Measuring the orbital inclination of Z Andromedae from Rayleigh scattering

A. Skopal and N. Shagatova

Astronomical Institute, Slovak Academy of Sciences, 059 60 Tatranská Lomnica, Slovakia
e-mail: skopal1@astro.sk

Received 2 June 2011 / Accepted 10 September 2012

ABSTRACT

Context. The orbital inclination of the symbiotic prototype Z And has not been established yet. At present, two very different values are considered, \( i \approx 44^\circ \) and \( i \approx 73^\circ \). The correct value of \( i \) is a key parameter in, for example, modeling the highly-collimated jets of Z And.

Aims. To measure the orbital inclination of Z And.

Methods. First, we derive the hydrogen column density \( (n_{H}) \), which causes the Rayleigh scattering of the far-UV spectrum at the orbital phase \( \phi = 0.961 \pm 0.018 \). Second, we calculate \( n_{H} \) as a function of \( i \) and \( \phi \) for the ionization structure during the quiescent phase. Third, we compare the \( n_{H}(i, \phi) \) models with the observed value.

Results. The most probable shaping of the H/He boundaries and the uncertainties in the orbital phase limit \( i \) of Z And to \( 59^\circ - 2^\circ / +3^\circ \). Systematic errors given by using different wind velocity laws can increase \( i \) up to \( \sim 74^\circ \). A high value of \( i \) is supported independently by the orbital related variation in the far-UV continuum and the obscuration of the Oa H\( \alpha \)1641 Å emission line around the inferior conjunction of the giant.

Conclusions. The derived value of the inclination of the Z And orbital plane allows treating satellite components of H\( \alpha \) and H\( \beta \) emission lines as highly-collimated jets.

Key words. binaries: symbiotic – scattering – stars: individual: Z And

1. Introduction

Symbiotic stars are long-period interacting binaries comprising a cool giant as the donor star and a compact star, most often a white dwarf (WD), as the accretor. This composition requires large orbital periods, which are typically of a few years.

The circumstellar environment of symbiotic stars, which consists of energetic photons from the hot star and neutral particles from the cool giant, represents an ideal medium for the ionization structure of the binary. For the steady state situation and the orbital inclination, depending on the orbital phase and the inclination, the ionization structure of the binary can be treated as a radiatively accelerated wind (Tomov et al. 2010; Kilpio et al. 2011). Otherwise, this type of mass outflow can be treated as a radiatively accelerated wind (Tomov et al. 2010; Kilpio et al. 2011). Otherwise, this type of mass outflow represents highly collimated jets (e.g., Skopal & Pribyl 2009).

In this paper, we model the effect of the Rayleigh scattering measured in the spectrum of Z And from the quiescent phase to derive \( i \). In Sect. 2, we introduce observations and derive the \( n_{H} \) parameter, which causes the attenuation effect. In Sect. 3, we derive the ionization structure of the binary and calculate \( n_{H} \) as a function of the orbital phase and the inclination. In Sect. 4, we compare the \( n_{H}(i, \phi) \) models with the measured value and in this way derive the range of \( i \) from Rayleigh scattering. The conclusions are found in Sect. 5.

2. Observations

There are two pairs of UV spectra of Z And in the International Ultraviolet Explorer (IUE) archive taken close to the position...
3. The model

Here, we determine the ionization structure of a symbiotic binary and calculate the column density of neutral hydrogen on the line of sight as a function of $\phi$ and $i$. Comparing theoretical values of $n_H(i, \phi)$ with those derived independently from observations allows us to estimate the inclination of the orbital plane.

