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ABSTRACT

Aims. Electron impact excitation collision strengths and oscillator strengths for the astrophysically important lines in Mg VI are re-
ported. Thermally averaged collision strengths are presented as a function of electron temperature for application to solar and other
astrophysical plasmas.
Methods. The collision strengths were calculated in a close-coupling approximation using the B-spline Breit-Pauli R-matrix method.
The multiconfiguration Hartree-Fock method with term-dependent, non-orthogonal orbitals was employed for an accurate representa-
tion of the target wave functions. The close-coupling expansion includes 74 bound levels of Mg VI covering the n = 2 and n = 3 terms.
The present calculations led to a total of 2701 forbidden, intercombination, and allowed transitions between fine-structure levels. The
effective collision strengths were obtained by averaging the electron collision strengths over a Maxwellian distribution of velocities.
Results. The accuracy of present oscillator strengths is evaluated by the agreement between the length and velocity formulations com-
bined with the agreement between the calculated and measured excitation energies. The calculated excitation energies are in excellent
agreement with experiments and other extensive configuration-interaction calculations. The oscillator strengths for all E1 transitions
are listed. The effective collision strengths are tabulated for all 2701 transitions among the 74 fine-structure levels at 11 electron
temperatures in the range from 10 000 to 200 000 K. The present results are compared with other close-coupling and distorted-wave
calculations. Overall good agrement is generally found with the calculations by Ramsbottom & Bell and by Landi & Bhatia for many
transitions, but significant differences are also noted for some transitions.
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1. Introduction

The prominent Mg VI emission lines have been observed in
the ultraviolet (UV), extreme ultraviolet (EUV), and soft X-ray
spectral ranges in solar and various other astrophysical plas-
mas. The intensity maps for Mg VI and Fe VII ions are sim-
ilar, indicating a similar temperature of formation. The max-
imum ionic abundance of Mg VI in ionization equilibrium of
astrophysical plasmas is at around 4 × 105 K. The Mg VI lines
due to the 2s22p3 2D◦3/2,5/2–2s2p4 2P1/2,3/2, 2s2p4 2D5/2,3/2 transi-
tions at 268.99 and 270.40 have been observed with Hinode/EIS
(Young et al. 2007; Brooks et al. 2009) and with SOHO/CDS at
transition region temperatures below 106 K. The Mg VI forbid-
den lines are identified at 1190.09 and 1191.64 Å in the spectra
of solar corona by SOHO/SUMER instrument. Several lines of
N-like Mg VI due to the 2s22p3–2s2p4 transitions have been ob-
served with SERTS including lines at 349.11 and 349.18 Å in the
EUV spectrum of solar active region (Thomas & Neupert 1994).
The Mg VI lines have also been observed in the spectrum of
symboitic stars AG Dra and RR Tel by Hubble/STIS instrument
(Young et al. 2006).

The N-like ions can provide some of the best density diag-
nostics of solar transition region in both quiet and active condi-
tions using intensity ratios from n = 2 forbidden and allowed
lines. The forbidden lines among the ground configuration occur

� Tables 3 and 4 are available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/548/A27

in UV spectral region and the allowed lines among the n = 2 lev-
els occur in the EUV spectral region. The Mg VI line intensity
ratios between the n = 2 and n = 3 levels are temperature sen-
sitive and can be used as plasma temperature diagnostics over a
wide temperature range of the solar corona. There are inconsis-
tencies between the observed and theoretical predictions for line
intensities of N-like Mg VI and Si VIII ions due to the atomic
data for these ions (Bhatia & Landi 2003; Young et al. 1998).
For example, there are discrepancies between theory and obser-
vations from the SERTS for the Mg VI 2s22p3 2D◦–2s2p4 2P, 2D
and 2s22p3 4S◦–2s2p4 4P lines which have been attributed to the
inaccuracies in the atomic data (Young et al. 1998). In order to
make full use of high quality EIS spectroscopic measurements,
accurate atomic data of matching quality are needed (Young
& Landi 2009; Brooks et al. 2009). Radiative transitions and
electron-ion collisions play an important role in the understand-
ing of the physical processes and conditions in various types of
astrophysical plasmas including solar transition region in both
quiet and active conditions.

Several theoretical calculations of collision strengths and
rates have been performed using distorted-wave and close-
coupling methods with different approximations for the target
wave functions and with different number of target states. To our
knowledge, there is no experimental study available for electron
impact excitation collision data of Mg VI. The experimental data
are important to verify or to calibrate theory. In astrophysical
plasma applications, however, the majority of required radiative
decay rates and collisional rate coefficients are derived from the

Article published by EDP Sciences A27, page 1 of 9

http://dx.doi.org/10.1051/0004-6361/201219767
http://www.aanda.org
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/548/A27
http://www.edpsciences.org


A&A 548, A27 (2012)

calculations. Previous theoretical calculations for electron im-
pact excitation collision strengths include the distorted-wave cal-
culations of Bhatia & Mason (1980), Bhatia & Young (1998),
Landi & Bhatia (2007), and Zhang & Sampson (1999) and in
the R-matrix calculations of Ramsbottom & Bell (1997). The
distorted-wave calculations were carried out at a few selected
incident electron energies and did not include resonances in the
collision strengths. Bhatia & Young (1998) and Ramsbottom &
Bell (1997) considered the 12 lowest LS states of the 2s22p3,
2s2p4, 2p5, and 2s22p23s configurations, while Landi & Bhatia
(2007) included 74 fine-structure levels of the n = 2 and n =
3 states in their calculations.

Previous theoretical calculations have basically been per-
formed in the LS-coupling approximation and the collision
strengths for fine-structure transitions were determined by trans-
forming scattering matrices in LS coupling to LSJ coupling
(Saraph 1978). Besides these, the close-coupling expansions did
not include all possible n = 3 terms which may be important for
the convergence of the close-coupling expansion. Ramsbottom
& Bell (1997) included only the four 2s22p23s states of the
n = 3 complex in their 12-state R-matrix calculation. The pur-
pose of the work reported here is to provide a set of accurate
oscillator strengths and effective collision strengths for electron
excitation of Mg VI for applications to astrophysical plasmas.
Our scattering calculations were performed by using highly ac-
curate target wave functions and by including fine-structure ef-
fects in the close-coupling expansions directly to make sure that
the relativistic effects are adequately accounted for in the scatter-
ing calculations. The present calculations were carried out with
the B-spline Breit-Pauli R-matrix (BSR) approach (Zatsarinny &
Tayal 2001; Zatsarinny 2006). One of the distinct features of the
present method is the use of term-dependent, non-orthogonal or-
bital sets in the description of the target states. This allows us to
optimize the atomic wave functions for different states indepen-
dently, resulting in a more accurate target description than those
used in previous collision calculations.

