0 = −40 km s−1 and the
right panel to the case with localized heating perturbations with E2 =
0.24 erg cm−3 s−1.

∼3.14×1014 cm2 (Lin et al. 2005), the initial kinetic energy of the
oscillating prominence thread is estimated to be ∼7.2× 1023 erg.
The single decayed sine function used for fitting the Hα ob-
servations (Jing et al. 2003; Vršnak et al. 2007; Zhang et al.
2012) fits the simulated observations very well. In contrast, a
combination of Bessel function and an exponential decay func-
tion is necessary to fit the initial overtone in the simulations of
Luna & Karpen (2012), which results from the continual mass
accumulation.

In case B, the prominence oscillation was triggered by the
impulsive heating that was deposited near the right leg of the
magnetic loop to mimic a microflare near the prominence. To do
this, an impulsive heating term H2(s) in Eq. (8) was added to
the heating term H in Eq. (3), where speak = 245 Mm, meaning
the heating is concentrated at a height of 15 Mm above the right
footpoint of the magnetic loop.

The right panel of Fig. 2 depicts the temporal evolution
of the temperature distribution along the magnetic loop with
E2 = 0.24 erg cm−3 s−1. With the typical cross-section area of
a prominence thread being ∼3.14× 1014 cm2, the corresponding
total energy deposited into the single magnetic loop Eheating is
1.8 × 1025 erg. This value is reasonable since observations in-
dicate that the total energy of a microflare is 1026–1027 erg or
even more (e.g., Shimizu et al. 2002; Hannah et al. 2008; Fang
et al. 2010), and several percent of the released energy dissi-
pates into one prominence thread. From another point of view,
in the framework of the magnetic reconnection model for mi-
croflares, the magnetic energy release rate is estimated to be
B2vin/(4πL). With the magnetic field B ∼ 20 G, the reconnec-
tion inflow speed vin being about 0.1 times the Alfvén speed,
which is about 1000 km s−1 (Jiang et al. 2012), and the spa-
tial size L = 10′′, the energy release rate is estimated to be
∼0.88 erg cm−3 s−1, which is on the order adopted here. Fitting
the trajectory of the oscillating prominence with the damped
sine function as shown in Eq. (9) yields A0 = 35.8 Mm, P =
84.3 min, and τ = 268 min. The corresponding initial velocity is
also –40 km s−1. This indicates that a typical microflare near the
leg of the magnetic loop hosting a prominence thread can excite
the prominence longitudinal oscillations with an initial veloc-
ity of tens of km s−1. The corresponding kinetic energy is only
∼7.2 × 1023/1.8 × 1025, i.e., ∼4% of the deposited thermal en-
ergy. The remaining ∼96% of the energy deposit contributes to
the heating of the chromosphere.

4. Parameter survey
The results in Sect. 3 reveal that the oscillation period does not
strongly depend on the two types of perturbations, i.e., impulsive

momentum and localized heating at one footpoint used in our
investigation. We concentrated on the oscillation characteristics
that follow the short transient/excitation phase previously ob-
tained from simple decaying sinusoidal fitting. A small differ-
ence in the decay timescale exists between the two perturbation
types. With the same initial velocity, the decay timescale is 4 min
shorter in the case of impulsive heating than that in the case of
impulsive momentum. However, the relative variation, 1.4%, is
very small. Therefore, we can conclude that the oscillation is ba-
sically intrinsic and the characteristics of the oscillation depend
on the prominence itself and the geometry of the magnetic loop
in our case without mass accumulation, and the oscillations are
excited by either impulsive momentum or localized heating. The
prominence feature is only characterized by the thread length (l),
and the geometry of the magnetic loop is characterized by r, D,
and w as depicted in Fig. 1. Among the three geometrical pa-
rameters, h = s1 + r − D determines the height of the promi-
nence, D and w determine the curvature of the magnetic dip. If
other parameters are fixed, the length of the prominence is de-
termined by the duration of the chromospheric evaporation in
step 1, i.e., Δt1, as described in Sect. 2. Moreover, the decay
timescale might vary with the perturbation amplitude, therefore
another parameter is the initial perturbation velocity v0. In this
section, we perform a parameter survey to investigate how each
of the five parameters (Δt1, r, D, w, and v0) changes the oscil-
lation period and the decay timescale. For each parameter, sev-
eral cases with different values are simulated with other param-
eters fixed. In our simulations, we set r = 10 Mm, D = 5 Mm,
w = 110 Mm, and v0 = −20 km s−1 when varying Δt1. We set
Δt1 = 7.16 h, D = 5 Mm, w = 90 Mm, and v0 = −20 km s−1

