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ABSTRACT

We examine the physical parameters that affect the accumulation of gas in molecular clouds to high column densities where the
formation of stars takes place. In particular, we analyze the dense gas mass fraction (DGMF) in a set of self-gravitating, isothermal,
magnetohydrodynamic turbulence simulations that include sink particles to model star formation. We find that the simulations predict
close to exponential DGMFs over the column density range N(H2) = 3−25×1021 cm−2 that can be easily probed via, e.g., dust extinc-
tion measurements. The exponential slopes correlate with the type of turbulence driving and also with the star formation efficiency.
They are almost uncorrelated with the sonic Mach number and magnetic-field strength. The slopes at early stages of cloud evolution
are steeper than at the later stages. A comparison of these predictions with observations shows that only simulations with relatively
noncompressive driving (b � 0.4) agree with the DGMFs of nearby molecular clouds. Massive infrared dark clouds can show DGMFs
that agree with more compressive driving. The DGMFs of molecular clouds can be significantly affected by how compressive the tur-
bulence is on average. Variations in the level of compression can cause scatter to the DGMF slopes, and some variation is indeed
necessary to explain the spread of the observed DGMF slopes. The observed DGMF slopes can also be affected by the clouds’ star
formation activities and statistical cloud-to-cloud variations.
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1. Introduction

Star formation is ultimately controlled by the processes that
regulate the formation of density enhancements in molecular
clouds. In our current picture, the density statistics of the inter-
stellar medium are heavily affected by supersonic turbulence (for
a review, see Hennebelle & Falgarone 2012). The density statis-
tics depend on characteristics, such as the total turbulent and
magnetic energy (e.g., Padoan et al. 1997a; Nordlund & Padoan
1999; Vázquez-Semadeni & García 2001; Kowal et al. 2007;
Molina et al. 2012; Federrath & Klessen 2013, FK13 hereafter),
the driving mechanism of the turbulence (e.g., Federrath et al.
2010b; Federrath & Klessen 2012, FK12, hereafter), the equa-
tion of state (e.g., Passot & Vázquez-Semadeni 1998; Gazol &
Kim 2013), and the driving scale (e.g., Fischera & Dopita 2004;
Brunt et al. 2009). Constraining these characteristics is funda-
mental for virtually all analytic star formation theories.

We have previously employed near-infrared dust extinction
mapping in analyzing column density statistics of molecular
clouds (Kainulainen et al. 2009, 2011a,b; Kainulainen & Tan
2013, KT13 hereafter). This technique is sensitive and well-
calibrated at low column densities, making it suitable to study
the molecular cloud mass reservoirs. Exploiting this advantage,
we studied how the clouds gather gas to the regime where star
formation occurs. We used an easily accessible characteristic to

� Appendices are available in electronic form at
http://www.aanda.org

quantify this, namely the dense gas mass fraction1 (DGMF, here-
after), defined as a function that gives the fraction of the cloud’s
mass above a column density value

dM′(>N) =
M(>N)

Mtot
, (1)

where M(>N) is the mass above the column density N, and Mtot
is the total mass. The DGMF is linked to the probability den-
sity function (PDF), p(N), of column densities, which gives the
column density probability between [N,N + dN], via

dM′ =
∫ Nhigh

N
p(N′)dN′

/ ∫ Nhigh

Nlow

p(N′)dN′, (2)

where [Nlow,Nhigh] is the probed column density range. The rea-
son for analyzing DGMFs instead of PDFs is simply the intuitive
connection to the total mass reservoir of the cloud. Previously,
DGMFs have been analyzed by, e.g., Kainulainen et al. (2009),
who show that starless clouds contain much less dense gas than
star-forming clouds, and by Lada et al. (2010) who used them to
derive a star-formation threshold.