3.1. $n_H$ as a function of the orbital inclination

Assuming that the wind from the red giant is spherically symmetric and neutral, the continuity equation determines the particle concentration of hydrogen as

$$N_H(r) = \frac{M}{4\pi r^2 \mu m_H v(r)}, \quad (1)$$

where $M$ is the mass-loss rate from the giant, $r$ is the distance from its center, $\mu$ the mean molecular weight, $m_H$ the mass of the hydrogen atom, and $v(r)$ velocity of the wind. Accordingly, we obtain the hydrogen column density, $n_H$, by integrating Eq. (1) along the line of sight, $l$, from the observer ($-\infty$) to the ionization boundary as

$$n_H = \frac{M}{4\pi \mu m_H} \int_{-\infty}^{l_c} \frac{dl}{r^2 v(r)}, \quad (2)$$

where $l_c$ is a segment of the line of sight calculated from the intersection of its normal, which connects the giant’s center, to the boundary (Fig. 2). To determine $n_H$ we need to know the radius-vector $r$ at each point of the line of sight, which is a function of $i$ and the phase angle, $\varphi = 0$ at the giant’s inferior conjunction. Furthermore, we introduce a parameter $b$ as

$$b^2 = p^2 \left( \cos^2 i + \sin^2 \varphi \sin^2 i \right), \quad (3)$$

which represents projection of the separation $p$ between the binary components into the plane perpendicular to the line of sight (Fig. 2). Equation (2) may now be expressed as

$$n_H = \frac{M}{4\pi \mu m_H} \int_{-\infty}^{l_c} \frac{dl}{(l^2 + b^2)^{1/2} v \left( \sqrt{l^2 + b^2} \right)}. \quad (4)$$

Then, knowing the value of $l_c$ for a given direction to the ionizing source and the velocity $v(r)$, we can solve Eq. (4) for $n_H$. Figure 2 shows that $l_c = \sqrt{p^2 - b^2} - s_0$, where $s_0$ is the distance from the hot star to the H I/H II boundary on the line of sight. Its value is given by the ionization structure during the quiescent phase (Sect. 3.3), which requires knowledge of the velocity $v(r)$ of the giant’s wind, which we introduce below.

3.2. Velocity profile of the wind from the giant

Vogel (1991) recognized that the column densities $n_H$ that he measured from the spectra of EG And cannot be explained by a standard $\beta$-law wind (see, e.g., his Eq. (6)). The observed rapid increase of $n_H$ values prior to the total eclipse requires a lower velocity in the vicinity of the cool giant ($r \approx R_g$) and a much steeper velocity profile for $0.09 \lesssim \phi \lesssim 0.14$ ($r \approx 3 R_g$) with respect to that given by the $\beta$-law wind (see Figs. 4 and 7 of Vogel 1991). Therefore, Vogel (1991) employed Eq. (4) to reconstruct a more appropriate velocity field of the wind from cool giants.

Fig. 1. UV observations of Z And carried out close to the inferior conjunction of the giant during its quiescent phase (on February 3rd 1988). Compared is the model SED (heavy solid line) with its components from the nebula (dashed line) and the hot star (thin solid line). The strong attenuation of the continuum around the Ly-$\alpha$ line is caused by the Rayleigh scattering process. Dotted line represents the non-attenuated light (see text for details).

Fig. 2. A scheme of a symbiotic binary to calculate $n_H$ along the line of sight, $l$, through the neutral H I region (Eq. (4)). The thick solid line represents the H I/H II boundary (Sect. 3.3) and $\phi$ is the angle between $l$ and the binary axis. Other auxiliary parameters are introduced in Sect. 3.1. Distances are in units of the binary components separation, $p$. A&A 547, A45 (2012)
Having many more observations covering the eclipse profile of SY Mus due to the Rayleigh scattering, Pereira et al. (1999) and Dumm et al. (1999) solved Eq. (4) for the velocity law \( v(r) \) by expanding the function \( n_\text{I}(b) \) into a Taylor series. To match the \( n_\text{H} \) values measured around the eclipse, both groups of authors confirmed independently the claim of a significantly faster acceleration of the wind particles from the giant in comparison with the \( \beta \)-law.