2. Computational methods

We used non-orthogonal orbitals to represent different
Mg VI states. The non-orthogonal orbitals provide much
greater flexibility in the choice of wave functions than the
orthogonal orbitals and also allow us to include correlation with
a reasonable number of configurations and correlated orbitals.
Our calculations were performed using the multiconfiguration
Hartree-Fock (MCHF) method (Froese Fischer 2007; Zatsarinny
& Froese Fischer 2000). In the MCHF approach the atomic state
is represented by an atomic state function

Ψ(αLS) =
∑

i

ciΦ(αiLS), (1)

where the configuration state functions (CSF) Φ(αiLS) are con-
structed from one-electron functions and αi defines the coupling
of angular momenta of the electrons.

The Mg VI wave functions exhibit significant correlation
corrections and term dependence of the one-electron orbitals.
The non-orthogonal orbitals were optimized for each atomic
state separately. We began with the Hartee-Fock (HF) calcula-
tion for the 1s, 2s, and 2p orbitals for the ground 2s22p3 config-
uration terms and then determined separate sets of excited or-
bitals for various symmetries of even and odd parities. A set
of correlation s, p, d, f, and g orbitals was determined by
optimization on the ground 2s22p3 4S◦ state and another set

of s, p, d, f, and g correlation orbitals was optimized on the
2s22p23s 4P state. The mean radii of the correlation orbitals are
comparable to the spectroscopic orbitals and thus the correla-
tion corrections are represented very well. The spectroscopic
and correlation functions are used to construct CI expansions
for different atomic states by allowing one-electron and two-
electron excitations from all the basic configurations 2s22p3,
2s2p4, 2s22p23s, 2s22p23p, and 2s22p23d to the spectroscopic
and correlation orbitals used in our calculations. In the con-
struction of CI expansions for fine-structure levels with var-
ious J and π, we used configurations generated in this exci-
tation scheme for the atomic LS states and with insignificant
configurations with coefficients less than 0.0008 omitted from
the expansions. We retained 3314 and 2267 configurations for
even and odd parity levels, respectively, in our calculations of
oscillator strengths.

We further omitted configurations with weights less
than 0.01 in calculations for the description of target wave func-
tions to make the subsequent scattering calculations computa-
tionally feasible. We included 226 and 272 configuration state
functions in the CI expansions of levels of odd parity and even
parity respectively in our final calculation. We used 20, 69, 48,
13, 29, 17, and 30 CSFs respectively for the representation of
the 2S◦, 2P◦, 2D◦, 2F◦, 4S◦, 4P◦, and 4D◦ terms of odd parity.
For the 2S, 2P, 2D, 2F, 2G, 4P, 4D, and 4F even parity terms we
used 31, 74, 51, 33, 10, 44, 15, and 14 CSFs respectively in the
CI expansions. The valence-shell correlation effects due to elec-
tron excitations to the 2p43s, 2p43p, and 2p43d configurations
are essential for the accurate representation of target states. The
2s electron excitation from the 2s22p3 ground configuration to
the 3s, 3p, and 3d spectroscopic orbitals is very important. The
configurations with one-electron virtual excitations to the cor-
relation s, p, and d orbitals are also important. Our calculation
takes the important correlation and relaxation effects and of the
term dependence of the valence orbitals into account.

For the scattering calculations we employed the BSR code
(Zatsarinny 2006). Details of this approach can be found in our
recent publications on e−K II (Tayal & Zatsarinny 2008) and
e−S II (Tayal & Zatsarinny 2010). The distinctive feature of the
method is the use of B-splines as a universal basis to represent
the scattering orbitals in the inner region of r ≤ a. Hence, the
R-matrix expansion in this region takes the form

Ψk(x1, . . . , xN+1) = A
∑

i j

Φ̄i(x1, . . . , xN ; r̂N+1σN+1)

× r−1
N+1 B j(rN+1) ai jk +

∑
i

χi(x1, . . . , xN+1) bik. (2)

Here Φ̄i are the channel functions while the splines B j(r) repre-
sent the continuum orbitals. The χi are (N + 1)-electron config-
urations formed from the one-electron orbitals used to describe
the N-electron target states. These must be included to ensure
completeness of the total trial wave function if the continuum or-
bitals are constructed orthogonally to the bound orbitals. The ex-
pansion coefficients ai jk and bik are determined by diagonalizing
the (N + 1)-electron Breit-Pauli Hamiltonian with added Bloch
operator. The relativistic effects in the scattering calculations
have been incorporated in the Breit-Pauli Hamiltonian through
the use of Darwin, mass correction, and spin-orbit operators.

The present scattering approach imposes only limited or-
thogonality conditions to the continuum orbitals. The use of non-
orthogonal orbitals allows us to reduce or even to avoid the in-
troduction of additional (N + 1)-electron terms in the R-matrix
expansion. We only require the orthogonality of continuum
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orbitals to the bound orbitals in the filled 1s shell. No orthog-
onality constraints to the spectroscopic excited orbitals or the
correlated orbitals were imposed. In order to represent the con-
tinuum orbitals in internal region, 48 B-splines of order 8 were
used in the present calculations, with the size of the B-spline box
a = 7.25 a0 (a0 = 0.529 × 10−10 m denoting the Bohr radius).
The scattering parameters are found by matching the inner solu-
tion at r = a with asymptotic solutions in the outer region. The
Seaton’s STGF program as extended by Badnell (1999) has been
employed to find the asymptotic solutions and collision parame-
ters. We numerically calculated partial-wave contributions up to
J = 30. These partial waves are sufficient to achieve convergence
for the forbidden transitions under consideration. Higher par-
tial wave contributions are needed for the dipole-allowed tran-
sitions and these are estimated in a top-up procedure based on
the Coulomb-Bethe method (Burgess & Sheorey 1974) or on ge-
ometric series approximation. In order to resolve the resonance
structure with high accuracy, we used a fine energy mesh of 2.0×
10−4 Ry in the closed-channel energy region up to 6.0 Ry and
then an energy mesh of 1.0 × 10−3 Ry up to 10.0 Ry, that allowed
us to resolve a vast majority of the narrow resonances in the en-
ergy range up through the highest excitation threshold. At higher
energies up to 70 Ry where all channels are open and there are
no resonances, the cross sections show smooth behavior and we
used an energy grid of 0.25 Ry.