when varying r. We set Δt1 = 7.16 h, D = 5 Mm, r = 10 Mm,
and v0 = −20 km s−1 when varying w. We set Δt1 = 7.16 h,
r = 20 Mm, w = 93.6 Mm, and v0 = −20 km s−1 when vary-
ing D. We set Δt1 = 7.16 h, r = 20 Mm, w = 93.6 Mm, and
D = 10 Mm when varying v0. Since the oscillation characteris-
tics are found to be nearly insensitive to the perturbation type,
we used the velocity perturbation to excite the oscillations in the
survey.

4.1. Length and mass of the prominence

After finishing the first two steps of the simulations as described
in Sect. 2, we obtained a quasi-static prominence. The depen-
dence of the prominence length l on Δt1, h, D, and w is shown in
the four panels of the upper row of Fig. 3. It can be seen that l,
which fits into the scaling law l ∼ Δt0.70

1 , increases with the du-
ration of the heating time Δt1. This is expected because more
chromospheric plasma is evaporated into the corona when Δt1
increases. The length l decreases with h as l ∼ h−0.37, which
is probably because it takes a longer time for the more tenuous
corona to condensate as the height of the magnetic dip increases,
and therefore the effective heating time is shorter. The length l
decreases with D as l ∼ D−0.21, which can be understood as the
prominence becoming more compressed as the magnetic dip be-
comes deeper. However, the length of the prominence does not
vary considerably with w. Of course, w should not be too small,
otherwise thermal instability would not occur. The lengths of
these simulated prominence threads are consistent with the re-
ported values, i.e., tens of Mm (Lin et al. 2005).

The dependence of the prominence mass M on Δt1, h, D,
and w is shown in the four panels of the lower row of Fig. 3. The
dependence of M on Δt1, h, and w is similar to l. Their difference
is that l decreases with D whereas M does not change with D,
which means that the plasma number density (1010–1011 cm−3,
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Fig. 3. Scatter plots of the total length l (upper panels) and mass M
(lower panels) of the prominences at the end of relaxation step as func-
tions of Δt1, h, D, and w.

and the corresponding density is 10−14–10−13 g cm−3) is higher
in the prominence with a deeper magnetic dip. A scaling law is
obtained by fitting the data points, which is M ∼ Δt0.98

1 h−0.34.
The above results are derived for a dipped magnetic loop

filled via chromospheric evaporation with a limited lifetime,
where the prominence thread can be sustained in the corona.
For magnetic loops without a dip (e.g., Mendoza-Briceño et al.
2005) or with a shallow dip and asymmetric heating (e.g.,
Karpen et al. 2006), condensations repetitively form, stream
along the magnetic field, and ultimately disappear after falling
back to the nearest footpoint. Therefore, the mass and length of
the prominence evolve dynamically, without reaching an equi-
librium value.

4.2. Oscillation period and decay timescale

As the velocity perturbation is introduced to the quasi-static
prominence, the prominence starts to oscillate. Fitting the trajec-
tory of the oscillating prominence with the damped sine function
shown in Eq. (9), we obtain the oscillation period (P) and the de-
cay timescale (τ) for each case in the parameter survey.

The variations of P along with the parameters l, h, D, w,
and v0 are shown in the upper row of Fig. 4. P increases slightly
with l and v0, and decreases slightly with h. However, it increases
significantly with w and decreases with D. To fit the variations
with a scaling law, we obtain P ∼ l0.16h−0.05D−0.54w0.91v0.05

0 .
Therefore, the period of the prominence longitudinal oscillations
relies dominantly on the geometry of the dip, especially its cur-
vature. The range of P agrees with the reported values in previ-
ous studies (e.g., Jing et al. 2006).