From the theoretical point-of-view, the form of the DGMF
can be controlled by any of the forces affecting the cloud’s
density structure. The key parameters describing these forces

1 We purposefully use the term “dense gas mass fraction” here instead
of “cumulative mass function” (CMF) from our previous works. This
is to avoid confusion with the “core mass function” that is commonly
used in literature.
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Fig. 1. DGMFs of four simulations (black lines) withMs = 10, processed to mimic those observed with a near-infrared dust extinction mapping
technique. The solid lines show the DGMFs at t = 0 and the dotted lines at time steps SFE = {1, 3, 10}%. The panels also show with dashed lines
the mean DGMF of nearby starless clouds (blue) and of Taurus (Kainulainen et al. 2009, red), and of a sample of IRDCs (KT13, green).

are2 i) the sonic Mach number, Ms; ii) the turbulence driving
(Federrath et al. 2008, 2010b), which is commonly denoted by
b, with b = 1/3 corresponding to purely solenoidal driving and
b = 1 to fully compressive driving; and iii) the magnetic field
strength, B, reflected by the Alfvén Mach number,MA. These
parameters relate to density fluctuations via (Nordlund & Padoan
1999; Price et al. 2011; Molina et al. 2012)

σ2
ln ρ/〈ρ〉 = ln

(
1 + b2Ms

2 β

β + 1

)
, (3)

where σln ρ/〈ρ〉 is the standard deviation of logarithmic, mean-
normalized densities, and β = 2M2

A/M2
s . This form of Eq. (3)

(Molina et al. 2012) is valid up to moderate magnetic field
strengths,MA � 6. The strength of theMs – density coupling is
very important for analytic star formation theories, because it di-
rectly affects the star formation rates and efficiencies (SFE) they
predict (e.g., Krumholz & McKee 2005; Hennebelle & Chabrier
2011; Padoan & Nordlund 2011, see FK12).

In this work, we estimate how the different physical param-
eters affect the observed DGMFs of molecular clouds. To this
goal, we analyze numerical turbulence simulations and derive
predictions for observable DGMFs. We then compare the pre-
dictions to the results of Kainulainen et al. (2009, 2011b) and
KT13 (see also Lada et al. 2010).

2. Simulation data
We analyze a set of magneto-hydrodynamic simulations of
isothermal, driven turbulence in a periodic box, including self-
gravity and sink particles to follow gas accretion onto protostars
(see FK12). Each simulation is a time series that starts (t = 0)
when the turbulence is fully developed and the gravity is
switched on. Then, the evolution is followed as a function of
SFE, defined as the fraction of mass accreted into sink particles.
The formation of the first sink particle occurs at SFE = 0%. The
sink particles affect their surroundings because of gas accretion,
and we eliminated them from the simulations. The issue is de-
scribed in Appendix A.1. Here we quote the main result: the
DGMFs of Ms = 10 simulations (which we directly compare
with observations) with 5123 cells are unaffected by sink parti-
cles below N(H2) < 11 × 1021 cm−2. They are 70% accurate up
to N(H2) ≈ 25 × 1021 cm−2. We also show in Appendix A.2 that
the resolution does not affect the DGMFs in this range.

The simulations were scaled so that their virial parameters,
αvir,0 = 5σ2

vL/(6GM) whereσv is the 3D velocity dispersion and
L the size of the simulation, were close to unity. Observations

2 However, see the discussion on the caveat related to the simulation
Reynolds numbers in Sect. 3.1.

have shown that molecular clouds, on average, show αvir,0 ≈ 1
(e.g., Heyer et al. 2009). However, this definition is an idealized
approximation. The actual virial parameters,αvir = 2|Ekin|/|Epot|,
vary by more than an order of magnitude in the simulations.
However, the actual virial parameters do not affect density PDFs
greatly (FK12). If the virial parameter is “low-enough” to allow
some collapse, the density structure is determined by other pa-
rameters (FK12; Molina et al. 2012).

