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ABSTRACT

Context. In a probabilistic framework of the interpretation of the initial mass function (IMF), the IMF cannot be arbitrarily normalized
to the total mass, M, or number of stars, N, of the system. Hence, the inference of M and N when partial information about the studied
system is available must be revised (i.e., the contribution to the total quantity cannot be obtained by simple algebraic manipulations

of the IMF).

Aims. We study how to include constraints in the IMF to make inferences about different quantities characterizing stellar systems. It is
expected that including any particular piece of information about a system would constrain the range of possible solutions. However,
different pieces of information might be irrelevant depending on the quantity to be inferred. In this work we want to characterize the

relevance of the priors in the possible inferences.

Methods. Assuming that the IMF is a probability distribution function, we derive the sampling distributions of M and N of the system

constrained to different types of information available.

Results. We show that the value of M that would be inferred must be described as a probability distribution @ ([ M; m,, Ny, @n(N)]
that depends on the completeness limit of the data, m,, the number of stars observed down to this limit, N,, and the prior hypothesis
made on the distribution of the total number of stars in clusters, ®(N).

Key words. stars: statistics — galaxies: stellar content — methods: data analysis

1. Introduction

The study of cluster dynamics and star formation relies on the
knowledge of cluster masses and the amount of such mass trans-
formed into stars, M. In most cases, we have partial information
of the system, i.e., the observations of some stars in the cluster.
Such information is usually used in the inverse problem using
the initial mass function (IMF) realization (see below) as a dis-
tribution by number to make inferences about a theoretical prob-
ability distribution function, the IMF ¢(m) (Bouvier et al. 1998;
Bricefio et al. 2002; Luhman et al. 2003; Oliveira et al. 2009;
Bayo et al. 2011). However, such information is not enough to
obtain cluster masses, and for some astrophysical studies it is re-
quired to assume a ¢(m) covering all the range of possible stellar
masses to make inferences about global cluster properties (the
direct problem).

This use of the term IMF for both the distribution by number
for the inverse problem of statistics and the probability distribu-
tion function (PDF) for the direct problem can lead to different
interpretations of the IMF itself and the results obtained from it
(cf. Cerviflo et al. 2013, hereafter Paper I). In this work, follow-
ing Scalo (1986), we will adopt the PDF definition'.

' This definition implies that stellar masses are identically and inde-

pendent distributed, we refer Paper I for more details.

Article published by EDP Sciences

The shape of the PDF and that of the distribution by number
depend crucially on the size of the sample, that is, the number
of stars N; for large N values, the two shapes tend to be similar.
However, this similarity can mislead one into believing that the
distribution by number is just a scaled-up version of the PDF,
with NV being the scale factor. This would be very wrong since
the physical meanings of both distributions are intrinsically dif-
ferent; Paper I is dedicated to exploring the consequences of this
essential difference.

As a consequence, the standard methodology used to infer
M values, which assumes the use of a correction factor for un-
observed stars, is no longer valid. The main goal of this paper is
to define a methodology based on the probabilistic approach of
the IMF to obtain the total stellar mass M of an stellar sample
from limited information on the sample itself.

This task is far from trivial as we have to bridge different
gaps according to the amount of unknown information. We start
the discussion by making an inventory of possible scenarios that
differ from each other according to the amount of information
available, with the aim of emphasizing how this affects the de-
termination of M and N. Five such scenarios are:

1. We know (from the IMF) the probability of a random star
having a mass mg, equal to or larger than some given
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value m,, but no specific information on the particular cluster
is known.

2. We know (from observations) the number of stars N in a
particular cluster; we also know (from the IMF) the expected
number of stars with m > m,.

3. We know (from observations) the number of stars N in a
particular cluster; we also know (from observations, too) that
N, stars have m > m, and the mass of such stars.

4. We know that a particular cluster has N, stars with m > m,
and the mass of such stars from observations.

5. We know that a particular cluster has N, stars with m > m,
and the mass of such stars, and we also know its total
mass M.

In scenario 1, which relies solely on knowledge of the IMF, we
only know a theoretical probability that is independent of N
and M. Consecuently, we have neither information on M nor
on the actual value of m;.

In scenario 2, we know that the cluster is the result of sam-
pling the IMF with N stars. With such information, we can com-
pute the sampling distribution of M: that is, the distribution of
possible values of M constrained by the value of N. In partic-
ular, if N = 1 the distribution of total masses is the IMF itself,
and if N — oo, the distribution of M is a Gaussian, because of
the central limit theorem. In all intermediate cases, the sampling
distribution of M at a given N is a more or less asymmetric
function, which in turn implies that its mean value (M) is not
(in general) the same as its most probable value.

Scenario 3 is a constrained version of the previous one. In the
universe of all possible clusters with N stars, only those condi-
tioned to have N, stars with mass equal to or larger than m, can
represent the cluster studied. The resulting distribution of pos-
sible M, which is different from the previous sampling distri-
bution, can be obtained by imposing an a posteriori condition
on it. However, since we also know the mass of the NN, stars, an
additional constraint must be applied

Scenario 4 only constrains M to be equal to or larger than the
contribution of the N, stars. We cannot progress further unless
we additionally assume a distribution of possible N values. If
we do so, the resulting values of the mean total mass (M) and
the most probable value will differ from those obtained under
scenario 2, since in the present case /N is not fixed but distributed
and this affects the shape of the sampling distribution of M.

In scenario 5, we know that the mass is M and that there
are N, stars with m > m,. The probability distributions that de-
scribe such a cluster (such as, for example, the distribution of
possible N values or of the N, most massive stars that the clus-
ter could host) correspond to the particular situation described in
scenario 4 with the additional constraint of knowing M.