In astrophysical applications it is convenient to use excita-
tion rate coefficients or thermally averaged collision strengths as
a function of electron temperature. The excitation rates are ob-
tained by averaging collision strengths over a Maxwellian distri-
bution of electron energies. The excitation rate coefficient for
a transition from state i to state f at electron temperature Te
is given by

Ci f =
8.629 × 10−6

giT
1/2
e

γi f (Te) exp

(−ΔEi f

kTe

)
cm3 s−1, (3)

where gi is the statistical weight of the lower level i, ΔEi f =
E f − Ei is the excitation energy and γi f is a dimensionless quan-
tity called effective collision strength given by

γi f (Te) =
∫ ∞

0
Ωi f exp

(−E f

kTe

)
d

(
E f

kTe

)
, (4)

where E f is the energy of incident electron with respect to the
upper level f . If the collision strength is assumed to be indepen-
dent of the incident electron energy, we have γi f = Ωi f . The ef-
fective collision strengths are calculated by integrating collision
strengths for fine-structure levels over a Maxwellian distribution
of electron energies. The integration in Eq. (4) should be carried
out using energy dependent collision strengths from threshold to
infinity. The collision strengths vary smoothly in high energy re-
gion and the energy dependence of collision strengths for high
energies have been properly accounted for by using numerical
extrapolation technique at E > 70 Ry. In the asymptotic region,
the collision strengths follow a high energy limiting behavior for
the dipole-allowed transitions

Ωi f (E) ∼E→∞
4S
3

ln(E), (5)

where S is the line strength. The collision strengths vary
smoothly in the high energy region and exhibit an increasing
trend for dipole-allowed transitions. The collision strength in-
creases more rapidly for the stronger dipole-allowed transitions
than the weaker transitions.

3. Results and discussion

The target states included in the present scattering calculations
are given in Table 1, where we compare our calculated excita-
tion energies with the available experimental values and with re-
cent calculations by Froese Fischer & Tachiev (2004) and Landi
& Bhatia (2007). The overall agreement between experiment
and present calculation is very satisfactory with an average de-
viation of about 0.034 Ry. The present excitation energies ob-
tained from wave functions used in the scattering calculation
show an average deviations of 0.019, 0.047, 0.053, and 0.017 Ry
for the levels of 2s22p3, 2s2p4, 2p5, and 2s22p23l configura-
tions respectively. The accuracy of excitation energies from our
extensive MCHF calculation for transition rates is somewhat
better with average deviation of about 0.01 Ry. The present
structure description represents a substantial improvement over
those used in previous R-matrix calculations by Ramsbottom &
Bell (1997) and distorted-wave calculations by Landi & Bhatia
(2007). We obtained good agreement for all 2s22p3, 2s2p4, 2p5,
and 2s22p23l states, indicating that we consistently take corre-
lation corrections in the ground and excited states into account,
as our method allows us to use non-orthogonal orbitals, that are
specific for given configurations. The accuracy of the present
calculations is comparable to the Breit-Pauli MCHF calculation
by Froese Fischer & Tachiev (2004).

We also present the lifetimes of excited levels in Table 1,
where our results are compared with the results of Froese Fischer
& Tachiev (2004). The present lifetimes are within 10% of the
results of Froese Fischer & Tachiev (2004) for most of the lev-
els. However, larger differences are found for the levels of the
2s22p23p 2S◦, 4S◦, 2s22p23d 4D, 2F, and 2G terms. The present
lifetimes were calculated from transition probabilities of all pos-
sible E1 transitions between the states considered in our calcula-
tion. However, we have not included transition probabilities for
forbidden E2 and M1 transitions and, therefore, the lifetimes of
the metastable 2s22p3 2D◦ and 2P◦ levels are not given in Table 1.
This may also contribute to some of the discrepancies with the
work of Froese Fischer & Tachiev (2004), especially for levels
which decay primarily via forbidden transitions. The lifetimes
of the 2s2p4, 2p5 and 2s22p23l configurations varies from a few
nanoseconds to fraction of nanosecond with significant lifetimes
for the 2s22p23p 2S◦, 4S◦, 2D◦, 4D◦, and 2s22p23d 2G levels.

The accuracy of oscillator strengths to some extent relates
to the quality of target wave functions and, therefore, to the
accuracy and reliability of collision strengths and rate coeffi-
cients. For example, collision strengths of the dipole-allowed
transitions at high electron energies are directly proportional
to the oscillator strengths. We have presented our length val-
ues of oscillator strengths and transition probabilities in Table 2
where present results are compared with the calculations of
Froese Fischer & Tachiev (2004) and Landi & Bhatia (2007).
We used experimental energies in the calculations of oscilla-
tor strengths and radiative rates. A rather reasonable agreement
between different calculations is noted. Our calculation shows
somewhat better agreement with the results of Froese Fischer &
Tachiev (2004). We present oscillator strengths and transition
probabilities for allowed and intercombination lines between the
74 fine-structure levels in Table 3. The relativistic effects were
included through the spin-orbit, spin-other-orbit, spin-spin, mass
and Darwin Breit-Pauli operators. We have presented oscillator
strengths in both length and velocity formulations and transi-
tion probabilities in length form in Table 3. We have also listed
wavelengths in this table. The values of oscillator strengths for
intercombination lines are usually much lower than those for the
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Table 1. Excitation energies (in Ry) of the 74 target levels included in the present transition rates and scattering calculations.