The variations of τ along with the five parameters are shown
in the lower row of Fig. 4. τ increases significantly with l and
D, and decreases with w and v0. In the cases of |v0| = 70 and
80 km s−1, part of the prominence mass drains down to the chro-
mosphere, which is why the triangles in the lower-right panel of
Fig. 4 do not follow the trend of the data points denoted by the
diamonds where |v0| < 70 km s−1. The decay timescale does not
vary significantly with h. To fit the variations with a scaling law,
we obtain τ ∼ l1.63h−0.18D0.66w−1.21v−0.30

0 , where the cases with
prominence drainage are not included in the fitting. The values
of τ are also in the same order of magnitude as the observed
ones.

Fig. 4. Scatter plots of the period P (upper panels) and damping time τ
(lower panels) of the prominences in the oscillation step as functions
of l, h, D, w, and v0. The values of P and τ in the cases |v0 | = 70 and
80 km s−1 that cause mass drainage at the footpoint of the coronal loop
are marked with triangles in the right panels.

5. Discussions

5.1. Restoring force

For an oscillating phenomenon, it is most important to determine
the restoring force, which directly decides the oscillation period.
In our 1D hydrodynamic simulations, the only forces exerted
on the prominence are the gravity and the gas pressure gradi-
ent, both are restoring forces for the longitudinal oscillations.
To compare their importance, we calculated the two forces in
the case with Δt1 = 7.16 h, v0 = −40 km s−1, r = 20 Mm, D =
10 Mm, and w = 93.6 Mm. The two forces were calculated when
the prominence is the farthest from the equilibrium position.
Although the plasma in prominences is hundreds of times denser
than the ambient corona, it is not an ideal rigid body. For oscil-
lations with higher modes, as studied by Luna et al. (2012a), the
pressure gradient changes rapidly along the prominence thread.
For the fundamental-mode oscillations in this paper, the promi-
nence oscillates as a whole and the pressure gradient changes
slightly along the thread. Therefore, for simplicity, we compared
the overall magnitude of the two forces by a simple calculation
instead of point-to-point as in the simulations. The integral of the
gravity force is quantified between the two ends of the promi-

nence, i.e., Fg =
∫ right

left
ρ|g‖|ds =

∫ right

left
ρg� πD2w | sin( π(s−L/2)

w )|ds,
where a unit area is assumed for the cross section. The integral
of pressure gradient force over the prominence is expressed as

Fp =
∫ right

left
|∂p/∂s|ds = |pright − pleft|. The left and right bound-

aries of the prominence are defined to be where the density drops
to 7 × 10−14 g cm−3. Figure 5 displays the temporal evolution of
the ratio Fg/Fp, from which it is seen that the gravitational force
is generally about ten times stronger than the gas pressure gradi-
ent force.

Since the gravity is the dominant restoring force, the overall
motion of the prominence can also be described for simplicity as

M
d2x
dt2
= Mg‖ = −Mg�

πD
2w

sin
(
πx
w

)
, (10)

where x = s − L/2 is the displacement of the prominence from
the equilibrium position. It is not easy to solve this equation an-
alytically. However, if the oscillation amplitude is much smaller
than the half-width of the whole magnetic dip (w), we derive the
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Fig. 5. Temporal variation of Fg/Fp when the displacement of the
prominence reaches maximum during each half-cycle for r = 20 Mm
and D = 10 Mm. The velocity perturbation is –40 km s−1.

approximation sin(πx/w) ≈ πx/w. Accordingly, the above equa-
tion is simplified to be

M
d2x
dt2
= −Mg�

πD
2w
πx
w
, (11)

with the solution x = A0 sin( 2π
P t + φ). The corresponding period

is

P =

√
8w2

g�D
· (12)

This period can also be readily obtained if the prominence is
taken in analogy to a pendulum whose period is

P = 2π

√
R
g�
, (13)

where R is the curvature radius of the dipped magnetic loop.
With the shape of the loop being y = D − D cos(πx/2w),
the curvature radius at the loop center is approximated to be
R = 2w2/(Dπ2). Substituting R into Eq. (13), we derive P =√