From the above discussion, it is clear that the M derived
in each of the above scenarios are different. Although all the
resulting distributions are derived from the IMF, each of them
is the result of including different pieces of information in the
analysis: either the total number of stars N in the cluster (in
scenarios 2 and 3), and its probability distribution (in scenarios 4
and 5) or the presence of N, stars above a given mass value (in
scenarios 3, 4, and 5). Each case results in a different conditional
probability distribution, which results in a different estimation
of M.

We note that relating the IMF with the corresponding sam-
pling (and conditional) probability distributions is correct, given
the set under study. We also note that we have an additional piece
of information in such a set: stars are individual, discrete entities
(i.e., N is a natural number). Such a condition must be fulfilled
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by any cluster in the Universe and must be included in all sce-
narios as a restriction (even in cases where there is no explicit
reference to N, as in scenario 5).

The preceding discussion boils down to the following point:
as an underlying density distribution, the IMF describes neither
a particular case nor any observational constraints (such as, e.g.,
the number of stars with a given mass observed in a particular
cluster). Once an observational constraint is included (e.g., the
fact that one star with known mass is present), conditional prob-
abilities must be applied. Stated otherwise, the distribution that
describes the universe of possible results (the IMF) is an a priori
probability, and the probability constrained to the observed data
is an a posteriori (conditional) probability. Confusing the a pos-
teriori probability with the a priori probability is one of the most
common flaws in hypothesis testing reasoning (this is also called
the Prosecutor’s fallacy: see Selman & Melnick 2008, for a dis-
cussion in a similar astrophysical context). In these situations, it
is fundamental understand the true context of the question be-
fore seeking an answer. This has been done in the five scenarios
discussed above.

The structure of the paper is as follows: in Sect. 2 we sum-
marize the basic concepts required to use the IMF in a proba-
bilistic framework (see Paper I for a more extended discussion).
In Sect. 3 we consider an ideal case in which all the stars in
the system are known. Then we replace known information by
unknowns to describe real situations where the use of the IMF
or a related sampling distribution is required. Section 4 shows
the methodology to obtain M from partial information of the
system in the scenarios presented above and their application to
some astrophysical cases. We discuss some considerations about
the use of prior information in Sect. 5. Our conclusions are de-
scribed in Sect. 6.

2. Formal probabilistic formulation

The basis of the probabilistic formulation has been presented in
Paper 1. We refer to that paper for more details and include here
only the basic formulae needed for this work.

1. The IMF, ¢(m) = dN/dm, is a probability density function
(PDF), which can be integrated over a given mass range to
derive the probability of finding a star in that range. The mass
limits myow and my,, are given by stellar theory and must ful-
fill fm r:l"p ¢(m)dm = 1; that is, we are certain that any possible
star has a mass between Migy and myp.

The probability of a random star having a mass lower than a
given value m, is given by

1y

¢(m) dm. (1)

Miow

plm <my,) =

In this work, the integrals over the IMF will always be read
as equal to or larger than the lower limit and lower than the
upper limit.
In this work we employ the Kroupa IMF (Kroupa 2001,
2002) as used in Weidner & Kroupa (2006), with my, =
120 Mg, myoy, = 0.01 My, and a correction of k¥’ = 1/3 for
stars with mass lower than 0.08 M>.

2. Different observational scenarios can be described by adding
constraints to the IMF. For instance, we may explicitly in-
clude a limit on m, and compute probabilities for stars with

2 Such a correction was not used in Paper I. However, it is the
parametrization used in the set of clusters by Kirk & Myers (2011) we
use in this work for comparing methodologies.
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masses lower than mi,. In this case, we must define an a pos-
teriori PDF related to the IMF that includes such a condition:
¢(m) H(m, — m)

d(mlm < m,) = T om<my ()

where H(m, — m) is the Heaviside function?, which ensures
that no star equal to or larger than m, can be present in the
cluster. We note that ¢(m|m < m,) is a PDF also. The mean
mass of such distribution is

[ m ¢(m) H(my — m)dm

Miow

3)

(mlm < my) =
pim < my)

3. The PDF describing ensembles with a total number of stars
N (formally, a sampling distribution conditioned to have N
stars) can be calculated as successive convolutions of the cor-
responding PDF for one star. For instance, the PDF for the
total mass, ®p(M|N), is the result of convolving the IMF
N times in a recursive convolution (see Cervifio & Luridiana
2006; Selman & Melnick 2008):

N
PMMIN) = p(m) @ p(m) ® ... & ¢(m). “)

The same procedure applies to any other PDF. The mean
value of the resulting distribution is

MINY = N x (m) = N x f " d(m) dim. (5)

Miow

Mean values of constrained distributions when sampled with
N stars are obtained in a similar way.

3. The trade-off between knowledge
and probability

Once we have laid down the basic framework, we apply it to our
science case: the estimation of the total mass M of a cluster from
a partial knowledge of its stellar content. To do that we progres-
sively replace known information by unknowns to describe real
situations; however, the following items here are not directly re-
lated to the scenarios quoted in the Introduction (we will come
back to such scenarios in Sect. 4).

3.1. Case study 1: everything is known

We begin with an ideal observational point of view, where we
suppose that we know the masses m?bs of every one of the N
stars in a cluster. Thus, the total mass, M, is also known. In this
hypothetical case, it is not required to use the IMF. However,
this exercise allows us to illustrate the trade-off between the use
of known data from a particular cluster (i.e., a particular IMF
realization) and the use of probability distributions.