To make a realistic comparison with observations, we pro-
cessed the simulations withMs = 5−10 to mimic data derived
using near-infrared dust extinction mapping (Lombardi & Alves
2001). First, column density data from simulations was regrid-
ded to 60′′/pixel and smoothed to the FWHM = 120′′ resolution
(0.09 pc at 150 pc distance). The native resolution of the simula-
tions withMs > 10 is coarser than this, and we could not smooth
them. We do not compare them with the lowerMs simulations.
Then, the column densities outside N(H2) = [3, 25]× 1021 cm−2

were discarded, approximating the dynamic range of extinction
mapping. The lower limit of the range was chosen to be high
enough that it is possible to define separate structures in simula-
tions using (approximately) closed contours of constant column
density. This is because, observationally, clouds are commonly
defined in this manner (e.g., Lada et al. 2010). Finally, Gaussian
noise with σ(N) = 0.018N(H2) + 0.2 × 1021 cm−2 was added,
following typical uncertainties in the data of Kainulainen et al.
(2009). This procedure was repeated for three different projec-
tions of the simulation data, and the DGMFs from them were
averaged to form the final DGMF.

We examined the effects of the resolution and noise to the
DGMFs. We experimented with the resolution of 0.03 pc that
studies employing Herschel data of nearby clouds will reach
(e.g., Schneider et al. 2013). Similar resolution is reached by
combined near- and mid-infrared extinction mapping when ap-
plied to infrared dark clouds (IRDCs, KT13). The effect of the
resolution and noise to the DGMFs was practically negligible.

3. Results and discussion
3.1. Dependence of the DGMF on physical parameters

We derived the DGMFs for the simulations up to SFE = 10%.
Figure 1 shows the DGMFs of four simulations with Ms = 10
and b = {1/3, 0.4, 1}. For the case b = 0.4, both a nonmagnetized
and a magnetized simulation are shown. The DGMFs at early
stages (t = 0 and SFE = 0%) are well-described by exponential
functions, dM′ ∝ eαN . When star formation begins, the DGMFs
flatten. Their shapes remain close to an exponential function or
curve upwards approaching a powerlaw shape. This behavior is
similar in all models. Since the DGMFs are close to exponential
functions in the range N(H2) = 3−11×1021 cm−2, we quantified
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Fig. 2. Exponential slopes of the DGMFs as a function of b (left), B (center), andMs (right). The solid black lines show the time step t = 0, and
the dotted lines SFE = {0, 1, . . . , 10}%. The blue, red, and green shaded regions indicate the slopes observed in starless and star-forming nearby
clouds (Kainulainen et al. 2009) and in IRDCs (KT13, however, see the discussion on these data in Sect. 3.2). The median masses of each set of
the clouds, M1/2, are shown in the panels.

their shapes through fits of exponentials. This yielded the range
α = [−0.41,−0.023] in all models.

We examined the dependence of the DGMF slopes on the
driving of turbulence and magnetic field strength (B) in the sim-
ulations withMs = 10. The results are shown in Fig. 2 (left and
center). Most importantly, the DGMF slope responds most sensi-
tively to the turbulence driving, changing by a factor of 4.8−8.5
when b changes from 1/3 to 1. The slopes clearly depend less
on B. The nonmagnetic simulations show significantly shallower
slopes than magnetized ones, but if B � 3 μG, the slopes are
uncorrelated with it.

The DGMF slopes depend on the SFE. The dependency is
stronger in magnetized than in nonmagnetized simulations: the
spreads of the slopes in the range SFE = [1, 10]% for these cases
are 0.09 and 0.03, respectively. The mean difference in the slopes
of nonmagnetized and magnetized runs is 0.05. The early stages
(t = 0, SFE = 0%) show clearly steeper slopes than the higher
SFEs. We also examined the relationship between the DGMF
slopes andMs. For this, we derived the DGMFs in the native res-
olution of the simulations (smoothing would greatly reduce the
size of the low-Ms runs). Therefore, the results should be com-
pared to observations with caution. Figure 2 shows the DGMF
slopes andMs in simulations with b = 1/3. The slopes do not
respond toMs, except whenMs = 5.