8w2/(g�D), the same as Eq. (12). Figure 6 compares the oscil-
lation periods obtained from the hydrodynamic simulations (di-
amonds) and those estimated from Eq. (12) (solid line) when the
two parameters, D and w, are changed. This shows that Eq. (12)
is a very good approximation for estimating the period of the
prominence longitudinal oscillation. Of course, it should be kept
in mind that the derivation of Eq. (12) is based on the assump-
tion that the dipped magnetic loop has a sinusoidal shape. More
generally, the oscillation period is related to the local curvature
radius R by the formula P = 2π

√
R/g�, as also demonstrated by

Luna & Karpen (2012).
Recently, Luna et al. (2012a) extended the theoretical anal-

ysis of longitudinal prominence oscillations by including the
effect of the pressure gradient force. They found that the ulti-
mate fundamental frequency of the oscillations is found from
ω2

fund = ω
2
g + ω

2
s , where ωg and ωs stand for the gravity-

driven and pressure-driven frequencies, respectively. The ratio
of the two frequencies ω2

g/ω
2
s = Rlim/R, where Rlim denotes the

critical value of the curvature radius (R) of the magnetic dip.
If R � Rlim, gravity dominates over pressure in the restoring
force of longitudinal oscillations. The authors pointed out that
the reported values of the curvature are low compared with Rlim,
so that it is reasonable to ignore the effect of the pressure term

Fig. 6. Comparison of the periods of the prominence oscillations from
simulations (diamonds) and theoretical analysis (solid line) as a func-
tion of the depth of the magnetic dip D (left panel) and the width of the
dip w (right panel). Note that both axes are in logarithmic scale.

in most cases. In our parameter survey, Rlim = 0.175(L − l)l
ranges from 760 to 2100 Mm and the ratio R/Rlim ranges from
0.1 to 0.5. Hence, we confirm their theoretical results of gravity
being the main restoring force for the fundamental mode in this
parameter range.

For a prominence above the solar limb, all the parameters in
Eq. (12) can be roughly measured. Combined with the results
in this paper, the comparison between simulations and observa-
tions in Zhang et al. (2012) implies that Eq. (12) is a good ap-
proximation for estimating the oscillation period. For the promi-
nence longitudinal oscillations on the solar disk, i.e., filament
longitudinal oscillations, only the oscillation period can be un-
ambiguously measured. Equation (12) then provides a diagnos-
tic tool for inferring the geometry of the dipped magnetic loop.
Especially when w can be roughly estimated from force-free
magnetic extrapolations, the depth of the dip, D, can be de-
termined. At least, we can estimate the curvature radius of the
dipped magnetic field, R, through Eq. (13). After determining R,
Luna & Karpen (2012) proposed an approximate method for es-
timating the magnetic field in the prominence.

In addition to the dominant dependence on the geometric pa-
rameters, the oscillation period also weakly changes with length
and height of the prominence, as well as with the initial velocity.
This can be understood as follows: (1) dependence on the promi-
nence length: because the prominence thread is shorter, the ratio
of the gas pressure gradient to the gravity would increase as in-
dicated by our simulations, therefore, the gas pressure gradient
would contribute to the restoring force, resulting in a shorter os-
cillation period. (2) Dependence on the prominence height: as
seen from Fig. 3, with other parameters the same, a high promi-
nence has a shorter length. Therefore, for the same reason as
in (1), the oscillation period would be shorter. (3) Dependence on
the initial velocity: since sin(πx/w) is always smaller than πx/w
in Eq. (10), the nonlinear term would naturally lead to a long
period as the oscillation amplitude increases.

