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ABSTRACT

I introduce a general, Bayesian method for modelling univariate time series data assumed to be drawn from a continuous, stochastic
process. The method accommodates arbitrary temporal sampling, and takes into account measurement uncertainties for arbitrary error
models (not just Gaussian) on both the time and signal variables. Any model for the deterministic component of the variation of
the signal with time is supported, as is any model of the stochastic component on the signal and time variables. Models illustrated
here are constant and sinusoidal models for the signal mean combined with a Gaussian stochastic component, as well as a purely
stochastic model, the Ornstein-Uhlenbeck process. The posterior probability distribution over model parameters is determined via
Monte Carlo sampling. Models are compared using the “cross-validation likelihood”, in which the posterior-averaged likelihood for
different partitions of the data are combined. In principle this is more robust to changes in the prior than is the evidence (the prior-
averaged likelihood). The method is demonstrated by applying it to the light curves of 11 ultra cool dwarf stars, claimed by a previous
study to show statistically significant variability. This is reassessed here by calculating the cross-validation likelihood for various
time series models, including a null hypothesis of no variability beyond the error bars. 10 of 11 light curves are confirmed as being
significantly variable, and one of these seems to be periodic, with two plausible periods identified. Another object is best described
by the Ornstein-Uhlenbeck process, a conclusion which is obviously limited to the set of models actually tested.

Key words. methods: statistical – brown dwarfs

1. Introduction

When confronted with a univariate time series, we are often in-
terested in answering one or more of three questions. Which
model best describes the data? What values of the parame-
ters of this model best explain the data? What range of values
does the model predict for the signal at some arbitrary time?
These are questions of inference from data, and can be summa-
rized as model comparison, parameter estimation and prediction,
respectively.

Probabilistic modelling provides a self-consistent and log-
ical framework for answering these questions. In this article I
introduce a general method for time series model comparison
and parameter estimation. The principle is straight forward. The
time series data comprise a set of measurements of the signal at
various times, with measurement uncertainties generally in both
signal and time. We write down a parametrized model for the
variation of the signal as a function of time. This could be a de-
terministic function or a stochastic model or, more generally, a
combination of the two. An example of a combined model is a
sinusoidal variation of the mean of the signal on top of which is
a Gaussian stochastic variation in the signal itself, which is not
measurement noise. A purely stochastic model is one in which
the expected signal evolves according to a random distribution,
e.g. a random walk. Given this generative model and a noise
model for the measurements, we then calculate the likelihood
distribution of the data for different values of the model param-
eters. Rather than identifying just the single best fitting parame-
ters, I use a Monte Carlo method to sample the posterior prob-
ability density function (PDF) over the model parameters. In
addition to providing uncertainties on the inferred parameters,

this also provides a measure of the goodness-of-fit of the over-
all model, in the form of the marginal likelihood (evidence), or
the cross-validation likelihood (defined here). In this way we can
identify the best overall model from a set, something which fre-
quentist hypothesis testing can be notoriously bad at (e.g. Berger
& Sellke 1987; Kass & Raftery 1996; Jaynes 2003; Christensen
2005; Bailer-Jones 2009).

There of course exist numerous time series analysis methods
which attempt to answer one or more of the questions posed,
so the reader may wonder why we need another one. For ex-
ample, if we focus on periodic (Fourier) models, then we can
calculate the power spectrum or periodogram in order to iden-
tify the most significant periods and to estimate the amplitudes
of the components. If we work in the time domain, we could
do least squares fitting of a parametrized model (e.g. Chatfield
1996; Brockwell & Davis 2002). However, many of these meth-
ods can only answer one of the posed questions, are limited to a
restricted set of models or specific types of problems, do not take
into account uncertainties in the signal and/or time, are limited to
equally-spaced data, do not provide uncertainty estimates on the
parameters, or make other restrictive assumptions. The method
introduced in the present work is quite general, and firmly em-
bedded in a probabilistic approach to data modelling (see, e.g.,
von Toussaint 2011, for an introduction). This makes it power-
ful, but at the price of considerably higher computational cost.
Yet in many applications this is a price we should be willing to
pay for hard-won data, and should often be preferred to ad hoc,
suboptimal recipes.