The DGMFs can vary also due to i) the random nature of tur-
bulence (“cloud-to-cloud” variations) and ii) projection effects.
The former can be examined by comparing simulations that have
the same input parameters, but different random number seeds
(e.g., #12, 14, and 17, see Table A.1). Unfortunately, we only
had three simulation pairs with varying random number seeds.
The mean difference in the DGMF slopes among these was 0.08
at the early stages (t = 0, SFE = 0%). However, for time steps
SFE ≥ 1 the mean difference was only 0.02. The projection ef-
fects were studied by examining the standard deviation of the
slopes derived for three different projections of all models. The
mean standard deviation of the slopes in all models was 0.03.

We note that the effective Reynolds numbers of our sim-
ulations (�104) are lower than that of the interstellar medium
(∼107). It is not clear how this affects the predicted statisti-
cal properties. Aluie (2013) has rigorously shown that the di-
rect influence of driving on the kinetic energy is restricted
to scales larger than the smallest scale at which the turbu-
lence is stirred. However, numerical (Federrath et al. 2010b)
and analytic (Galtier & Banerjee 2011) works have found dif-
ferences in flow statistics in the range that can be considered
to be the “inertial range” of compressible turbulence simula-
tions. Resolution studies of the simulations suggest that the
driving-induced differences remain when the Reynolds number

increases. As this issue cannot be addressed with the current
computational methods, our results are also subject to it.

3.2. Comparing the predictions with observations

Figures 1 and 2 show observed DGMFs to be compared with
the simulated ones. Figure 1 shows the mean DGMF of quies-
cent clouds (LDN1719, Lupus V, Cha III, and Musca), a DGMF
of Taurus that is a typical star-forming cloud (Kainulainen et al.
2009), and a mean DGMF of ten IRDCs from KT13. Figure 2
shows the ranges of the observed slopes from Kainulainen et al.
(2009), which span α = [−0.17,−0.45] for 13 nearby star-
forming clouds and α = [−0.35,−1.2] for four quiescent clouds.
The range of IRDC slopes from KT13 is also shown. We note
that the DGMFs of IRDCs in KT13 were derived from a slightly
different column density range than those of nearby clouds. They
begin from N(H2) ≈ 7 × 1021 cm−2, and therefore, comparing
them with the other data should be considered only suggestive.

The dependence of the DGMF slopes on the turbulence driv-
ing allows us to constrain b (see Fig. 2). None of the simula-
tions shows the steep slopes observed in starless clouds. From
the nonmagnetized simulations, only those with b = 1/3 agree
with the nearby star-forming clouds. Magnetic fields can steepen
the slopes by about 0.05 (Fig. 2, center). Therefore, from the
magnetized runs, those with b = 1/3, or b = 0.4 and B ≥ 3 μG
agree with star-forming clouds. The fully compressive simula-
tions produce a much higher fraction of dense gas than ob-
served in nearby clouds. The comparison suggests a low b
for nearby molecular clouds on average, possibly lower than
previously estimated by Padoan et al. (1997b) and Brunt (2010)
in Taurus, b ≈ 0.5.

The DGMF slopes correlate with the SFE, depending on
whether the cloud is magnetized or not. Since in the current
view, clouds have magnetic fields (Crutcher 2012), the spread
of slopes is likely the most realistic in magnetized simulations
(i.e., 0.1, see Fig. 2). Thus, it seems that part of the spread in the
observed slopes originates in the SFEs of the clouds. We used a
Monte Carlo simulation to estimate whether all the variation in
the observed slopes can originate from changes in the SFE and
statistical variations. We assumed that the changes due to SFE
are uniformly distributed between [0, 0.1] and the statistical vari-
ations are normally distributed with σ = 0.04. The test showed
that the probability that 13 clouds span a range >0.28 is 0.2%.
However, the range of the observed slopes can be wider. KT13
showed that IRDCs possibly have flatter DGMFs than nearby
clouds (Fig. 2). In conclusion, it seems likely that the spread of
the observed DGMF slopes cannot be explained by statistical
variations and changes in the SFE alone. Changes in the clouds’
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average compression provide one possible source to account for
this variation.