5.2. Damping mechanisms

When energy dissipation terms such as radiative cooling and
heat conduction are removed from Eq. (3), as we did in a test
simulation, we found that the prominence oscillation does not
damp at all. When the two non-adiabatic terms are kept, the
prominence oscillation always damps. To see the importance of

A124, page 6 of 8

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220705&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220705&pdf_id=6


Q. M. Zhang et al.: Simulating prominence oscillations

Fig. 7. Temporal variations of ER/EC in the oscillation step for v0 =
−40, –50, and –60 km s−1.

the two terms, we calculated the time integrations of radiative
loss (ER) and thermal conduction (EC) of the whole system af-
ter subtracting the corresponding values when the prominence is
static at the center of the dip. Here ER and EC are the integrals
of the radiative and the conductive terms in the energy equa-
tion Eq. (3), where the integrals are taken in the whole corona
above the two footpoints. The evolutions of the ratio (ER/EC)
for v0 = −40, –50, and –60 km s−1 are displayed in Fig. 7. The
ratio is always higher than unity. Especially in the early stage of
the oscillation when the amplitude is still large, ER is even one
order of magnitude larger than EC. It is also revealed that as the
initial velocity increases, ER becomes increasingly important in
most of the lifetime of the oscillation. Our results support the
conclusions of Terradas et al. (2001, 2005) that radiative loss is
responsible for the damping of the slow mode of prominence
oscillations in the dip-shaped magnetic configurations, which
seems to be different from the case of slow-mode waves prop-
agating in the coronal loops where heat conduction contributes
more to the damping (De Moortel et al. 2002a, 2002b).

The role of radiative cooling can be understood in a simple
model as follows: since there are two segments of the corona in
the magnetic loop, as the prominence oscillates, one part would
be attenuated and the other be compressed. Assuming that the
total length of the coronal part of the magnetic loop is unity,
which includes part x, which is to the left of the prominence,
and the other part 1 − x, which is to the right of the prominence.
Hence, the densities of the corona on the two sides are propor-
tional to 1/x and 1/(1 − x), respectively. The total optically thin
radiative loss of the coronal part is proportional to x−2+(1−x)−2,
which is minimum when x = 0.5, i.e., when the prominence is
situated at the equilibrium position. Whenever the prominence
deviates from the loop center, the cooling becomes stronger, dis-
sipating the kinetic energy of the oscillating prominence. The
model is best illustrated by the relationship between the damping
timescale (τ) and the initial amplitude of the oscillation, i.e., A0
in Eq. (9). As A0 increases, one of the two coronal parts is more
severely compressed, so the radiative cooling x−2+(1−x)−2 devi-
ates more strongly from the lowest value, i.e., it becomes higher.
As a result, the oscillation decays more rapidly.

Based on the sinusoidal function, A0 ∝ v0P. Substituting
Eq. (12) into it, we obtain A0 ∝ v0wD−1/2. With this, it is
easy to understand the positive correlation between the decay
timescale τ and D, and the negative correlation between τ and w
as revealed by the lower row of Fig. 4. Along this line of thought,
the dependence of the decay timescale on the prominence length
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Fig. 8. Temporal evolution of the temperature along the magnetic loop
when the initial velocity perturbation is as strong as v0 = −80 km s−1.
Note that the prominence passes the magnetic loop apex and drains
down to the chromosphere at the left footpoint around t = 0.8 h.

can be explained as follows: Because the prominence thread
is longer, the coronal part of the magnetic loop, which radi-
ates the thermal energy, is shorter. More importantly, the longer
thread, with the same initial velocity, has a higher kinetic energy.
Therefore, it takes a longer time for the compressed coronal part
to radiate it.

The first six cases (i.e., |v0| from 10 km s−1 to 60 km s−1)
in the lower-right panel of Fig. 4 show that the decay timescale
decreases nearly linearly with the initial perturbation velocity.
However, when v0 is higher than 70 km s−1, part of the promi-
nence would pass the magnetic loop apex and drain down. The
critical velocity for the prominence to reach the loop apex can
be roughly estimated as vcriti ∼

√
2g�D = 23

√
D/Mm km s−1.