Re-analyzing the wind acceleration zone for the giant in EG And by using a series of FUSE and HST/STIS observations, Crowley et al. (2005) recently confirmed that the wind acceleration region extends only to \( \sim 2.5 \, R_\odot \) from the limb of the giant. The corresponding wind velocity profile was very similar to that derived by Dumm et al. (1999) for SY Mus (see their Fig. 7). Therefore, for the purpose of this paper, we use the wind velocity law as derived by Dumm et al. (1999). We note that cool giants in both SY Mus and Z And have the same spectral type (M4.5, Mürset & Schmid 1999) and similar other fundamental parameters (see Table 2 of Skopal 2005), which also supports adoption of the wind law (7) for the case of Z And.

According to Dumm et al. (1999), it was sufficient to approximate the \( n_\text{I}(b) \) function by two terms of the Taylor expansion \( (k = 1 \text{ and } k \approx 20) \), which allows expressing the velocity law in a form

\[
\frac{a}{r v(r)} = \frac{a_1}{\lambda_1 r} + \frac{a_2}{\lambda_2 r^2},
\]

where \( a = 2 M / 4 \pi m_\text{H} v_\infty R_\odot, a_1, a_2 \) and \( k \) are parameters, and \( \lambda_k \) is defined recursively as

\[
\lambda_1 = \pi/2, \quad \lambda_k = \pi/[(2k-2) \lambda_{k-1}].
\]

Fitting the observed \( n_\text{H} \) as a function of the impact parameter \( b \), Dumm et al. (1999) derived \( a_1 \approx 4.5 \times 10^{-3} \, \text{cm}^2 \, \text{s}^{-1}, a_2 \approx 3 \times 10^{-2} \, \text{cm}^2 \, \text{s}^{-2} \), \( k \approx 20 \) and \( a_{20} \approx 1 \times 10^{11} \, \text{cm}^2 \). Using these values we can rewrite Eq. (5) in the form

\[
v(r) = \frac{v_\infty}{1 + \frac{10^9}{3 \lambda_{20} r^2}},
\]

where \( r \) is the distance from the center of the giant in units of its radius. According to this law, the main acceleration zone of the wind is located between the giant’s photosphere and \( r = 3 \, \sigma(3) / v_\infty \approx 0.9, \lambda_{20} = 0.2838 \).

### 3.3. Ionization structure

The distance \( s_\text{g} \) from the ionization boundary to the WD (Fig. 2) is determined by a balance between the ionizing photons emitted in a small angle around the direction \( \theta \) and recombinations in this angle. According to Nussbaumer & Vogel (1987), the equilibrium condition can be expressed as

\[
L_{\text{ph}} \frac{\Delta \theta}{4 \pi} = \frac{\Delta \theta}{4 \pi} \int_0^{s_\text{g}} N_\text{H+}(s) N_\text{e}(s) \alpha_B(\text{H}, T_e) 4 \pi s^2 \, ds,
\]

where \( L_{\text{ph}} \) is the number of photons capable of ionizing hydrogen that are emitted spherically-symmetrically from the hot star per second, \( s \) is the distance from the hot star, \( N_\text{H+} \) and \( N_\text{e} \) are concentrations of protons and electrons, respectively, and \( \alpha_B \) is the total hydrogen recombination coefficient for recombinations other than to the ground state. In the \( \text{H}^+ \) region, we consider that \( N_\text{e} = N_\text{H} = N_\text{H+} \). Then, assuming that \( T_e \) is constant throughout the nebula and thus also \( \alpha_B \), condition (8) can be expressed as

\[
f(r, \theta) = \chi^\text{H+},
\]

where \( \chi^\text{H+} \) is the ionization parameter (STB),

\[
\chi^\text{H+} = \frac{4 \pi (\mu m_\text{H})^2}{\alpha_B(\text{H}, T_e)} P_{\text{ph}} \left( \frac{v_\infty}{M} \right)^2,
\]

and

\[
f(r, \theta) = \frac{P_{\text{ph}}}{v_\infty} \int_0^{s_\text{g}} \frac{s^2}{r^2 v^2(r)} \, ds,
\]

where we used the particle concentration in the giant’s wind as given by Eq. (1), and

\[
r^2 = s^2 + p^2 - 2 s p \cos \theta.
\]

Examples of \( \text{H}/\text{HII} \) boundaries are depicted in Fig. 3.