Index State 2J Excitation energy τ(ns)
Present Experiment LB FT Present FT

1 2s22p3 4S◦ 3 0.00000 0.00000 0.00000 0.00000
2 2s22p3 2D◦ 5 0.51559 0.50444 0.54930 0.50803
3 2s22p3 2D◦ 3 0.51583 0.50459 0.54922 0.50811
4 2s22p3 2P◦ 1 0.79168 0.76474 0.79683 0.76643
5 2s22p3 2P◦ 3 0.79233 0.76572 0.79774 0.76740
6 2s2p4 4P 5 2.26796 2.25947 2.30067 2.26550 3.51-01 3.59-01
7 2s2p4 4P 3 2.28220 2.27438 2.31656 2.28034 3.44-01 3.52-01
8 2s2p4 4P 1 2.29064 2.28227 2.32500 2.28814 3.40-01 3.48-01
9 2s2p4 2D 5 3.17356 3.11426 3.24179 3.12598 1.30-01 1.33-01
10 2s2p4 2D 3 3.17368 3.11465 3.24182 3.12632 1.29-01 1.32-01
11 2s2p4 2S 1 3.71777 3.66167 3.79323 3.67329 6.49-02 6.79-02
12 2s2p4 2P 3 3.94010 3.87462 4.04521 3.89437 2.96-02 3.01-02
13 2s2p4 2P 1 3.95782 3.89234 4.06414 3.91202 2.96-02 3.01-02
14 2p5 2P◦ 3 5.99410 5.94025 6.19284 5.96734 5.31-02 5.30-02
15 2p5 2P◦ 1 6.01747 5.96400 6.21804 5.99090 5.27-02 5.26-02
16 2s22p2(3P)3s 4P 1 8.12929 8.14620 8.08111 8.14209 4.67-02 4.52-02
17 2s22p2(3P)3s 4P 3 8.13799 8.15480 8.09059 8.15137 4.66-02 4.49-02
18 2s22p2(3P)3s 4P 5 8.15186 8.16900 8.10567 8.16514 4.66-02 4.46-02
19 2s22p2(3P)3s 2P 1 8.26274 8.27800 8.22972 8.27538 1.51-02 1.53-02
20 2s22p2(3P)3s 2P 3 8.27964 8.29530 8.24783 8.29225 1.51-02 1.53-02
21 2s22p2(1D)3s 2D 5 8.56657 8.55520 8.51646 8.55519 2.51-02 2.46-02
22 2s22p2(1D)3s 2D 3 8.56684 8.55520 8.51663 8.55544 2.52-02 2.46-02
23 2s22p2(3P)3p 2S◦ 1 8.64961 8.59376 8.64711 3.64+00 4.57+00
24 2s22p2(3P)3p 4D◦ 1 8.73632 8.65723 8.71685 1.98+00 2.16+00
25 2s22p2(3P)3p 4D◦ 3 8.74132 8.66253 8.72208 1.94+00 2.11+00
26 2s22p2(3P)3p 4D◦ 5 8.74910 8.67154 8.73079 1.91+00 2.10+00
27 2s22p2(3P)3p 4D◦ 7 8.76219 8.68435 8.74265 1.97+00 2.14+00
28 2s22p2(3P)3p 4P◦ 1 8.77543 8.70784 8.76836 4.54-01 5.22-01
29 2s22p2(3P)3p 4P◦ 3 8.77937 8.71199 8.77203 4.49-01 5.16-01
30 2s22p2(3P)3p 4P◦ 5 8.78770 8.72094 8.78038 4.52-01 5.24-01
31 2s22p2(3P)3p 4S◦ 3 8.88603 8.82595 8.88461 2.73+00 1.30-01
32 2s22p2(3P)3p 2D◦ 3 8.88946 8.80457 8.84789 2.61+00 2.05+00
33 2s22p2(3P)3p 2D◦ 5 8.90607 8.82226 8.86497 2.49+00 1.98+00
34 2s22p2(3P)3p 2P◦ 1 8.96365 8.89309 8.93579 4.60-01 5.71-01
35 2s22p2(3P)3p 2P◦ 3 8.96511 8.89557 8.93745 4.56-01 5.66-01
36 2s22p2(1S)3s 2S 1 8.97406 8.96160 8.96145 2.64-02 2.55-02
37 2s22p2(1D)3p 2F◦ 5 9.17886 9.11154 9.15066 8.59-01 9.83-01
38 2s22p2(1D)3p 2F◦ 7 9.18247 9.11521 9.15455 8.54-01 9.77-01
39 2s22p2(1D)3p 2D◦ 5 9.29677 9.23722 9.24872 4.36-01 5.92-01
40 2s22p2(1D)3p 2D◦ 3 9.29868 9.23825 9.25053 4.33-01 5.84-01
41 2s22p2(1D)3p 2P◦ 1 9.35653 9.31797 9.33100 2.38-01 2.74-01
42 2s22p2(1D)3p 2P◦ 3 9.36626 9.32836 9.33988 2.37-01 2.73-01
43 2s22p2(3P)3d 4F 3 9.44021 9.36532 9.41815 1.01+00 1.05+00
44 2s22p2(3P)3d 4F 5 9.44476 9.37042 9.42286 9.41-01 9.88-01
45 2s22p2(3P)3d 4F 7 9.45141 9.37789 9.42971 9.64-01 1.04+00
46 2s22p2(3P)3d 4F 9 9.46046 9.38810 9.43880 1.19+00 1.26+00
47 2s22p2(3P)3d 2P 3 9.47111 9.47772 9.43876 9.47554 1.05-02 1.10-02
48 2s22p2(3P)3d 2P 1 9.48316 9.48337 9.45059 9.49631 1.33-02 1.33-02
49 2s22p2(3P)3d 4D 3 9.51013 9.52465 9.42754 9.48952 2.45-02 4.40-02
50 2s22p2(3P)3d 4D 1 9.51056 9.52839 9.42836 9.48150 1.09-01 2.67-02
51 2s22p2(3P)3d 4D 5 9.51106 9.52465 9.43491 9.48869 4.66-02 1.06-01
52 2s22p2(3P)3d 4D 7 9.51542 9.43981 9.49314 7.01-01 6.50-01
53 2s2p3(4S◦)3s 4S◦ 3 9.54080 9.53769 9.53436 2.07-02 2.05-02
54 2s22p2(3P)3d 2F 5 9.55293 9.53568 9.49882 9.53486 1.05-02 1.19-02
55 2s22p2(3P)3d 4P 5 9.55836 9.54379 9.49706 9.54198 3.38-03 3.32-03
56 2s22p2(3P)3d 4P 3 9.56454 9.54999 9.50372 9.54840 3.30-03 3.26-03
57 2s22p2(3P)3d 4P 1 9.56781 9.55354 9.50725 9.55174 3.27-03 3.22-03
58 2s22p2(3P)3d 2F 7 9.57056 9.55354 9.51731 9.55263 1.06-02 1.18-02

Notes. Present results are compared with observed values from NIST compilation (http://physics.nist.gov) and the CI calculations of
Landi & Bhatia (2007) (LB) and Froese Fischer & Tachiev (2004) (FT). The lifetimes in dipole approximation are also given from the present and
Froese Fischer & Tachiev (2004) (FT) calculations.
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Table 1. continued.