The first two sections of this article – occupying about a
quarter of its length – are dedicated to a complete description

Article published by EDP Sciences A89, page 1 of 16

http://dx.doi.org/10.1051/0004-6361/201220109
http://www.aanda.org
http://www.edpsciences.org


A&A 546, A89 (2012)

Table 1. Primary notation.

Symbol Definition

s j measured time of jth event
σs j standard deviation in s j

t j (unknown) true time of the jth event
y j measured signal of jth event
σy j standard deviation in y j

z j (unknown) true signal of the jth event
Dj = (s j, y j) measurements for the jth event
σ j = (σs j , σy j ) estimated uncertainties in Dj

D = {Dj} set of measurements for J events
σ = {σ j} estimated uncertainties in D
Dk set of measurements for events in partition k
D−k set of measurements for all events not in in partition k
M time series model
θ = (θ1, θ2, θ3), parameters of the time series model
η(t; θ1) deterministic model of the expected true signal (TSMod1)
log logarithm base 10
N(x; μ,V) Gaussian in x with mean μ and variance V

of the method: Sect. 2 covers the method itself and the like-
lihood calculation, whereas the model comparison method de-
scribed in Sect. 3 is general. The mathematics here is relatively
simple and intuitive. More involved is the introduction of the
Ornstein-Uhlenbeck process into the method. This, as well as the
numerical approximations which allow the likelihood integrals
to be evaluated more rapidly, are presented in the appendices.
Section 4 summarizes how to use the method. Most of the rest
of the paper (about a third in total) is concerned with the applica-
tion of the method, first to a simulated time series (Sect. 5), and
then to real astronomical data (Sect. 6). These are the light curves
of 11 ultra cool dwarfs (low mass stars or brown dwarfs), which
an earlier study has claimed show statistically significant vari-
ability. Although these data are used here primarily for demon-
stration purposes, this reanalysis of these data is astrophysically
interesting, identifying a possible model and possible periods in
two cases. I summarize and conclude in Sect. 7.

The method developed here is related to the artmodmethod
introduced in Bailer-Jones (2011; hereafter CBJ11), which is a
model for time-of-arrival time series. The present method ex-
tends this to model time series with noisy signal values at each
measured time.

The notation used is summarized in Table 1.

2. The time series method

2.1. Data and model definition

We have a set of J events, each defined by its time, t, and signal,
z. For each event j, our measurement of the time of the event,
t j, is s j with a standard deviation (estimated measurement un-
certainty) σs j , and our measurement of the signal of the event,
z j, is y j with a standard deviation (estimated measurement un-
certainty) σy j (see Fig. 1). That is, t j and z j are the true, un-
known values, not the measurements. Define D j = (s j, y j) and
σ j = (σs j , σy j). The measurement model (or noise model) de-
scribes the probability of observing the measured values for a
single event given the true values and the estimated uncertain-
ties: it gives P(D j|t j, z j, σ j). Theσ j are considered fixed parame-
ters of the measurement model, and the conditioning on the mea-
surement model is implicit (because I do not want to compare
measurement models in this work).
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Fig. 1. Example of a measured data set with four events.

M is a stochastic time series model with parameters θ. It
specifies P(t j, z j|θ,M), the probability of observing an event at
time t j with signal z j.

The goal is (1) to compare the posterior probability of dif-
ferent models M, and (2) to determine the posterior PDF over
the model parameters for a given M. After describing the mea-
surement and time series models in the next two subsections, I
will then show how to combine them in order to calculate the
likelihood.

2.2. Measurement model

If t and z have no bounds, or can be approximated as such, and
the known measurement uncertainties are standard deviations,
then an appropriate choice for the measurement model is a two-
dimensional (2D) Gaussian in the variables (s j, y j) for event j. If
we assume no covariance between the variables then this reduces
to the product of two 1D Gaussians

P(D j|t j, z j, σ j) =
1√

2πσs j

e−(s j−t j)2/2σ2
s j

1√
2πσy j

e−(y j−z j)2/2σ2
y j .