Therefore, the value of vcriti is 73 km s−1 for D = 10 Mm. As re-
vealed from our simulations, even when v0 = −70 km s−1, mass
drainage happens, although the amount of the drainage is much
lower than that for v0 = −80 km s−1. The temperature evolu-
tion along the loop for v0 = −80 km s−1 is presented in Fig. 8.
Part of the prominence falls down to the left leg of loop, lead-
ing to the drainage of the prominence mass and kinetic energy
as well, while the remaining part continues to oscillate along the
dip. The oscillation period and the decay timescale in the cases
with mass drainage are marked as triangles in Fig. 4. Their pe-
riods, ∼90.6 min, are slightly shorter than the trend defined by
other cases without mass drainage (diamonds), which is consis-
tent with the weak positive correlation between P and the promi-
nence length l. However, the damping timescales are greatly re-
duced compared to the trend defined by other cases without mass
drainage, as seen from the lower-right panel of Fig. 4. This re-
sult, namely that mass drainage would greatly reduce the decay
timescale, might explain the mismatch between the simulation
and the observation of the decay of a prominence oscillation re-
ported in Zhang et al. (2012).

6. Summary

In this paper, we carried out 1D hydrodynamic simulations of
longitudinal prominence oscillations using the MPI-AMRVAC
code, extending earlier numerical simulations of prominence
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formation (Xia et al. 2011) and of prominence oscillations (Luna
& Karpen 2012; Zhang et al. 2012). The simulations were di-
vided into three steps: First, a prominence forms and grows near
the center of the dip-shaped coronal loop due to chromospheric
heating and the subsequent thermal instability. Then, it relaxes
to a quiescent state after the chromospheric heating is switched
off. Subjected to two types of perturbations that mimic sub-
flares, the prominence starts to oscillate along the dip. Within the
framework of the evaporation-condensation model, we obtained
scaling-laws for the prominence length (l) and mass (M), which
are expressed as l ∼ Δt0.70

1 h−0.37D−0.21 and M ∼ Δt0.98
1 h−0.34,

where Δt1 is the time duration of the chromospheric heating and
evaporation, h is the prominence height, D is the depth of the
magnetic dip. We found that l is insensitive to the half length
of the magnetic dip (w) once w is large enough, about 60 Mm;
M is insensitive to D and w. Both transient heating at one leg
of the loop and an impulsive velocity perturbation applied to the
prominence as a whole are capable of driving a coherent oscil-
lation along the dip. The oscillation properties were found to be
insensitive to the perturbation type in the regimes we studied. In
the case of the transient heating, ∼4% of the deposited energy is
converted into the kinetic energy of the prominence. The longitu-
dinal oscillations are sustained mainly by the tangential compo-
nent of gravity, except when the prominence is short and the gas
pressure gradient becomes important as well. Both simulations
and linear analysis revealed that the period of oscillation (P)
is 2π

√
R/g�, where R denotes the curvature radius of the dip,

as also found by Luna & Karpen (2012). Other parameters, such
as the length and height of the prominence, as well as the pertur-
bation velocity, also affect P, though only slightly. The longitu-
dinal oscillations damp in the presence of non-adiabatic effects,
i.e., radiative loss and thermal conduction (Soler et al. 2009),
among which radiative loss plays a leading role. With the param-
eter survey, we obtained a scaling-law for the decay timescale τ,
which is expressed as τ ∼ l1.63D0.66w−1.21v−0.30

0 , where v0 is
the initial velocity perturbation. We also found that prominence
mass drainage, once it happens, significantly reduces the decay
timescale, which may explain the mismatch between the simula-
tions and the observations disclosed by Zhang et al. (2012).

These results are limited in application. According to this pa-
per, the mass of a prominence thread is insensitive to the depth D
and the width w of the magnetic dip. This is based on the promi-
nence formation directly via chromospheric evaporation with a
fixed lifetime Δt1. According to Xia et al. (2011), the promi-
nence would grow via siphon flow even when the localized heat-
ing is switched off, though the growth speed is much slower.
Recently, Luna et al. (2012a) pointed out that the restoring force
of the longitudinal oscillations depends on the depth of the mag-
netic dip. For shallow dips, gas pressure plays an important role,
while gravity is the main factor for deep dips. Moreover, Li &
Zhang (2012) suggested that magnetic tension may also con-
tribute to the restoring force. As for the damping mechanisms,
several other effects might need to be taken into account in the
future simulations, such as the wave leakage and plasma viscos-
ity (Ofman & Wang 2002). However, some will only be quantifi-
able in true multidimensional configurations, e.g., starting from
the prominences formed in Xia et al. (2011).
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