We sort the stars in ascending order according to their mass.
We use a subindex in brackets to denote that such operation has
been performed, so m; is the ith random sampled element and
my; is the i-th element after sorting the data. We also assume
that the most massive star has a mass m°% = m° with a value

N1 ‘max
lower than my.

3 We use here the Heaviside function as a distribution to define the
domain of ¢(m) including constraints. In this situation the value of H(0)
is not defined, but it is assigned a posteriori to be consistent with the
convention used in the integral limits. In the case of Eq. (2), H(0) = 0.

In addition, we assume that we have N, stars equal or more
massive than an arbitrary value m,, so that myx_y,; < m,, and
MiN-N,+1] = My. We express the total number of stars and total
mass as a function of the N, set. It can be described as

N N
b
N, = Z 0iiy My = Z M6, (6)
i=N-N,+1 i=N-N,+1

where 0; ; is the Kronecker delta. The total mass in the ensemble
is
N-N,
M= M, + Z m?}l’séi,,'. (7)
i=1
These two equations, rewritten in terms of frequencies and mean
stellar mass in the complete sample, are, respectively

N

N, Oii

— = - (8)

N i=N-N,+1 N

and

Gy = Mo Mo NNRE P ©)
N NN LN-N,

Multiplying (m) by N produces the value of M. However, we
note that conceptually

M=N x (m)y N x (m)y = (M), (10)

since (m) (the sample mean) does not coincide with the the mean
stellar mass obtained from the IMF, (m) (the population mean).
That is, (m) is an estimate of (m) obtained from a sample of
N stars, so, formally, (m) = (m|N). In the following, we use
the m symbol to denote an estimate of m. In the computation of
this estimate, the value of N must be taken into consideration,
although we will not write it explicitly in order to simplify the
notation.

3.2. Case study 2: the total number of stars
and the mass of the most massive N, stars are known

In this case we have less information than in the previous case
since we only know mfgs withi = {N = N, + 1,... N}, stellar
masses, and N. But we had seen that estimates obtained from
actual values, such as (i) can be related to values obtained from
the IMF. So we can replace these estimates with

NN

i ~ obs obs
Z —— =(mlm <m, )—><m|m<ma >
i=1 N =N,

Thus, although we cannot know the actual M value, we can at
least obtain average values given different sets of constraints:
(Mimghs = m™ i = N =Ny +1,..N: N)

= My + (N = No)(mlm < m). an

This illustrates the trade-off between observed frequency distri-
butions and probability: when we use a probability distribution,
we cannot have access to the actual values, but we can have ac-
cess to the distribution of possible values and the mean value of
all these possible values. In this case we are using the estimates
argument in the opposite direction to a statistical analysis, i.e.,
we are making the assumption that all the stars are distributed
following the IMF* and using it to make inferences about related
quantities.

4 Hence, it includes the N, subset with known stellar masses.
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3.3. Case study 3: only the mass of the N, more massive
stars is known

Observations of clusters in many cases only allow character-
ization of the N, most luminous stars with masses mf}]’s, i =
{N = N, + 1,... N}. They also lack a proper census that in-
cludes the lowest luminous members (see Bayo et al. 2011; Kirk
& Myers 2011, as counterexamples). In this case, it is more dif-
ficult to obtain estimates, since we can not define a frequency of

N,. Therefore, is the following reasoning valid?

obs N -N,
)=

P (mlm < mg — p(mim < m™),

a

obs

ﬁ(mlm > m, ) = % - p(mlm > m;’bs).

3.3.1. When is the correspondence
N = N,/p(m| m > m,) valid?

We divide the IMF in, e.g., k + 1 mass intervals, where the mass
interval containing the lower masses, e.g., the k+1, comprises the
N — N, of unknown stars with mass lower than m,. Each of the
remaining i mass interval, which belong to [m!°¥, m;") contain n;
stars’, so that Zle n; = N,. The probability of having a star in a
given mass interval is given by the integration of the IMF over
such a mass interval, p;(m) = p(m € [m°, m;")). We assume
that the cluster is a random realization of the IMF for N stars,
so the probability of having the N stars distributed in the k + 1
intervals with n; stars in the ith interval for a given (unknown)

number of stars A is given by the multinomial distribution®

k
Oy (NoIN) = Pm = my, Y mi = NoIN
i=1

N d
= : m < my)N e [(m)"
AL ) ];[p( )
!
= A(pi,l’li) mp(m < ma)N_Nﬂ, (12)

where we have included in A(p;, n;) all the known information.
However, we are interested in the complementary distribution
D (N|N,), which must be obtained using the Bayes’ theorem
(see, e.g., Paper I). Assuming that the possible values of N,
D (N) follow a discrete power-law probability distribution with
exponent —f3, we obtain

|

DN (NIN,) = A’ N =Nl

pm < m)N M NP (13)

where A’ is a normalization value that includes all the known
terms and is independent of A(p;, n;) since A(p;, n;) is canceled
out by the normalization constant, Thus, the inference about the
total number of stars only depends on the number of stars N,
more massive than a certain observational value m,, and not on
the particular distribution of such stars in different mass bins.

5 In this case, we are distributing the known N, stars in & intervals and
not using the particular m values of known stars. Such intervals can be
arbitrary and must only obey the condition Zf’:l n; = N,. So the index i
here refers to the interval, not to a particular stellar mass.

6 Since N is a discrete quantity, their PDF directly provides the prob-
ability. In addition, the distribution can be also expressed as a binomial
distribution with A(p;, n;) No! = p(m > my)™ = (1 — p(m < my))e.
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This result might seem surprising: the knowledge of the
masses of particular stars does not provide additional informa-
tion on (the number) of unobserved ones’. It can be argued that,
for example, an excess or deficit of the observed number of stars
in a given mass range constrains the total number of stars from
being compatible with sampling effects. However, such argu-
ments are valid for IMF inferences (which IMF shape is more
probable, given some observations?), i.e., the problem of obtain-
ing the IMF.