### 4. Orbital inclination of Z And

Having defined ionization structure, we can solve Eq. (9) for \( s_\text{g} \), which determines \( L_\text{ph} \) and thus \( n_\text{H} \) (see Fig. 2, Eq. (4)) for the ionization parameter \( \chi^\text{H+} \). Its value is given by the binary parameters. Therefore, first we find a possible range of \( \chi^\text{H+} \).

For \( P_{\text{orb}} = 759 \) days (Fekel et al. 2000b) and the total mass of the binary, 2.6 \( M_\odot \) (Mikołajewska & Kenyon 1996), we get the separation of the stars, \( p = 480 \, R_\odot \). Furthermore, we adopt \( \alpha_B(\text{H}, T_e) = 1.43 \times 10^{-13} \, \text{cm}^3 \, \text{s}^{-1} \) for \( T_e = 20000 \, \text{K} \) (Nussbaumer & Vogel 1987) and \( M \sim 7 \times 10^{-7} \, M_\odot \, \text{yr}^{-1} \), derived from the total emission measure during quiescence (Skopal 2005). This value of \( M \) represents an upper limit because of the presence of other sources of the nebular radiation, e.g., the hot star wind. The hot star luminosity \( L_\text{h} \sim 2300 \, d / 1.5 \, \text{kpc}^2 \, L_\odot \) and a temperature of \( \sim 120000 \, \text{K} \) (Table 3 of Skopal 2005) yield \( L_{\text{ph}} \sim 1.5 \times 10^{17} (d / 1.5 \, \text{kpc})^2 \, \text{s}^{-1} \).

Assuming a typical value for the terminal velocity for the giant wind, \( v_\infty \approx 40 \, \text{km} \, \text{s}^{-1} \) (Reimers 1981), we obtain \( \chi^\text{H+} \approx \).
(Eq. (1)) was calculated for (relations (10) and (13)). Particle concentration along the line of sight (Eq. (1)) was calculated for the mean value of \( n_H = 3.9 \times 10^{22} \text{ cm}^{-2} \) at the orbital phases \( \phi = 0.961 \pm 0.018 \) (dotted lines) are plotted. Bottom: as in the top, but for \( 3 \leq X_H^i \leq 30 \) and \( \phi = 0.961 \).

We note that Fernández-Castro et al. (1988) derived \( X_H^i \approx 14 \). However, there are more sources of uncertainties in determining the parameter \( X_H^i \): (i) terminal velocity for the massive slow wind from the giant was also assumed to be of 20 km s\(^{-1}\) only (e.g., Dumm et al. 1999). This value scales the above derived \( X_H^i \) with a factor of 0.25; (ii) a smaller distance to Z And of 1.12 kpc and 1.2 kpc (Fernández-Castro et al. 1988; Sokoloski et al. 2006) reduces the luminosity and thus the value of \( X_H^i \) with a factor of 0.55 and 0.64, respectively; (iii) a maximum Zanstra temperature of 130,000 K (Müser et al. 1991) gives \( L_b = 3400(d/1.5 \text{ kpc})^2 \ L_\odot \), i.e. \( L_{\phi b} = 2.2 \times 10^{37} (d/1.5 \text{ kpc})^2 \) s\(^{-1}\), which enlarges the above possibility of \( X_H^i = 20 \) with a factor of \( \sim 1.5 \). According to these possibilities we consider a range of the ionization parameter as

\[
3 < X_H^i < 30. \tag{13}
\]

In the following subsection, we explore the \( n_H(i, \phi) \) function at the position of \( \phi = 0.961 \pm 0.018 \), when the IUE observations were exposed.