One interesting question for the future is to examine if the
DGMFs correlate with cloud mass. There are no very massive
clouds in the nearby cloud sample (median mass 0.5 × 104 M
).
In contrast, the median mass of the IRDCs is 5 × 104 M
, which
is ten times higher. This could contribute to the differences seen
in the slopes of the two cloud sets, however, as discussed earlier,
comparing DGMFs of IRDCs with nearby clouds is not without
caveats. The question could be properly addressed by a study of
a statistical sample of IRDCs or a study of the nearest high-mass
clouds (e.g., Orion, Cygnus, Rosette) employing Herschel data.

The weak dependence of the DGMF slopes onMs appears
to be an effect of the narrow column density range we exam-
ine, even though the results derived from simulations that have
differing physical resolutions are only suggestive. The density
PDF is expected to respond to Ms following Eq. (3), which
should reflect on the DGMFs. However, it appears that in the
range of N(H2) = 3−11 × 1021 cm−2 the effect is insignificant.
This result agrees with Goodman et al. (2009), who did not de-
tect any dependence between column density PDF widths and
CO linewidths in Perseus. However, we recently measured the
column density PDF widths using a high-dynamic-range tech-
nique (KT13) and concluded that if a wider range is examined,
the PDF widths correlate withMs.

When comparing observed DGMFs with simulations, it
should be kept in mind that in simulations “driving” is well-
defined and ideal: energy is injected on large scales, with certain
characteristics such as the divergence and curl. In real clouds,
energy is likely injected on multiple scales, and the characteris-
tics of the driving can depend on the scale. However, if some of
these driving modes excite more compression than others, partic-
ular regions in a cloud, hence also clouds on average, can show
characteristics of the flows produced with ideal driving with dif-
ferent mixtures of solenoidal and compressive modes.

Finally, we comment on the relation between the DGMFs
and column density PDFs. The column density PDFs of nearby
clouds are lognormal below N(H2) � 3 × 1021 cm−2. In the
range N(H2) = 3−25 × 1021 cm−2, they agree with either pow-
erlaws or (wide) lognormals (KT13). The PDF shapes above
N(H2) � 3×1021 cm−2 are not well-constrained. They may be ei-
ther lognormals (KT13) or powerlaws (Schneider et al. 2013, see
Fig. B.1). It follows from Eq. (2) that a lognormal PDF yields
an exponential DGMF and a powerlaw PDF yields a powerlaw
DGMF. The simulated DGMFs appear exponential in the range
N(H2) � 3−25 × 1021 cm−2 at the early stages. Therefore, the
column density PDFs are close to lognormals. When the sim-
ulations evolve, the DGMFs become closer to powerlaws. This
means that the underlying column density PDF transits from a
lognormal to a powerlaw.

4. Conclusions
We have examined the relationship between the dense gas mass
fraction (DGMF), star formation, and turbulence properties in
molecular clouds by comparing DGMFs derived from isother-
mal, magneto-hydrodynamic, self-gravitating turbulence simu-
lations to observed ones. Our conclusions are as follows.

1. Simulations predict close-to exponential DGMFs for
molecular clouds in the column density range of N(H2) =
3−11 × 1021 cm−2. The DGMF slopes span the range

α = [−0.41,−0.023], and they are clearly steeper at the early
stages of the simulations compared to the stages when stars
are forming (SFE ≥ 1%). These predictions are accurate on
a 70% level up to N(H2) ≈ 25 × 1021 cm−2.