Index State 2J Excitation energy τ(ns)
Present Experiment LB FT Present FT

59 2s22p2(1S)3p 2P◦ 3 9.63161 9.61180 9.51835 4.64-01
60 2s22p2(1S)3p 2P◦ 1 9.63264 9.61193 9.52017 4.61-01
61 2s22p2(3P)3d 2D 3 9.70500 9.67811 9.64979 9.67799 5.07-03 5.24-03
62 2s22p2(3P)3d 2D 5 9.70995 9.68331 9.68331 9.68303 4.88-03 5.02-03
63 2s22p2(1D)3d 2G 7 9.89453 9.82671 9.85833 8.04-03 4.96-02
64 2s22p2(1D)3d 2G 9 9.89853 9.82822 8.95973 9.75-01 1.15+00
65 2s22p2(1D)3d 2F 7 9.90293 9.87212 9.85442 9.87381 5.31-03 3.61-03
66 2s22p2(1D)3d 2F 5 9.90341 9.87485 9.85686 9.87648 3.21-03 3.36-03
67 2s22p2(1D)3d 2D 3 9.93073 9.90155 9.87498 9.90348 4.13-03 4.09-03
68 2s22p2(1D)3d 2D 5 9.93348 9.90474 9.87890 9.90648 4.10-03 4.08-03
69 2s22p2(1D)3d 2P 1 10.01161 9.96707 9.93452 9.96865 5.19-03 5.31-03
70 2s22p2(1D)3d 2P 3 10.01508 9.97154 9.93894 9.97301 5.10-03 5.22-03
71 2s2p3(4S◦)3p 4P 5 10.02183 10.02158 2.11-02 2.21-02
72 2s2p3(4S◦)3p 4P 3 10.02297 10.022711 2.14-02 2.24-02
73 2s2p3(4S◦)3p 4P 1 10.02366 10.02348 2.15-02 2.26-02
74 2s22p2(1D)3d 2S 1 10.03347 10.01650 9.99674 10.01845 6.82-03 6.73–03
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Fig. 1. Ratio between the present velocity and length oscillator strengths
is shown as a function of length oscillator strengths. The dotted lines
indicate 20% deviation.

dipole-allowed transitions. The agreement between the length
and velocity forms of oscillator strengths may to some extent in-
dicate the accuracy of wave functions and convergence of CI ex-
pansions. However, it is not a sufficient condition for the ac-
curacy of results. The convergence of results is an important
accuracy criterion. We have plotted ratio of the present veloc-
ity and length values as a function of length oscillator strengths
in Fig. 1. It is clear from Fig. 1 that there is normally a very
good agreement between the present length and velocity forms
of oscillator strengths, particularly for transitions with signifi-
cant strengths. The weak transitions, however, are not so accu-
rate. The weak transitions belong mainly to the intercombination
transitions. The intercombination transitions occur due to spin-
orbit mixing of total terms. This mixing strongly depends on the
details of calculation and it is difficult to obtain the convergent
results in some cases.

We begin our discussion of collision results for the exci-
tation collision strengths for the forbidden 2s22p3 4S◦3/2–2D◦5/2
(1−2) transition in both closed-channel and all open-channel en-
ergy regions in Fig. 2. The collision strengths show extensive
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Fig. 2. Collision strengths for the forbidden 2s22p3 4S◦3/2–2D◦5/2 (1–2)
transition as a function of incident electron energy. Upper panel, reso-
nant collision strengths in the closed channel region; lower panel, non-
resonant collision strengths in all open channels region and present re-
sults (solid curve) are compared with the calculation of Landi & Bhatia
(2007) (solid rectangles).

resonance structures which are typical for low-energy electron
scattering on ions in closed-channel region. These resonances
are expected to contribute significantly to the collision rates at
low temperatures. Note also that our collision strengths show
a richer resonance structure with many narrow resonances. It is
partly because our results directly include the fine-structure split-
ting both for the N-electron target states and for (N +1)-electron
resonances. Our calculation predicts very smooth behavior at
the above-threshold region for the forbidden 2s22p3 4S◦3/2–2D◦5/2
(1–2) transition plotted in the lower panel of Fig. 2. Our re-
sults for non-resonant collision strengths have been compared
with the available distorted-wave calculation of Landi & Bhatia
(2007) who reported results at five incident electron energies.
The present results are shown by solid curve, while the solid
rectangles display the results of Landi & Bhatia (2007). There is
a good agreement between the two calculations with a maximum
deviation of about 10%.
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Table 2. Comparison of oscillator strengths and transition probabilities (s−1) for some dipole radiative E1 transitions with the calculations of Landi
& Bhatia (2007) (LB) and Froese Fischer & Tachiev (2004) (FT).