In our case, a given IMF is assumed and the observations are
a random realization of it. The particular observed set may be a
highly improbable (but still possible) realization of the assumed
IMEF. Nevertheless, whatever its a priori probability of happen-
ing, it has actually happened, and thus a posteriori probabilities
must be obtained by taking this fact into consideration. In ad-
dition, since stellar masses are random variables (cf. Paper I),
the occurrence of having a star (or a set of stars) with a given
particular mass has no impact on the individual masses of the
remaining stars.

The mode of ®x(N|N,), N™% is obtained by equating to
zero its first derivative with respect to N, which, for large N
values®, yields

Nmode ~ B =N,

" Inpm < my)’ a4

where we used the Stirling approximation of factorial functions
and a first-order Taylor approximation of logarithm functions
valid for 8 # 0. In the case of a flat distribution with § = 0,
the approximate mode of the distribution is obtained by solving
N,
\/mode ) ?
which coincides with the estimation of the probability p(m <
m,) for known N, and N. This means that N,/p(mlm > m,)
provides the mode N™% of @y (N|N,) assuming a flat @ (N)
distribution. However, we know that the initial cluster mass func-
tion (ICMF, @ (M) ) is not flat (Lada & Lada 2003; Piskunov
et al. 2008) and that it must be somehow related to @5 (N) (cf.
Eq. (4)), although we are not able to establish its functional form.
Whatever equation we use to obtain N mode e are left in the un-
comfortable situation of mixing a mean value ({(m|m < m,)) with
a mode value N™% to obtain an inference about M. However,
we have no means to give a meaning of this inference: Is it a
mean, a mode, on any other parameter?

This suggests that it is better to use the resulting prob-
ability distribution of AN(N,) and obtain the corresponding
D[ MIN,, Dy(N)] to make inferences about M. In addition,
this way to proceed is in agreement with the International
Organization for Standardization (ISO), which recommends ex-
pressing the uncertainty in the results as a PDF°.

pm < my) = (1 - (15)

4. Use cases

Having presented the probabilistic framework and the re-
lated information trade-off, we can compare the probabilistic

7 However, we note that such information is still relevant for the com-

putation of M: the individual masses of stars more massive than m,
provide the amount of mass in the mass range, M,.

8 In practical terms it implies large N, values. Actually, @ (N|N,) is
a discrete distribution, hence not derivable, but the formulae provide a
reasonable value as far as the Stirling approximation of factorial func-
tions are valid, i.e., N, N,, and N — N, larger than 15.

® Guide to the Expression of Uncertainty in Measurement
(International Organization for Standardization, Switzerland, 1995)
http://www.bipm.org/en/publications/guides/gum.html
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Table 1. Data form stellar associations by Kirk & Myers (2011).

Name M M, N N, (i) 10g pror(NLIN)
Tau.

#1 10.6 7.6 20 8 095 -1.06
#2 15.5 11.5 30 12 096 -1.55
#3 8.1 5.9 19 8 074 -1.20
#4 227  21.7 24 18 1.20 -7.56
#5 8.2 8.0 14 10 0.80 -3.91
#6 177 147 31 14 1.05 -2.39
#7 16.1 139 24 13 1.07 -3.20
#8 12.3 102 16 5 205 -0.34
(field) 885 723 174 73  0.99 -10.15
Chal

#1 3.7 1.7 12 2 085 0.00
#2 405 259 96 20 1.30 -0.04
#3 21.7 164 43 16 1.03 -1.69
(field) 426  30.1 8 27 1.11 —-1.58
Lup.3

#1 18.2 13.4 36 11 1.22 -0.62
(field) 18.1 129 34 11 1.17 -0.76
1C 348

#1 1119 87.6 186 65 1.35 -5.43
#2 3.1 0.5 11 1 053 -0.08
(field) 782 51.7 166 35 148 -0.08

Notes. We show the total mass (M), the mass into stars more massive
than m, (M,), the total number of stars (V), the number of stars more
massive than m, (N,), the estimation of the mean mass for stars more
massive than m, ({i,) = (/nlm > m,)), and the logarithm of the proba-
bility that a cluster with N stars following the assumed IMF would have
N, stars with mass equal or larger than m, divided by the maximum of
such distribution (10g ppor(Na|N)). The m, value is set to 0.5 M.

methodology and the distribution by number methodology to
obtain M and N. For comparison purposes, we have used the
data from Kirk & Myers (2011) to illustrate the differences. The
data contain the observed masses for individual stars belonging
to 14 young stellar groups in four different regions. They also
contain the stellar mass of field stars in the four analyzed re-
gions. Table 1 shows the identifier of the cluster along with the
values of M, M,, N, N,, and the estimation of the mean mass,
(miy) = {mlm > m,) from the census of stars with m > m,. Kirk
& Myers (2011) state that their mass estimates are valid with a
relative error of 50%; in this work we assume that the tabulated
values can be taken at face value without errors. They also state
that their census is complete at a 90% level down to 0.08 M;
hence their total mass estimation would be actually a lower limit
of the real value. Whatever the case, we assume again that the
M values obtained from the data can be use at face value with-
out errors. Finally, we assume that the data is complete at 100%
down to m, = 0.5 M. We use this m, value to illustrate the M
inference in scenarios 2, 3, and 4 in the introduction.