2. The DGMF slopes depend strongly on the turbulence driv-
ing (b). They depend less, but significantly, on the exact SFE.
The dependence on the SFE is stronger in magnetized than
nonmagnetized cases. Generally, the effect of the magnetic
field to the DGMF is small. AlsoMs has a negligible effect
on the slopes in the examined column density range. The sta-
tistical variations are comparable to those arising from vary-
ing SFE. However, how compressive the turbulence is (i.e.,
parameter b) is the largest single factor in determining the
slope of the DGMF in the simulations.

3. The observed DGMFs can be used to constrain the
turbulence-driving parameter b. The DGMFs of nearby
clouds are only reproduced by simulations that are driven
by relatively noncompressive forcing, i.e., b = 1/3 or 0.4.
The fully compressive simulations (b = 1) overestimate the
DGMFs greatly. Massive IRDCs can show flatter DGMFs
that are in agreement with more compressive driving. The
spread of the observed DGMFs cannot be explained by dif-
ferent SFEs and statistical variations alone. Variations in the
clouds’ average compression level offer one explanation to
account for the observed spread.
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Appendix A: Numerical effects on the DGMFs

A.1. Effect of sink particles

Sink particles (Federrath et al. 2010a) in the simulations ac-
crete material into them after their creation and affect the density
structure of their immediate surroundings in the simulation (and
the DGMFs). In the following, we consider the effects of sink
particles to the DGMFs.

As described in FK12, the sink particles are created on a
certain, resolution-dependent volume density and always have a
radius of 2.5 pixels in the native resolution of the simulation. It
follows that the sink particles have a resolution-dependent min-
imum density, which can be converted further into a minimum
mean column density. Sink particles are created when a series
of collapse criteria are fulfilled (see FK12), and when the local
volume density exceeds

ρsink =
πc2

s

4Gr2
sink

, (A.1)

where cs is the isothermal speed of sound and rsink the radius of
the sink particle. It follows that the mean column density of a
sink particle at the moment of its creation is

Σsink =
ρsinkVsink

πr2
sink

=
4
3
ρsinkrsink. (A.2)

The sink particle properties are listed in Table A.1 for different
physical resolutions.

The sink particle column densities listed in Table A.1 rep-
resent levels below which the DGMFs are not affected by sink
particles, regardless of whether the sinks are removed or not.
In the most conservative interpretation, the DGMFs are reliable
only below these column density limits. Therefore, we use the
upper limit of N(H2) = 11 × 1021 cm−2, which is the sink par-
ticle column density for theMs = 10 simulations 5123 cells in
size, in the analysis performed in this paper.

However, it is not at all certain that the DGMF shape imme-
diately above N(H2)sink is greatly affected by the sink particles.
Above N(H2)sink, there are lines-of-sight whose column density
is higher than the sink particle column density, but the local vol-
ume densities do not reach high enough values for sink particles
to form. In fact, these lines-of-sight are more numerous in the
simulations compared to those that contain sinks, especially at
early times when the overall SFE is low.

We dealt with sink particles in this work by disregarding
the lines-of-sight affected by them directly from the simulation
data. While this procedure, in principle, eliminates the effects
of sink particles, it removes mass from high column densities
and can bias the DGMF downwards (steepen it). Consequently,
it is important to note that the flattening of the DGMFs seen
in the simulations (see Sect. 3.1) at around N(H2) ≈ 10−15 ×
1021 cm−2 cannot be due to sink particle treatment, any associ-
ated incompleteness would bias the determination downwards,
not upwards.