Initial level Final level gi g f Present LB FT
fi f A f i fi f A f i fi f A f i

2s22p3 4S◦−2s2p4 4P 4 6 1.026-01 2.847+09 1.146-01 3.137+09 1.013-01 2.783+09
2s22p3 4S◦−2s2p4 4P 4 4 6.896-02 2.905+09 7.700-02 3.205+09 6.805-02 2.842+09
2s22p3 4S◦−2s2p4 4P 4 2 3.464-02 2.940+09 3.865-02 3.244+09 3.418-02 2.874+09
2s22p3 4S◦−2s2p4 2D 4 6 9.936-08 5.266+03 9.992-08 5.576+03 1.640-07 8.580+03
2s22p3 4S◦−2s2p4 2D 4 4 5.308-08 4.220+03 1.496-07 1.253+04 1.009-07 7.924+03
2s22p3 4S◦−2s2p4 2S 4 2 1.020-05 2.265+06 1.539-05 3.525+06 1.033-05 2.239+06
2s22p3 4S◦−2s2p4 2P 4 4 3.461-05 4.266+06 3.915-05 5.207+06 3.683-05 4.486+06
2s22p3 4S◦−2s2p4 2P 4 2 6.293-06 1.565+06 5.752-06 1.545+06 5.499-06 1.352+06
2s22p3 4S◦−2s22p2(3P)3s 4P 4 2 2.004-02 2.136+10 2.069-02 2.218+10 2.071-02 2.205+10
2s22p3 4S◦−2s22p2(3P)3s 4P 4 4 4.004-02 2.138+10 4.125-02 2.216+10 4.155-02 2.217+10
2s22p3 4S◦−2s22p2(3P)3s 4P 4 6 6.001-02 2.144+10 6.157-02 2.212+10 6.267-02 2.237+10
2s22p3 4S◦−2s22p2(3P)3s 2P 4 2 5.560-06 6.124+06 5.677-06 6.297+06 7.842-06 8.627+06
2s22p3 4S◦−2s22p2(3P)3s 2P 4 4 1.590-05 8.795+06 1.534-05 8.544+06 1.934-05 1.068+07
2s22p3 4S◦−2s22p2(1D)3s 2D 4 6 1.928-05 7.571+06 1.858-05 7.348+06 2.188-05 8.573+06
2s22p3 4S◦−2s22p2(1D)3s 2D 4 4 2.226-06 1.311+06 2.-54206 1.508+06 2.819-06 1.657+06
2s22p3 4S◦−2s22p2(1S)3s 2S 4 2 2.395-08 3.107+04 7.732-07 1.037+06 7.546-08 9.735+04
2s22p3 4S◦−2s22p2(3P)3d 4F 4 4 1.247-05 8.917+06 1.240-05 8.862+06 1.541-05 1.098+07
2s22p3 4S◦−2s22p2(3P)3d 4F 4 6 5.417-05 2.585+07 5.315-05 2.535+07 6.447-05 3.065+07
2s22p3 4S◦−2s22p2(3P)3d 2P 4 4 2.340-03 1.692+09 3.452-04 2.507+08 2.539-03 1.831+09
2s22p3 4S◦−2s22p2(3P)3d 4D 4 2 7.797-04 1.129+09 6.587-04 9.546+08 8.017-04 1.157+09
2s22p3 4S◦−2s22p2(3P)3d 4D 4 6 1.640-02 7.933+09 1.144-02 5.532+09 1.686-02 8.126+09
2s22p3 4S◦−2s22p2(3P)3d 4D 4 4 3.965-03 2.876+09 4.347-03 3.150+09 3.881-03 2.807+09
2s22p3 4S◦−2s22p2(3P)3d 2P 4 2 8.174-05 1.188+08 9.102-07 1.326+06 7.506-05 1.087+08
2s22p3 4S◦−2s22p2(3P)3d 4P 4 6 5.989-01 2.929+11 6.555-01 3.215+11 6.158-01 3.002+11
2s22p3 4S◦−2s22p2(3P)3d 2F 4 6 9.548-03 4.672+09 1.695-03 8.311+08 9.638-04 4.692+08
2s22p3 4S◦−2s22p2(3P)3d 4P 4 4 4.106-01 3.016+11 4.402-01 3.244+11 4.171-01 3.054+11
2s22p3 4S◦−2s22p2(3P)3d 4P 4 2 2.077-01 3.053+11 2.216-01 3.268+11 2.112-01 3.095+11
2s22p3 4S◦−2s22p2(3P)3d 2D 4 4 1.580-06 1.193+06 4.327-08 3.291+04 1.327-06 9.983+05
2s22p3 4S◦−2s22p2(3P)3d 2D 4 6 1.339-05 6.748+06 4.455-08 2.260+04 1.939-05 9.733+06
2s22p3 4S◦−2s22p2(1D)3d 2F 4 6 3.942-06 2.071+06 2.223-06 1.174+06 1.818-06 9.496+05
2s22p3 4S◦−2s22p2(1D)3d 2D 4 4 1.406-05 1.112+07 8.722-06 6.930+06 1.429-05 1.126+07
2s22p3 4S◦−2s22p2(1D)3d 2D 4 6 1.076-04 5.674+07 7.850-05 4.161+07 1.261-04 6.628+07
2s22p3 4S◦−2s22p2(1D)3d 2P 4 2 1.564-05 2.507+07 8.960-06 1.440+07 1.889-05 3.015+07
2s22p3 4S◦−2s22p2(1D)3d 2P 4 4 7.990-05 6.409+07 5.002-05 4.025+07 1.036-04 8.274+07
2s22p3 4S◦−2s22p2(1D)3d 2S 4 2 2.605-05 4.217+07 1.501-05 2.443+07 8.518-05 1.373+08
2s22p3 4S◦−2s2p3(4S◦)3p 4P 4 6 8.578-02 4.647+10 8.268-02 4.446+10
2s22p3 4S◦−2s2p3(4S◦)3p 4P 4 4 5.645-02 4.589+10 5.434-02 4.384+10
2s22p3 4S◦−2s2p3(4S◦)3p 4P 4 2 2.802-02 4.555+10 2.691-02 4.342+10
2s22p3 2D◦−2s2p4 4P 6 6 1.129-05 2.815+05 1.314-05 3.117+05 1.186-05 2.942+05
2s22p3 2D◦−2s2p4 4P 6 4 4.407-07 1.675+04 5.971-07 2.165+04 4.429-07 1.676+04
2s22p3 2D◦−2s2p4 2D 6 6 1.133-01 6.303+09 1.298-01 7.524+09 1.115-01 6.139+09
2s22p3 2D◦−2s2p4 2D 6 4 7.287-03 6.083+08 8.321-03 7.235+08 7.158-03 5.912+08
2s22p3 2D◦−2s2p4 2P 6 4 1.712-01 2.389+10 1.960-01 2.938+10 1.699-01 2.347+10
2s22p3 2D◦−2s22p2(3P)3s 4P 6 4 7.695-05 5.412+07 8.731-05 6.132+07 7.348-05 5.172+07
2s22p3 2D◦−2s22p2(3P)3s 4P 6 6 5.986-05 2.816+07 6.978-05 3.279+07 5.326-05 2.508+07
2s22p3 2D◦−2s22p2(3P)3s 2P 6 4 4.709-02 3.437+10 5.633-02 4.114+10 4.677-02 3.414+10
2s22p3 2D◦−2s22p2(1D)3s 2D 6 6 5.218-02 2.716+10 5.638-02 2.934+10 5.392-02 2.804+10
2s22p3 2D◦−2s22p2(1D)3s 2D 6 4 2.695-03 2.105+09 2.875-03 2.244+09 2.710-03 2.114+09
2s22p3 2D◦−2s22p2(3P)3d 4F 6 4 9.818-07 9.416+05 9.853-07 9.383+05 3.329-07 3.184+05
2s22p3 2D◦−2s22p2(3P)3d 4F 6 6 1.217-04 7.787+07 1.099-04 6.985+07 1.222-04 7.800+07
2s22p3 2D◦−2s22p2(3P)3d 4F 6 8 3.933-04 1.891+08 3.633-04 1.734+08 3.614-04 1.733+08
2s22p3 2D◦−2s22p2(3P)3d 2P 6 4 1.635-02 1.587+10 1.447-02 1.402+10 1.737-02 1.682+10
2s22p3 2D◦−2s22p2(3P)3d 4D 6 6 3.245-05 2.106+07 4.710-05 3.038+07 1.672-05 1.083+07
2s22p3 2D◦−2s22p2(3P)3d 4D 6 4 2.571-03 2.504+09 6.400-03 6.186+09 3.159-03 3.070+09
2s22p3 2D◦−2s22p2(3P)3d 4D 6 8 9.452-04 4.606+08 6.611-04 3.202+08 1.295-03 6.300+08
2s22p3 2D◦−2s22p2(3P)3d 4P 6 6 5.708-05 3.749+07 1.108-04 7.256+07 6.329-05 4.148+07
2s22p3 2D◦−2s22p2(3P)3d 2F 6 6 9.390-03 6.170+09 9.073-03 5.936+09 8.516-03 5.574+09
2s22p3 2D◦−2s22p2(3P)3d 4P 6 4 8.233-05 8.123+07 8.638-05 8.495+07 8.574-05 8.442+07
2s22p3 2D◦−2s22p2(3P)3d 2F 6 8 1.890-01 9.351+10 1.783-01 8.785+10 1.710-01 8.426+10
2s22p3 2D◦−2s22p2(3P)3d 2D 6 4 9.300-03 9.449+09 1.058-02 1.076+10 9.535-03 9.660+09
2s22p3 2D◦−2s22p2(3P)3d 2D 6 6 1.106-01 7.500+10 1.274-01 8.651+10 1.117-01 7.553+10
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Table 2. continued.