### 4.1. Modeling the column density at \( \phi = 0.961 \)

The top panel of Fig. 4 shows the resulting column densities as a function of the orbital phase, calculated for the average value of \( X_H^i \approx 17 \), for which \( n_H(i, \phi = 0.961 \pm 0.018) = 3.9 \times 10^{22} \text{ cm}^{-2} \). The range of possible orbital phases limits the inclination angle to \( \phi = 59^\circ \pm 2^\circ / +3^\circ \). In the bottom panel of Fig. 4, the \( n_H(i, \phi = 0.961) \) function was calculated for the range of possible \( X_H^i \) (Eq. (13)). Here, the models for different values of \( X_H^i \), satisfying \( n_H(i, 0.961) = 3.9 \times 10^{22} \text{ cm}^{-2} \), restrict the orbital inclination to \( i = 59^\circ - 2^\circ / +1^\circ \). Small uncertainties reflect small differences between opening angles of \( H_1 \) zones for larger values of \( X_H^i \) (see Fig. 3). Figure 5 illustrates the calculated \( n_H(i, 0.961) \) as a function of \( i \) for the range of the parameter \( X_H^i \). From the figure, we can see that the uncertainty in the measured value of \( n_H \) can enlarge the resulting uncertainty in \( i \) by a few degrees. However, systematic errors can result from using different wind velocity laws. Although the used \( v(r) \) satisfies best the measured \( n_H \) as a function of the parameter \( b \) (Sect. 3.2), its high values \( \geq 10^{24} \text{ cm}^{-2} \) in the vicinity of the stellar disk of the giant cannot be measured accurately (see Fig. 5 of Dumm et al. 1999). This precludes a correct determination of the wind law. The \( n_H(b) \) values, as measured prior to and after the inferior conjunction of the giant, also reflect an asymmetry of the neutral wind zone with respect to the binary axis (see Fig. 4 of Dumm et al. 1999). The used wind law (7) was derived from the egress data. Thus, the steeper ingress data will correspond to a steeper \( v(r) \). Therefore, we also investigated a limiting case for a maximum steepness of \( v(r) = v_{\infty} \). This approach yielded \( i = 74.7^\circ - 4.0^\circ / +10.3^\circ \). From this point of view, the orbital inclination of Z And can be expected to be in the range of \( 59^\circ - 74^\circ \).

Finally, the dependence of \( i \) on \( M \) follows that on \( X_H^i \), because \( X_H^i \propto M^{-2} \) (Eq. (10)). This implies that \( M < \) upper limit of \( 7 \times 10^{-7} M_\odot \text{ yr}^{-1} \) (see above) yields higher \( X_H^i \), which, however, has no significant effect on the corresponding value of \( i \), because the opening angle of the neutral zone, \( \theta_\infty \), decreases very slowly for \( X_H^i > 10 \) (see Fig. 3). For example, the lower value of \( M = 3.1 \times 10^{-7} (d/1.5 \text{ kpc})^{3/2} M_\odot \text{ yr}^{-1} \), derived by Fernández-Castro et al. (1988) from radio observations, enlarges the range of \( X_H^i \) (13) by a factor of \( -5 \), i.e. \( 15 < X_H^i < 150 \). Figure 5 also shows the model \( n_H(i, 0.961) \) for \( X_H^i = 100 \), which demonstrates only a small increase of \( i \) to \( 60^\circ \).