We can quantify the incompleteness due to sink particle re-
moval by comparing DGMFs derived with and without the elim-
ination of sink particles. This experiment is shown in Fig. A.1,
which shows the ratio of the DGMFs with and without the sink
particle elimination as a function of column density. The plot is
shown for the model in which the effect of sinks in the exam-
ined column density range is expected to be strongest, i.e., the
solenoidal simulation with 2563 cell resolution. Higher resolu-
tion increases the sink particle column density (cf. Table A.1),

Fig. A.1. Error (incompleteness) in the derived DGMFs due to removal
of sink particles. The figure shows the ratio of DGMFs derived with
and without sink particle removal as a function of column density for
time steps up to SFE = 10%. The curves for t = 0 and SFE = 0%
are indistinguishable from unity. The plot is shown for simulation #10
(Ms = 10, 2563 cells in size, b = 1/3). The error in otherMs = 10 mod-
els is expected to be smaller, because of the higher sink particle column
density and more compressive turbulence driving.

and more compressive forcing increases the relative amount of
high column densities, thereby reducing the error in the exam-
ined column density regime. The figure shows that the error due
to incompleteness (i.e., removal of high-column densities) is less
than 30% below N(H2) � 25 × 1021 cm−2 for SFEs up to 10%.

In summary, it can be concluded that the DGMFs derived for
Ms = 10 simulations are unaffected by the sink particles (or by
their removal) below the N(H2)sink values. In addition, the error
in the predicted DGMFs is less than 30% when the range up to
N(H2) ≈ 25 × 1021 cm−2 is considered.

A.2. Effect of the simulation resolution

The simulations of FK12 are either 1283, 2563, 5123, or
10243 computational cells in size. In this work, we used all
but those simulations that are 1283 cells in size. It is possible
that the different computational resolutions used in the simula-
tions affect the DGMFs, because especially high column den-
sities are potentially better resolved by high-resolution simula-
tions. We examined the possible effect of the simulation resolu-
tion to the DGMFs by comparing the DGMFs of simulations that
were run with the same physical parameters, but have different
computational resolution.

Figure A.2 shows as an example a comparison of DGMFs
derived for models #10 and #11 that are 2563 and 5123 cells
in size, respectively. All other parameters are same in these two
models. The DGMF of model #10 is in good agreement with that
of model #11 below the sink particle column density, N(H2) =
11×1021 cm−2. At higher column densities, the lower resolution
simulation (#10) begins to underestimate the column densities
slightly. However, it is still within 30% of the higher resolution
one up to the column density of N(H2) ≈ 25 × 1021 cm−2. We
conclude that the effect of resolution is less than the uncertainty
due to the projection effects in the column density range N(H2) =
11 × 1021 cm−2 and accurate to 70% level up to N(H2) = 25 ×
1021 cm−2.
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Table A.1. Simulation properties (adapted from FK13).

# Namea Ms b Box size Box size Mb B0
c αvir,0 αvir n(H2)sink N(H2)sink Msink

[cells] [pc] [M
] [μG] [104 cm−3] [1021 cm−2] [M
]

6 GT256sM5 5 1/3 256 2 3.9 × 102 0 1.0 8.0 28 22 0.60
7 GT256mM5 5 0.4 256 2 3.9 × 102 0 0.98 5.4 28 22 0.60
8 GT256cM5 5 1 256 2 3.9 × 102 0 0.82 1.5 28 22 0.60

10 GT256sM10 10 1/3 256 8 6.2 × 103 0 1.1 12. 1.7 5.6 2.4
11 GT512sM10 10 1/3 512 8 6.2 × 103 0 1.1 12. 6.9 11 1.2
12 GT512mM10(s1) 10 0.4 512 8 6.2 × 103 0 1.1 4.5 6.9 11 1.2
13 GT512mM10B1(s1) 10 0.4 512 8 6.2 × 103 1 1.1 5.4 6.9 11 1.2
14 GT512mM10(s2) 10 0.4 512 8 6.2 × 103 0 1.2 8.4 6.9 11 1.2
15 GT512mM10B1(s2) 10 0.4 512 8 6.2 × 103 1 1.2 9.5 6.9 11 1.2
16 GT256mM10(s3) 10 0.4 256 8 6.2 × 103 0 1.0 5.9 1.7 5.6 2.4
17 GT512mM10(s3) 10 0.4 512 8 6.2 × 103 0 1.0 5.9 6.9 11 1.2
18 GT512mM10B1(s3) 10 0.4 512 8 6.2 × 103 1 0.97 6.4 6.9 11 1.2
19 GT256mM10B3(s3) 10 0.4 256 8 6.2 × 103 3 0.81 8.4 1.7 5.6 2.4
20 GT512mM10B3(s3) 10 0.4 512 8 6.2 × 103 3 0.83 8.7 6.9 11 1.2
21 GT256mM10B10(s3) 10 0.4 256 8 6.2 × 103 10 0.79 6.6 1.7 5.6 2.4
23 GT256cM10 10 1 256 8 6.2 × 103 0 0.85 1.1 1.7 5.6 2.4
24 GT512cM10 10 1 512 8 6.2 × 103 0 0.87 1.1 6.9 11 1.2