Initial level Final level gi g f Present LB FT
fi f A f i fi f A f i fi f A f i

2s22p3 2D◦−2s22p2(1D)3d 2F 6 8 3.534-01 1.875+11 6.980-01 3.703+11 5.226-01 2.761+11
2s22p3 2D◦−2s22p2(1D)3d 2F 6 6 6.465-02 4.581+10 7.808-02 5.528+10 5.370-02 3.785+10
2s22p3 2D◦−2s22p2(1D)3d 2G 6 8 2.325-01 1.236+11 4.673-03 2.455+09 3.666-02 1.930+10
2s22p3 2D◦−2s22p2(1D)3d 2D 6 4 1.527-02 1.629+10 1.579-02 1.683+10 1.574-02 1.674+10
2s22p3 2D◦−2s22p2(1D)3d 2D 6 6 1.514-01 1.077+11 1.514-01 1.077+11 1.659-01 1.177+11
2s22p3 2D◦−2s22p2(1D)3d 2P 6 4 4.506-02 4.878+10 4.405-02 4.756+10 4.639-02 5.007+10
2s22p3 2D◦−2s2p3(4S◦)3p 4P 6 6 1.152-06 8.429+05 1.539-06 1.118+06
2s22p3 2D◦−2s2p3(4S◦)3p 4P 6 4 1.932-06 2.121+06 4.211-06 4.593+06
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Fig. 3. Collision strengths for the dipole-allowed 2s22p3 4S◦3/2–
2s2p4 4P5/2 (1–6) transition as a function of incident electron energy
from threshold to 70 Ry. Solid curve, present calculation; solid rectan-
gles, calculation of Landi & Bhatia (2007).
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Fig. 4. Collision strengths for the dipole-allowed 2s22p3 2D◦3/2–2s2p4

2D3/2 (3–10) transition as a function of incident electron energy from
threshold to 70 Ry. Solid curve, present calculation; solid rectangles,
calculation of Landi & Bhatia (2007).

The collision strengths for the dipole-allowed 2s22p3

4S◦3/2–2s2p4 4P5/2 (1–6), 2s22p3 2D◦3/2–2s2p4 2D3/2 (3−10),
2s22p3 2P◦1/2–2s22p2(1D)3s 2D3/2 (4–22), 2s22p3 4S◦3/2–
2s22p2(3P)3d 4P5/2 (1–55), and 2s22p3 2D◦3/2–2s22p2(1D)3d
2F5/2 (3−66) transitions are displayed in both resonant and
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Fig. 5. Collision strengths for the dipole-allowed 2s22p3 2P◦1/2–
2s22p2(1D)3s 2D3/2 (4–22) transition as a function of incident electron
energy from threshold to 65 Ry. Solid curve, present calculation; solid
rectangles, calculation of Landi & Bhatia (2007).
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Fig. 6. Collision strengths for the dipole-allowed 2s22p3 4S◦3/2–
2s22p2(3P)3d 4P5/2 (1–55) transition as a function of incident electron
energy from threshold to 55 Ry. Solid curve, present calculation; solid
rectangles, calculation of Landi & Bhatia (2007).

non-resonant regions in Figs. 3−7. Comparison of our results
with the collision strengths from the distorted-wave calculations
by Landi & Bhatia (2007) shows an overall good agreement for
the background collision strength of 2s22p3 2P◦1/2–2s22p2(1D)3s
2D3/2 (4–22) and 2s22p3 4S◦3/2–2s22p2(3P)3d 4P5/2 (1–55) tran-
sitions, but some significant differences exist for the other
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Fig. 7. Collision strengths for the dipole-allowed 2s22p3 2D◦3/2–
2s22p2(1D)3d 2F5/2 (3–66) transition as a function of incident electron
energy from threshold to 55 Ry. Solid curve, present calculation; solid
rectangles, calculation of Landi & Bhatia (2007).
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Fig. 8. Effective collision strengths for the forbidden a) 2s22p3 4S◦3/2–
2D◦5/2 (1–2), b) 2s22p3 4S◦3/2–2P◦1/2 (1–4), c) 2s22p3 2P◦1/2–2P◦3/2 (4–5),
and d) 2s22p3 4S◦3/2–2s22p2(3P)3s 2P3/2 (1–20) transitions as a func-
tion of electron temperature. Present results, solid curve; Ramsbottom
& Bell (1997), solid rectangles.