As reference, the IMF used here produces (m) = 0.46 M,
(mim > m,) = 1.64 Mgy, and p(mlm > m,) = 0.19. We can
make a first-order test about the compatibility of the cluster data
with the assumed IMF by computing the probability of having
a given N, number of stars with mass larger than m, in a clus-
ter with NV stars. It can be done by dividing the IMF into two
bins, [#m0w,m,) and [m,, myp), and using the probability in each
bin to define a binomial distribution. The logarithm value of the
resulting probabilities normalized to the maximum value of the

distribution, 10g pror(NalN), are shown in Col. 7 of Table 1'°. In
this test we see that our hypothesis about the validity of the used
IMF in all the associations is actually questionable for the stars
in Taurus field, Taurus #4, and IC 348 #1, and would produce
some problems in the analysis of Taurus #5, #7, and #6.

4.1. Distribution-by-number methodology

The distribution-by-number methodology considers that the IMF
can be used with an arbitrary normalization. Such normalization
can be either to N or M, which implies multipling ¢(m) by N
or M/(m), respectively. In addition, it is assumed that N and M
are deterministically related by the relation
M= N x(m) (16)
This provides M in all the cases where N is given and vice versa.
We can include additional information like M, and N, to make
alternative inferences about M. Following the procedure of this
paper, the most information is included using a formula similar
to Eq. (11):

M =M, + (N — Ny)(mlm < my)- a7
However, we can choose to use only partial information, such as
the contribution of M, to the total budget. Then the ratio M/M,
is constant, and is equal to the ratio of m X ¢(m) integrated in the
whole range, (m), over the same function integrated in the m,,
myp range. As a result, M is:

M, X (m)

= (18)
fml\up m ¢(m) dm

On the other hand, we could choose to use the contribution of

N, to the total budget. Then the ratio N'//N, is constant and is

equal to the ratio of ¢(m) integrated in the whole range (that is,

the unity) over the ¢(m) integrated in the m,, my, range. Since

M= N x(my, Mis

fm" #(m)dm

We could also choose to use just M, and N, values without the
information about N (similar to Eq. (17) with some additional
algebraic manipulation):

fmm $(m) dm

M= My + Ny (mlm < my) —2———
o plm mydm

(20)

Equations (18)—(20) produce an equal value of M as far as
M,

= (Mmlm > my) — (mlm > my,),
N,

10 We note that a comparison of p(m|m > m,) and p(m|m > m,) does
not produce a valid test about IMF compatibility, since the importance
of the possible deviations depends on how many stars are in the sample
(size of sample effects). Interestingly, IC 348 #1, which deviates from
the IMF in this test, is the system used as an example by Kirk & Myers
(2011) to argue that their systems follows a Kroupa IMF (their Fig. 6).
Although the shape of the IMF realization in IC 348#1 would look like
a Korupa IMF, the deviations (fluctuations) observed are actually too
large compared with the expected ones taking into account the number
of stars in the system.
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Table 2. Inference of A employing the distribution-by-number
methodology in the stellar associations by Kirk & Myers (2011), ac-
cording different scenarios.

M inferred

Sce. 2 Sce. 3 Sce. 4
Name Eq.(16) Eq.(17) Eq.(18) Eq.(19) Eq. (20) Mops
Tau.
#1 9.2 9.7 11.0 19.0 13.4 10.6
#2 13.8 14.7 16.7 28.6 20.3 15.5
#3 8.8 7.8 8.5 19.0 11.8 8.1
#4 11.1 22.7 31.3 42.8 349 22.7
#5 6.5 8.7 11.5 23.8 15.3 8.2
#6 14.3 17.7 21.2 33.3 24.9 17.7
#7 11.1 159 20.1 30.9 23.5 16.1
#8 7.4 12.2 14.8 11.9 139 12.3
field 80.3 90.1 104.5 173.7 125.8 88.5
Chal
#1 5.5 3.5 2.5 4.8 3.2 3.7
#2 44.3 39.3 37.5 47.6 40.6 40.5
#3 19.8 21.2 23.8 38.1 28.2 21.7
field 39.7 40.5 43.5 64.2 49.9 42.6
Lup.3
#1 16.6 17.8 19.4 26.2 21.5 18.2
field 15.7 16.9 18.6 26.2 20.9 18.1
1C 348
#1 85.9 108.9 126.6 154.7 1352 1119
#2 5.1 2.3 0.8 2.4 1.3 3.1
field 76.6 74.8 74.7 83.3 71.3 78.2

and they will produce a result similar to Eqs. (16) and (17)
as far as, additionally,

— N,
pmlm = my,) = ﬁ — p(mlm = m,).

In relation to the scenarios presented in the Introduction, sce-
nario 2 (only N is observed) is described by Eq. (16). Scenario 3
(N, N,, and M, are known) can be described by Egs. (16)—(20),
depending the information we choose to use, with Eq. 17 being
the one that uses the most available information. Finally, sce-
nario 4 can be described by Egs. (18)—(20), with Eq. (20) being
the one that use the most available information.

The resulting M estimations from Kirk & Myers (2011) data
employing this methodology are shown in Table 2, which uses
different information from the cluster. The inferred M varies de-
pending on the formulae (and hence the amount of not redundant
information) used for the inference. The best result is obtained
by Eq. (17), but unfortunately it does not have a practical appli-
cation (N is unknown most of the times).

With respect to the equations that can be used in scenario 4
(the common observational case), Eq. (20) produce a value be-
tween the results of Egs. (18) and (19). Also, since (/m|m > m,)
underestimates {(m|m > m,) for the clusters in the given sample,
Eq. (18) produces lower values than Eq. (19) (see Taurus #8 as
the opposite example). The range of inferred M values covered
by Egs. (18)—(20) only include the observed M value in four
cases (Taurus #8, Cha #1 and #2, and the field stars in IC 348),
suggesting a 20% rate of success (33% if we exclude the five
clusters with possible strong deviations from the assumed IMF).
In addition, we do not known which equation produces the more
reasonable value (although Eq. (20) is preferred) nor do we have
a possible evaluation accuracy associated to each case.