(1)

(The two terms are normalized with respect to s j and y j respec-
tively.) If we had other information about the measurement, e.g.
asymmetric error bars, strictly positive signals, or uncertainties
which are not standard deviations, then we should adopt a more
appropriate distribution.

2.3. Time series model

Without loss of generality, the time series model can be written
as the product of two stochastic components

P(t j, z j|θ,M) = P(z j|t j, θ,M)P(t j|θ,M) (2)

which I will refer to as the signal and time components respec-
tively. For many processes it is appropriate to express the signal
component using two independent subcomponents: the stochas-
tic model itself and a deterministic function which defines the
time-dependence of its mean. This stochastic subcomponent de-
scribes the intrinsic variability of the true signal of the physical
process at a given time, with the PDF P(z j|t j, θ

′,M). I refer to
this as TSMod2. An example is a Gaussian

P(z j|t j, θ
′,M) =

1√
2πω

e−(z j−η[t j])2/2ω2
(3)

where θ′ = (η, ω) are the parameters of the distribution: η[t j] is
the expected true signal at true time t j; ω is a parameter which
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Fig. 2. Conceptual representation of the stochastic nature of the signal
component of the time series model, P(z j|t j, θ

′,M) (in red) of the true
signal, z, at a true time t j (here shown as a Gaussian).

reflects the degree of stochasticity in the process. This is illus-
trated schematically for a single point in Fig. 2. The Gaussian is
just an example, and would be inappropriate if z were a strictly
non-negative quantity.

The relationship between the expected true signal and the
true time is given by a deterministic function, η(t; θ1), where θ1
denotes another set of parameters. I refer to this deterministic
subcomponent as TSMod1. A simple example is a single fre-
quency sinusoid

η =
a
2

cos[2π(νt + φ)] + b (4)

which has parameters θ1 = (a, ν, φ, b), the amplitude, frequency,
phase, and offset. Having parametrized the signal component of
the time series model in this way, it is convenient to write θ′ =
(θ1, θ2) in general, where θ2 = ω in the example of Eq. (3).

The second component of the time series model in Eq. (2) de-
scribes any intrinsic randomness in the time of the events which
make up the physical process. This is represented by P(t j|θ3,M),
which I refer to as TSMod3. If there is no variation in the prob-
ability when an event could occur, we should make this constant
by using a flat distribution in t between the earliest possible and
latest possible times, T1 and T2,

P(t j|θ3,M) =

{
1

T2−T1
if T1 < t j < T2

0 otherwise
(5)

where θ3 = (T1, T2) are its parameters. This is generally appro-
priate to modelling light curves (for example), where there is no
concept of intrinsically discrete events: the discreteness arises
only because we take measurements at certain times. There is
then no sense in which the probability of an “event occuring”
could vary. In contrast, when modelling a discrete process, such
as the times and energies of large asteroid impacts (see CBJ11),
we generally will have a time varying probability of an event
occuring.

This three-subcomponent approach (TSMod1,2,3) to the
time series model is conceptually a little complex, so let us con-
sider what it means. We have a physical process in which the
expected value of the signal varies with time in a deterministic
manner. This is given by η(t; θ1), e.g. Eq. (4). At any given true
time, the true signal of the process can vary due to intrinsic ran-
domness in the process. This is described by P(z j|t j, θ1, θ2,M),
an example of which is Eq. (3). Finally, while the mean of the
process signal is considered to vary continuously in time, there
may be a time varying probability that an event could occur at
all (e.g. an asteroid impact). This is described by P(t j|θ3,M).
The stochasticity in the time series model has nothing to do with
measurement noise. It is intrinsic to the process.

This description of the signal component as a stochastic
model with a time-independent variance and a (deterministic)
time-dependence for the mean we might refer to as a partially
stochastic process. A fully stochastic process, in contrast, is one
in which all the parameters of the PDF P(z j|t j, θ,M) have a time-
dependence, in which case this decomposition of the signal com-
ponent into TSMod1 and TSMod2 is not possible. An example
is the Ornstein-Uhlenbeck process, which will be used in this
work. It is described in Appendix A.