three dipole-allowed 2s22p3 4S◦3/2–2s2p4 4P5/2 (1–6), 2s22p3

2D◦3/2–2s2p4 2D3/2 (3–10), and 2s22p3 2D◦3/2–2s22p2(1D)3d
2F5/2 (3–66) transitions. The collision strengths for the dipole-
allowed transitions show expected trend at higher energies.
The collision strengths for stronger dipole-allowed transitions
increase rapidly at higher energies than for the weaker dipole-
allowed transitions. There is an agreement in shape among the
two theories but some discrepancies exist in the magnitude of
collision strengths. Our results are consistently lower than the
calculation of Landi & Bhatia (2007) for the four out of five
transitions shown in Figs. 3−7. Most likely, the discrepancies
between the two calculations arise from the differences in target
wave functions because of the strong configuration mixing.

Finally, in Figs. 8, 9 we compare the effective collision
strengths as a function of electron temperature for the forbid-
den and dipole-allowed transitions with the R-matrix calcula-
tions of Ramsbottom & Bell (1997). The effective collision
strengths are calculated by averaging the total collision strengths
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Fig. 9. Effective collision strengths for the dipole-allowed a) 2s22p3

4S◦3/2–2s2p4 4P5/2 (1–6), b) 2s22p3 2D◦3/2–2s2p4 2D5/2 (3–9), c) 2s22p3

2P◦1/2–2s2p4 2D3/2 (4–10), and d) 2s22p3 2P◦1/2–2s22p2(1D)3s 2D3/2

(4−22) transitions as a function of electron temperature. Present results,
solid curve; Ramsbottom & Bell (1997), solid rectangles.

over a Maxwellian distribution of electron energies. The effec-
tive collision strengths usually exhibit very smooth dependence
on temperature despite strong resonance structures in collision
strengths. The effective collision strengths for many transitions,
however, are significantly enhanced due to presence of reso-
nances at low electron energies. As seen from panels (a), (b),
and (d) of Fig. 8, the present effective collision strengths for
the 2s22p3 4S◦3/2–2D◦5/2 (1–2), 2s22p3 2P◦1/2–2P◦3/2 (4–5), and
2s22p3 4S◦3/2–2s22p2(3P)3s 2P3/2 (1–20) transitions agree well
with the previous R-matrix calculations at all temperatures ex-
cept low temperatures. This discrepancy at lower temperatures
is caused mainly by the differences in total collision strengths
in the near-threshold region. There are bigger differences among
the two calculations for the 2s22p3 4S◦3/2–2P◦1/2 (1–4), transition
at all temperatures as shown in Fig. 8b. The differences in the
background collision strengths and the resonance structures for
the forbidden 2s22p3 4S◦3/2–2P◦1/2 (1–4) transition produce no-
ticeable differences in effective collision strengths. The bigger
differences between the calculations are caused by the difference
in target wave functions used in two calculations. The effective
collision strengths for the dipole-allowed (a) 2s22p3 4S◦3/2–2s2p4

4P5/2 (1–6); (b) 2s22p3 2D◦3/2–2s2p4 2D5/2 (3–9); (c) 2s22p3

2P◦1/2–2s2p4 2D3/2 (4–10); and (d) 2s22p3 2P◦1/2–2s22p2(1D)3s
2D3/2 (4–22) transitions as a function of electron temperature are
displayed in Fig. 9 where our results are compared with the pre-
vious R-matrix calculation of Ramsbottom & Bell (1997). Once
again there is a reasonable agreement between the two calcula-
tions. It may be noted that Ramsbottom & Bell (1997) gave their
results only for two significant digits and a smooth curve could
not be obtained in Figs. 8, 9 from their reported results. The dif-
ferences at lower temperatures are caused by the rich resonance
structures with many narrow resonances resolved in our calcula-
tion with fine energy grid.

The effective collision strengths between all 74 fine-structure
levels of the ground 2s22p3 and excited 2s2p4, 2p5, 2s22p23l, and
2s2p33l configurations are presented in the Table 4 for electron
temperatures from 10 000 to 200 000 K suitable for astrophys-
ical applications. The indices of the lower and upper levels in-
volved in transitions are given in Table 1. We have calculated all
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partial waves up to J = 30 in our B-spline Breit-Pauli R-matrix
approximation and used a top-up procedure based on geomet-
ric series approximation for the forbidden transitions to esti-
mate the contributions from higher partial waves. The top-up
procedure based on the Coulomb-Bethe approach was used for
the allowed transitions. In order to accurately calculate effective
collision strengths at higher temperatures, we also extrapolated
our collisions strengths to high energies. The effective collision
strengths for the forbidden transitions display a very slow fall-
off with increasing temperature at higher temperatures. The ef-
fective collision strengths for many transitions are significantly
enhanced because of the presence of resonances in the total col-
lision strengths at low electron energies.

4. Summary

We have presented radiative parameters and effective collision
strengths for all transitions among the 74 LSJ levels of Mg VI.
This is most extensive and consistent data set for collisional
and radiative parameters for Mg VI to date. The calculations
were performed with the BSR code (Zatsarinny 2006) in which
a B-spline basis is employed to represent the continuum or-
bitals. The use of non-orthogonal orbital sets, both constructing
the target wave functions and for representing scattering func-
tions, allowed us to optimize different atomic wave functions
independently, hence to generate a more accurate description
of the target states than those used in previous collision cal-
culations. The radiative parameters for stronger transitions are
in good agreement with the recent extensive CI calculations
(Froese Fischer & Tachiev 2004).

The effective collision strengths were presented over a wide
range of temperatures suitable for use in astrophysical plasmas
modeling. Systematic comparisons with other available calcula-
tions were made. The overall agreement with previous R-matrix

calculations of Ramsbottom & Bell (1997) is very reasonable
and some discrepancies can be explained on the basis of more
accurate target wave functions used in our calculations. Taking
the good agreement for oscillator strengths into account, the ac-
curacy for the strong dipole-allowed transitions is estimated to
be within 10%. Overall, our results are estimated to be accurate
to ∼20% or better for most of the transitions.
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