A32, page 6 of 9

4.1.1. The probabilistic methodology

In the probabilistic case, PDFs are only used to describe un-
known data, and observed data is used to define constraints over
such unknown data, so that both types of data have different
roles. In addition, the solution cannot be summarized in a single
value, but as a distribution function. Although some summaries
of such distribution (as the mean value) can be obtained analyt-
ically, such values do not necessarily have enough information,
and the best method is to obtain the full distribution of possible
solutions and work with it. We propose here the methodology to
obtain the probability distribution of M when we know the indi-
vidual masses of the most massive N, stars, and we know that all
stars equal to or more massive than mS® are included in the N,
set. The problem cannot be solved analytically since recursive
convolutions involving power laws (such as the IMF) have no
analytical solution. So we can only propose the following step-
by-step procedure:

1. Obtain the distribution of N, ®x(N|N,), which can be in-
ferred from the data using Eq. (13). We stress again that an
assumption about @ (N) is required. We note that the result
would be quite dependent on the lower limit assumed in the
@O (N) distribution.

2. Compute the distribution of @y, .. (Mnoi—obs|V;) for the pos-
sible values of N; = N — N, values obtained from the

previous distribution. The distribution provides the distribu-

tion of possible values of the total mass from the unknown
stars, Mpo—obs, that is, M is actually constrained to the non-
observed stellar masses m < mng, SO We must use a con-

strained IMF to describe what we do not know, ¢(m|m < m,).

Such D@y . (Myo—obs|N;) distributions can be computed
either by Monte Carlo simulations or by a numerical
self-convolution.

3. Compute the distribution of ® »((M|M,, N,). This is done by
weighting the previous @y, . (Mno—obs|N;) distributions by
the probabilities of each N; value provided by @ (N|N,) and
including the contribution to the total mass of the observed
stars.

We note that these two last steps can be done by means of
Monte Carlo simulations, which sample the discrete distribu-
tion @ (N|N,) to obtain different N; values, and by sampling the
constrained IMF with this number of stars. The previous proce-
dure covers scenarios 2 and 3 by applying only step 2: obtain
DA (MIN) or D p(Mot—obs|N;) for a known N.

We applied this methodology to the set of clusters of Kirk
& Myers (2011) under different scenarios by means of Monte
Carlo simulations. The distribution of solutions for each clus-
ter in each scenario was sampled by 10’ Monte Carlo simula-
tions, and the resulting distribution was binned in intervals with
AM = 0.5 My. We note that in scenario 4 the simulations sam-
ple both the IMF and the assumed ®x/(N) distributions (power
laws with 8 = 0 and B = 2). Therefore, the simulations span a
larger M range and an additional uncertainty is expected for the
confidence interval estimations.

Table 3 shows the resulting mean, mode, and 68.3% (equiv-
alent to 1o in a Gaussian distribution) and 95.4% (equivalent to
20 in a Gaussian distribution) confidence intervals around the
mode for scenario 2. As expected, the mean value of the distri-
bution coincides with the result of Eq. (16) shown in Table 2.
All observed M are in the 94.5% confidence interval around
the mode, although only 27% are in the 68.3% confidence inter-
val, being the observed M larger than the range quoted in such
interval.
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Table 3. Inference of M employing probabilistic methodology for the
stellar associations by Kirk & Myers (2011) in scenario 2, using the
observed value of N.

Table 5. Inference of M employing probabilistic methodology for the
stellar associations by Kirk & Myers (2011), using the value of N,, M,
and m, = 0.5 M, and assuming a flat @5 (/N) distribution.

M inferred in scenario 2

Name mean mode 95.4% CL 68.3% CL M
Tau.

#1 9.2 59 2.7 21.2 3.7 9.7 10.6
#2 13.8 9.6 4.8 29.8 6.8 148 155
#3 8.8 5.2 2.5 20.5 3.5 9.0 8.1
#4 11.1 7.3 3.5 24.5 50 115 227
#5 6.5 3.7 1.5 15.5 2.5 7.0 8.2
#6 14.3 10.1 4.9 30.9 69 149 177
#7 11.1 7.3 3.5 24.5 5.0 11.5 16.1
#8 7.4 4.5 1.7 17.2 2.7 7.7 12.3
field 80.3 677 475 132.0 555 87.0 88.5
Chal

#1 5.5 2.9 1.2 13.7 1.7 5.7 3.7
#2 44.3 350 228 80.8 27.8 47.8 405
#3 19.8 13.6 7.8 40.8 10.3  20.8 21.7
field 397  31.0 198 73.8 243 428 427
Lup.3

#1 16.6 11.8 6.0 35.0 85 18.0 182
field 15.7 10.7 6.0 33.5 8.0 17.0 18.2
1C 348

#1 858 71.0 512 1402 602 932 1119
#2 5.1 2.8 1.0 12.5 1.5 5.0 3.1
field 76.7 643 451 1276 52.6 83.1 782

Table 4. Inference of M employing probabilistic methodology for the
stellar associations by Kirk & Myers (2011) in scenario 3, using the
observed value of N, N,, M, and m, = 0.5 M.

M inferred in scenario 3

Name mean mode  95.4% CL 68.3% CL M
Tau.