The overall time series model is the combination of these
three subcomponents

P(t j, z j|θ,M) = P(z j|t j, θ1, θ2,M)P(t j|θ3,M) (6)

where θ = (θ1, θ2, θ3). For the cases shown above, this model has
seven parameters, θ = (a, ν, φ, b, ω, T1, T2), although probably
we would fix (T1, T2) based on inspection of the time range of
the data.

Later in Sect. 3.3 we will look at the specific models and
their parametrizations as used in this paper.

2.4. Likelihood

The probability of observing data D j from time series
model M with parameters θ when the uncertainties are σ j,
is P(D j|σ j, θ,M), the event likelihood. This is obtained by
marginalizing over the true, unknown event time and signal

P(D j|σ j, θ,M) =
∫

t j ,z j

P(D j, t j, z j|σ j, θ,M) dt jdz j

=

∫
t j ,z j

P(D j|t j, z j, σ j, θ,M)P(t j, z j|σ j, θ,M)dt jdz j

=

∫
t j ,z j

P(D j|t j, z j, σ j)︸������������︷︷������������︸
Measurement model

P(t j, z j|θ,M)︸���������︷︷���������︸
Time series model

dt jdz j (7)

where the time series model and its parameters drop out of the
first term because D j is independent of this once conditioned on
the true variables, and the measurement model (via σ j) drops
out of the the second term because it has nothing to do with the
predictions of the time series model. For specific, but common,
situations, this 2D integral can be approximated by a 1D integral
or even a function evaluation (see Appendix B).

If we have a set of J events for which the ages and signals
have been estimated independently of one another, then the prob-
ability of observing these data D = {D j}, the likelihood, is

P(D|σ, θ,M) =
∏

j

P(D j|σ j, θ,M) (8)

where σ = {σ j}.

3. Model comparison

3.1. Evidence

In order to compare different models, M, we would like to
know P(M|D, σ), the model posterior probability. We can use
Bayes’ theorem to write this down in terms of the evidence,
P(D|σ,M). This is the probability of getting the observed data
from model M, regardless of the specific values of the model
parameters. Adopting equal prior probabilities, P(M), for differ-
ent models, the evidence is the appropriate quantity to use to
compare models. One may be tempted to use instead the max-
imum value of the likelihood for model comparison, but this is
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wrong, because it will just favour increasingly complex models,
as these can increasingly overfit the data. For more discussion of
this point see, for example, MacKay (2003) or CBJ11.

The evidence, E, is obtained by marginalizing the likelihood
over the parameter prior probability distribution, P(θ|M).

E ≡ P(D|σ,M) =
∫
θ

P(D, θ|σ,M) dθ

=

∫
θ

P(D|σ, θ,M)︸���������︷︷���������︸
likelihood

P(θ|M)︸��︷︷��︸
prior

dθ. (9)

Note that the evidence is conditioned on both the measurement
model (via σ) and the time series model, M. For a given set
of data, we calculate this evidence for the different models we
wish to compare, each parametrized by θ. The parameter prior,
P(θ|M), encapsulates our knowledge of the prior plausibility of
different parameters. (This is independent of σ, which is why it
was removed in the above equation.) As the evidence has an un-
interpretable scale, we usually examine the ratio of the evidences
of two models, the Bayes factor.

We evaluate the above integral using a Monte Carlo
approximation

E ≈ 1
N

n=N∑
n=1

P(D|σ, θn,M) (10)

where the parameter samples, {θn}, have been drawn from the
prior, P(θ|M). Often this prior is a product of simple, 1D func-
tions (e.g. Gaussian or gamma PDFs), so it is easy to sample
from without having to employ more sophisticated methods.