#### 4.2. The far-UV light curve

The high orbital inclination of Z And is also supported by a large variation in the far-UV continuum along the orbit as measured...
where $F^0_\lambda$ is the original flux and $\sigma^{Ray}_\lambda$ is the Rayleigh scattering cross section. For $F_{1280}(0.961) = 6.5 \times 10^{-13}$ erg cm$^{-2}$ s$^{-1}$ Å$^{-1}$ (Fig. 6), $n_I(0.961) = 3.9 \times 10^{22}$ cm$^{-2}$ (Fig. 1) and $\sigma^{Ray}_{1280} = 1.1 \times 10^{-23}$ cm$^2$ (Nussbaumer et al. 1989) we get the unscattered flux $F^{0}_{1280} = 1.0 \times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$ Å$^{-1}$. Then, according to Eq. (14), we calculated the light curve $F_{1280}(\phi)$ for the three models $n_I(\phi, \phi)$ plotted in Fig. 4. The result is shown in Fig. 6. The rather narrow ($\pm 0.1 P_{orb}$) and deep model light curves reflect a close cut of the H I region for the resulting inclinations and the strong dependence of the Rayleigh attenuation on $n_I$. In other words, due to a small opening angle of the neutral zone ($\phi_{m} \sim 35^\circ$ and $34^\circ$ for $X = 17$ and $X = 30$, respectively), their cut with the line connecting the hot star and the observer along the orbit covers only a small segment of the orbital period. Overall, the Rayleigh scattering light curves, calculated according to our resulting $n_I(\phi, \phi)$ models, seem to be consistent with the fluxes measured around the inferior conjunction of the giant.

4.3. A probe of a high inclination with the O I 1641 Å line

Shore & Wahlgren (2010) investigated observational properties of the intercombination transition O I 1641 Å to a metastable state in the spectra of some symbiotic stars with the aim of diagnosing the neutral red giant wind. Their idea is based on the following: (i) the ionization potential of both oxygen and hydrogen is comparable, (ii) the oxygen resonance multiplet (1302, 1304, 1305 Å) is, in addition to the ground state, connected to two metastable states through emission at 1641 Å and 2324 Å (see Fig. 1 of Shore & Wahlgren 2010), and (iii) the intercombination transition at $\lambda 1641$ Å can be stimulated by absorption from the ground state of the O I 1302 Å resonance line in the surrounding neutral gas. This implies that the O I 1302 Å emission line, which is formed by recombinations within the extended H II region, surrounds closely the neutral H I region during quiescent phases of symbiotic stars and thus gives rise to the measurable O I 1641 Å emission within the neutral wind from the cool giant. Shore & Wahlgren (2010) found that the O I variations are strongly correlated with the optical light curves and also with the O VI Raman emission at $\lambda 6825, 7082$ Å. Both the O I 1641 Å and the Raman lines are optically thin; the transitions are not repeatable: once they happen, their photons escape the medium. As a result, the transitions arise in the red giant wind close to the H I/H II interface, preferentially between the binary components with the highest density of the giant’s wind (in contrast to the Rayleigh scattering, which is a repeatable process and thus measures the total thickness of the neutral wind). Shore & Wahlgren (2010) confirmed this view for the eclipsing system EG And, where the O I line was obscured around the inferior conjunctions of the giant. For low-inclination systems, the authors suggested that these lines should always be visible.

Accordingly, to probe the orbital inclination of Z And, we plotted the O I 1641 Å line fluxes of Z And from its quiescent phase together with those of the eclipsing symbiotic binary EG And in the phase diagram (Fig. 7). The figure demonstrates that around the inferior conjunction of the giant ($\phi = 0$ or 1), the O I lines are very weak (EG And) or not measurable (Z And). Maximum values were measured when the line of sight does not intersect the neutral hydrogen zone (the light gray belts in Fig. 7). For EG And, the extent of the H I region in the phase diagram ($\Delta \phi = \pm 0.16$) was determined for $i \approx 90^\circ$ (Vogel et al. 1992) and the position of the H I/H II boundary at $b \approx 3.5 R_g$ (see Fig. 7 of Crowley et al. 2005, and Eq. (3) here).
In the case of Z And, the range of intersections of the line of sight with the neutral zone in the phase diagram (Δφ = ±0.11, 0.048, 0.044; dotted lines in Fig. 7) corresponds to our models (Fig. 6). The light gray belts correspond to the intersection of the H\textsubscript{I} zone with the line of sight along the orbit (see Sect. 4.3). The dark belt reflects a time interval of the total eclipse of the point source by the giant in EG And (Δφ = ±0.038; see Table 1 of Crowley et al. 2008). Fluxes were taken from Figs. 4 and 8 of Shore & Wahlgren (2010).