#1 9.7 9.9 86 106 9.1 10.1  10.6
#2 14.7 14.4 13.7 162 142 15.7 15.5
#3 7.8 7.6 6.8 8.8 7.3 8.3 8.1
#4 22.7 22.5 21.8 233 223 233 227
#5 8.7 8.8 8.0 9.5 8.0 9.0 8.2
#6 17.7 17.4 16.7 192 16.7 18.2 17.7
#7 15.9 156 149 169 154 164 16.1
#8 12.2 11.9 11.2 132 11.7 127 12.3
field 90.2 90.2 879 929 889 914 885
Chal

#1 35 34 2.6 4.6 3.1 4.1 3.7
#2 39.3 39.5 373 41.8 383 408 405
#3 21.2 21.0 19.7 2277 202 21.7 21.7
field 40.5 40.6 384 424 394 414 427
Lup.3

#1 17.8 175 163 193 173 188 182
field 16.9 16.9 157 182 162 17.7 18.2
IC 348

#1 109 109 106 112 108 111 112
#2 2.3 2.2 1.4 34 1.9 2.9 3.1
field 74.8 74.7 719 779 734 764 782

Table 4 shows the results of the M distribution for scenario 3,
which includes a larger amount of information. The mean and
mode of the distribution coincides (hence the distribution is sym-
metric), and the mean value is also coincident to the result of
Eq. (17), as expected. However, in this case we can evaluate how
good this estimation actually is (and hence the distribution by

M inferred in scenario 4 with @5 (N) = cte

Name mean mode  95.4% CL 68.3% CL  Mps
Tau.

#1 14.2 13.4 97 197 112 162 10.6
#2 21.1 20.1 154 274 174 234 155
#3 12.5 11.8 80 180 95 145 8.1

#4 35.6 34.8 28.5 435 31.5 390 227
#5 16.0 15,0 108 21.8 12.8 183 8.2

#6 25.7 24.7 194 324 219 284 17.7
#7 242 231 184 309 204 269 16.1
#8 14.6 14.0 10.7 187 122 16.2 12.3
field 127 126 112 142 119 134 89

Chal

#1 39 3.0 1.7 7.2 1.7 4.7 3.7

#2 41.3 40.3 341 49.6 36.6 446 405
#3 28.9 284 222 362 247 317 21.7
field 50.6 495 4177 597 457 547 427
Lup.3

#1 22.2 21.4 16.7 282 18.7 24.7 18.2
field 21.7 20.9 16.1 27.6 18.1 24.1 18.2
IC 348

#1 136 135 122 150 128 142 112
#2 2.0 0.8 0.5 4.5 0.5 2.5 3.1

field 78.0 769 68.2 887 722 827 782

number estimation). Taking favorable round-around cases, 17%
of the clusters (i.e., field stars in Chal, IC 348 #1, and field stars
in IC 348) are outside the 20 range, 83% are in the 20 range,
and 67% are in the 1o range (i.e., 12 clusters). Given the low
number of clusters for this study, we find this result partially
consistent with a standard methodology. However, in theory, we
would expect only one cluster outside the 20" range, although we
can invoke the use of a low number of clusters for this study. An
additional outcome of this study is that, although Eq. (17) pro-
duces results similar to the observations, it does not necessarily
provide a fully compatible (e.g., at 1o level) result. Again, this
enforces the idea of using the whole PDF of possible solutions
instead a summary (like the confidence interval range) of it.

Tables 5 and 6 show the results of applying this methodology
using flat and power law @ (N) distributions (8 = 0 and 8 = 2,
respectively) in the range from N = N, to N' = 4000 stars.
The first result is that mean and mode values of the distribution
are not equal in general, and the distribution is not symmetric,
but j-shaped. The mode in the case of a flat ®x(N) distribu-
tion is similar to the result obtained by Eq. (20). In this case, the
observed M of seven clusters are outside the 20~ confidence in-
terval (actually, the clusters with lower py:(N,|N) value quoted
before and Chal#3). If we neglect the six clusters with the larger
deviations from the IMF, we obtain a result showing that 9% of
the cluster are outside the 20 interval, 91% of the cluster are in
the 20 interval, and 55% of the clusters are in the 1o interval.
This is a reasonable result of any statistical test.

Finally, the results of Egs. (18) and (20) are within the 20
range in the case of a flat @5 (/) distribution, but the results of
Eq. (19) (estimation from the extrapolations of the observed N,)
produce larger values than the upper limit of 20
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Table 6. Inference of M employing probabilistic methodology for the
stellar associations by Kirk & Myers (2011), using the value of N,, M,
and m, = 0.5 M, and assuming a power-law @, (N) distribution with

B=2.

M inferred in scenario 4 with ®x(N) o« N2

Name mean mode  95.4% CL 68.3% CL M
Tau.

#1 12.7 11.8 8.6 17.6  10.1 14.6 10.6
#2 19.6 188 145 255 160 215 155
#3 11.1 10.2 6.9 15.9 8.4 12.9 8.1
#4 34.1 334 277 417 302 372 227
#5 14.6 13.7 10.0 200 11.5 16.5 8.2
#6 24.2 23,5 182 307 207 267 17.7
#7 22.7 22.1 174 289 194 254 16.1
#8 13.2 125 102 167 107 142 123
field 125 124 111 140 118 132 89
Chal

#1 2.6 2.0 1.7 4.7 1.7 3.2 3.7
#2 39.9 39.0 327 477 357 432 405
#3 27.5 26.6 21.3 343 238 303 217
field 492 482 41.0 585 440 53.0 427
Lup.3

#1 20.7 199 157 262 17.7 232 182
field 20.2 194 152 257 17.2 227 18.2
1C 348

#1 135 133 121 149 127 141 112
#2 0.8 0.8 0.5 2.0 0.5 1.0 3.1
field 76.6  76.0 667 8677 712 812 782