25 GT256sM20 20 1/3 256 32 9.9 × 104 0 1.0 11.1 0.11 1.4 9.6
26 GT256mM20 20 0.4 256 32 9.9 × 104 0 1.1 4.5 0.11 1.4 9.6
27 GT256cM20 20 1 256 32 9.9 × 104 0 1.0 0.60 0.11 1.4 9.6

28 GT256sM50 50 1/3 256 200 3.9 × 106 0 1.1 12 2.8 × 10−3 0.22 60
29 GT512sM50 50 1/3 512 200 3.9 × 106 0 1.1 13 1.1 × 10−2 0.44 30
30 GT256mM50 50 0.4 256 200 3.9 × 106 0 1.0 7.0 2.8 × 10−3 0.22 60
31 GT512mM50 50 0.4 512 200 3.9 × 106 0 1.1 7.4 1.1 × 10−2 0.44 30
32 GT256cM50 50 1 256 200 3.9 × 106 0 0.95 0.54 2.8 × 10−3 0.22 60
33 GT512cM50 50 1 512 200 3.9 × 106 0 0.99 0.56 1.1 × 10−2 0.44 30

Notes. (a) Parentheses after the names refer to the different random seeds used in the simulations. (b) Total mass in the simulation box. (c) Mean
magnetic-field strength in z-direction of the computational domain.

Fig. A.2. Effect of simulation resolution to the DGMFs. The red line
shows the DGMF of simulation #10 (2563 cells in size) divided by the
DGMF of simulation #11 (5123 cells in size). The physical parameters
of the two simulations are the same. The dashed lines show the DGMFs
calculated for different projections of model #11 divided by the mean
DGMF of model #11.

Appendix B: Illustration of column density PDFs

Figure B.1 show a comparison of the column density PDFs de-
rived for models #11 and #24, and the PDF of the Taurus molec-
ular cloud from Kainulainen et al. (2009). The higher relative
amount of high-column density material predicted by fully com-
pressive simulations (#24) causes a flatter PDF. In the column
density range N(H2) = 3−25×1021 cm−2, the PDF of simulation

Fig. B.1. Column density PDFs of models #11 (b = 1/3) and #24
(b = 1), and the PDF of the Taurus molecular cloud. Both models have
Ms = 10 and B = 0 μG, and they are 5123 computational cells in size.
The black histograms show the PDFs of model #11 at t = 0 (solid line)
and SFE = 5% (dotted line). The blue line shows the PDF of model #24.
The red line shows the PDF of Taurus from Kainulainen et al. (2009).
The dynamic range of the Taurus PDF ends at about ln N(H2) = 3.2.
The black dashed line shows, for reference, a lognormal function. The
PDFs in the range N(H2) = 3−11 × 1021 cm−2 can be described by a
lognormal function, but also reasonably well by a powerlaw function
(which would be a linear curve in the given presentation).

#11 is close to what is observed in Taurus. In this narrow range,
the PDF is in reasonable agreement with either a lognormal func-
tion (shown for a reference in the figure) or a powerlaw function.
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