5. Conclusion

We used IUE observations of the symbiotic star Z And, which were taken during its quiescent phase around the inferior conjunction of the giant, to determine the inclination of its orbital plane.

First, we derived $n_{\text{H}} = 3.9 \pm 0.5 \times 10^{22} \text{ cm}^{-2}$ (Fig. 1) on the line of sight, which passes throughout the neutral zone of the giant’s wind toward the hot star at the time of the observation (at $\phi = 0.961 \pm 0.018$), by modeling the Rayleigh scattering of the far-UV continuum (Sect. 2). Second, we determined the STB ionization structure for the velocity profile of the giant’s wind as derived by Dumm et al. (1999, Fig. 3), and calculated $n_{\text{H}}(i, \phi)$ as a function of the orbital inclination and the phase (Figs. 4 and 5). Third, comparing the $n_{\text{H}}(i, \phi)$ function with the observed value of $3.9 \times 10^{22} \text{ cm}^{-2}$, we estimated the range of orbital inclinations as follows: (i) for the average value of the parameter $X^{\text{H}} = 17$, $i = 59^\circ - 2^\circ / +3^\circ$, where the uncertainties reflect those in the binary position, and (ii) for the most probable position of the binary at $\phi = 0.961$, the range of $3 \leq X^{\text{H}} \leq 30$ restricts the orbital inclination to $i = 59^\circ - 2^\circ / +1^\circ$. Systematic errors given by using different wind velocity laws can increase $i$ up to ~74° (Sect. 4.1). Fluxes, that are measured around the inferior conjunction of the giant are consistent with the Rayleigh scattering light curves (Eq. (14)) calculated for our resulting $n_{\text{H}}(i, \phi)$ models (Fig. 6).

The high value of the orbital inclination is also supported by the large amplitude of the orbitally related variation in the far-UV continuum (Sect. 4.2, Fig. 6) and by the obscuration of the O\textsc{i} 1641 Å fluxes around the inferior conjunctions of the giant during the quiescent phase of Z And (Sect. 4.3, Fig. 7).

Finally, the higher value of the inclination of the Z And orbital plane allows us to interpret the satellite components of H\textsc{ii} and H\textsc{b} emission lines, which appeared during active phases from 2006 as highly collimated jets rather than as a special type of radiatively accelerated wind.

Acknowledgements. We thank the anonymous referee for constructive comments. This research was supported by a grant of the Slovak Academy of Sciences, VEGA No. 2/0038/10. This article was also supported by the realization of the Project ITMS No. 2621020029, based on the supporting operational Research and development program financed from the European Regional Development Fund.

References

Skopal, A., & Pribulla, T. 2006, ATel, No. 882
Tomov, N. A., Bisikalo, D. V., Tomova, M. T., & Kil’pio, E. Yu. 2010, Astron. Rep., 54, 628

Fig. 7. Variations of the O\textsc{i} 1641 Å line fluxes during quiescent phases of Z And and EG And as a function of the orbital phase according to the ephemeris of Fekel et al. (2000a) and Fekel et al. (2000b), respectively. The light gray belts correspond to the intersection of the H\textsubscript{I} zone with the line of sight along the orbit (see Sect. 4.3). The dark belt reflects a time interval of the total eclipse of the point source by the giant in EG And (Δφ = ±0.038; see Table 1 of Crowley et al. 2008). Fluxes were taken from Figs. 4 and 8 of Shore & Wahlgren (2010).