5. Discussion

We have shown in this work that the determination of clus-
ter masses is not so trivial as supposed in the literature. The
distribution-by-number methodology uses known data to de-
termine unknown data, whereas the probabilistic methodology
uses known data to constrain unknown data. The problem is
also related to the trade-off between unknown data and proba-
bility. When we use a PDF, like the IMF, to make inferences
about unknown data, we implicitly renounce obtaining actual
values of the inferred quantity. The price is to renounce preci-
sion in favor of accuracy. In contrast, the distribution-by-number
methodology favors precision and renounces accuracy. The dif-
ference is in the algebra (and the logic reasoning) used in each
of the methodologies to manipulate formulae. The distribution-
by-number methodology uses standard algebra, where symbols
are just mathematical expressions without added meaning. The
probabilistic methodology follows the algebra of probability,
which implies a clear identification of the known and the (ran-
dom) variables we aim to describe by a probability distribution.
As an example, the equation

N x p(m = m™) = N,

provides an estimation of the number of stars with mass equal or
larger than m2™ in a cluster with AV stars. But such an estimation
is not necessarily a mean value nor a mode value (cf. Paper 1
for the case that N, = 1). In that case, we know N; hence, we
are working with a @y, (V,|NV) distribution. The inversion of the
equation, that is,

p(m > m™)

N,
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N =

i

provides the modal value AN™°% of the distribution ®x(N|N,)
when a flat distribution of AN values is assumed, (i.e.,
®n(N) = constant). The distribution ®x(/N) appears naturally
when the Bayes’ theorem is used. This is a natural result when
we realize that, since N is unknown, we need its probability dis-
tribution to make inferences about it, and that the “innocent”
algebraic manipulation we have done has a completely different
meaning than the one we would expect.

5.1. To Dpn(N) or not to Dy (N)?

We are now in the uncomfortable situation of having to assume a
@ p(N) distribution in the inference of N and M. However, the
relevance of the ® (/) in the inference of M is also dependent
on the value of m, and N,. In a back-of-the-envelope argument,
the effect of a power-law @ 5 (N) distribution is to decrease N, by
B stars (cf. Eq. (14) used for N™°% estimation). Hence, the larger
N,, the lower the dependence of the M estimation on @ (N).
Of course, the way to increase N, is to be complete down to the
lowest m, possible.

In the cases where the M inference strongly depends on our
choice of ®x(N), we must be guided by our knowledge of the
physical system environment and the scientific goal of the anal-
ysis. A flat ®(N) assumes that there is no previous knowledge
about the system environment, so it looks like good option in the
case of isolated systems and when we are only interested in the
system properties.

However, the situation varies if we are interested in a clus-
ter that we know is in a supercluster environment or is the re-
sult of molecular cloud fragmentation. In these cases, depending
on our knowledge and hypothesis about star formation (SF), we
can consider that such fragmentation is the result of a high-order
structure; hence, the particular cluster is not an isolated entity.
This would imply that some values of N or M are more proba-
ble than others, and this information must be taken into account
in the inference of A and M of the particular cluster.

We must stress here that the proposed method only applies
to @ (N) distributions, and not to ® (M) ones. The case of
Dp(N) is easily implemented as far as it is related to sampling
theory and the number of the elements in the sample is the rele-
vant quantity. The inclusion of @ (M) is not so trivial, since it
depends implicitly on a @ /(N) distribution. However, such dis-
tribution can not be obtained analytically (the convolution prob-
lem is not analytic in general cases). In addition, since @ (N)
is a discrete distribution, we have a large, but finite (and hence
computable), number of cases. This is not true for @ (M) be-
cause it is a continuous function and the possible solutions that
a combination of N stars produces a particular M is infinite. At
this moment, the only solution is to use ® (M) as a proxy for
DO x(N), which would be valid for situations where we know a
priori that the minimum possible number of stars is large (i.e.,
N, is large, or we have additional information about a minimum
number of stars in the cluster).

Finally, the situation also changes if we are interested in
obtaining @ (N) or ® (M) from a set of clusters. Following
Tarantola (2006), the most viable way is to make an iterative
process. First, assume a ®@p (/) distribution and compute re-
sulting distributions of N; and M; for each cluster. After that,
combine such distributions to obtain from the sample the global
distributions @1 (N) and O (M). If Dy (N) # Dy o(N),
then @ o(/N) is not a self-consistent hypothesis. However,
we must be aware that this does not prove that ®p ;(N)
and @y ;(M) are self-consistent hypotheses! The only way to
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achieve a self-consistent hypothesis is iterate the process until
Dy i1 (N) = Dy j(N) being the j—1 distribution is the one used
as input and the j distribution is the resulting one, along with
testing if the resulting @, ;(M) distributions also obey such
a condition (a cross validation). However, we stress again that
such a cross-validation process is a requirement that depends on
the N, value and that for large enough N, values, the resulting
D r(M|M,, N,) solution for the M distribution of a cluster is
almost ®x(/N) independent.

6. Conclusions

Throughout this work, we have explicitly developed the use of
the IMF to obtain different physical parameters of stellar systems
from limited information. We made extensive use of the IMF
as a PDF, which allowed us to make proper use of probability
theory and, in particular, the properties of sampling distributions
(where the total number of stars in the system is included) and
conditional probabilities.

We studied the methodology to obtain the distribution of pos-
sible N and M values from the knowledge of the set of the most
massive stars in the system. The result is dependent on the values
of m, and NV,, and on the hypothesis about the overall distribution
of the number of stars in clusters ®x(/N), including the limits of
such distribution (especially the lower one).
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