3.2. Cross validation likelihood

The evidence is often sensitive to the parameter prior PDF. For
example, in a single-parameter model, if the likelihood were
constant over the range 0 < θ < 1 but zero outside this, then the
evidence calculated using a prior uniform over 0 < θ < 2 would
be half that calculated using a prior uniform over 0 < θ < 1. In
a model with p such parameters the factor would be 2−p. If we
had no reason to limit the prior range, then the evidence would
be of limited use in this example. Conversely, in cases where
the parameters have a physical interpretation and/or where we
have reasonable prior information, then we may be able to jus-
tify a reasonable choice for the prior. But in any case we should
always explore the sensitivity of the evidence to “fair” changes
in the prior. A fair change is one which we have no reason not
to make. For example, if there were no reason to prefer a prior
which is uniform over frequency rather than period, then this
would be a fair change. (See CBJ11 for an illustration of this on
real data.) If the evidence changes enough to alter significantly
the Bayes factors when making fair changes, then the evidence
is over-sensitive to the choice of prior, making it impossible to
draw robust conclusions without additional information.

In such situations we might resort to one of the many “infor-
mation criteria” which have been defined, such as the Akaike
information criterion (AIC) or Bayesian information criterion
(BIC; e.g. Kadane & Lazar 2004) or the deviance informa-
tion criterion (DIC; Spiegelhalter et al. 2002). The advantage of
these is that they are simpler and quicker to calculate. But they
all make (possibly unreasonable) assumptions regarding how to
represent the complexity of the model, and all have been criti-
cized in the literature.

An alternative approach is a form of K-fold cross valida-
tion (CV). We split the data set (J events) into K disjoint par-
titions, where K ≤ J. Denote the data in the kth partition as Dk
and its complement as D−k. The idea is to calculate the like-
lihood of Dk using D−k, without having an additional depen-
dence on a specific choice of model parameters. That is, we
want P(Dk|D−k, σ,M), which tells us how well, in model M,
some of the data are predicted using the other data. Combining
these likelihoods for all K partitions gives an overall measure of
the fit of the model. By marginalization

P(Dk|D−k, σ,M) =
∫
θ

P(Dk |D−k, σ, θ,M)P(θ|D−k, σ,M)dθ

=

∫
θ

P(Dk |σk, θ,M)︸������������︷︷������������︸
likelihood

P(θ|D−k, σ−k,M)︸���������������︷︷���������������︸
posterior

dθ (11)

where D−k drops out of the first term because the model pre-
dictions are independent of these data when θ is specified. (σ−k
and σk drop out of the first and second terms, respectively,
also for reasons of independence.) (cf. Eq. (10) of Vehtari &
Lampinen 2002.) If we draw a sample {θn} of size N from the
posterior P(θ|D−k, σ−k,M), then the Monte Carlo approximation
of this integral is

Lk ≡ P(Dk|D−k, σ,M) ≈ 1
N

n=N∑
n=1

P(Dk |σk, θn,M) (12)

the mean of the likelihood of the data in partition k. I will call Lk
the partition likelihood. Note that here the posterior is sampled
using the data D−k only.

Because Lk is the product of event likelihoods, it scales mul-
tiplicatively with the number of events in partition k. An appro-
priate combination of the partition likelihoods over all partitions
is therefore their product

LCV =

k=K∏
k=1

Lk or log LCV =
∑

k

log Lk (13)

which I call the K-fold cross validation likelihood, for 1 ≤ K ≤
J. If K > 1 and K < J then its value will depend on the choice
of partitions. If K = J there is one event per partition (a unique
choice). This is leave-one-out CV (LOO-CV), the likelihood for
which I will denote with LLOO−CV. If K = 1, we just use all of
the data to calculate both the likelihood and the posterior. This is
not a very correct measure of goodness-of-fit, however, because
it uses all of the data both to draw the posterior samples and to
calculate the likelihood.

The posterior PDF required in Eq. (11) is given by Bayes’
theorem. It is sufficient to use the unnormalized posterior (as
indeed we must, because the normalization term is the evidence),
which is

P(θ|D−k, σ−k,M) ∝ P(D−k|σ−k, θ,M)P(θ|M) (14)

i.e. the product of the likelihood and the prior. LCV therefore still
depends on the choice of prior (discussed in Sect. 3.3). However,
the likelihood will often dominate the prior (unless the data are
very indeterminate), in which case LCV will be less sensitive to
the prior than is the evidence.

There is a close relationship between the partition likelihood
and the evidence. Whereas the evidence involves integrating the
likelihood (for D) over the prior (Eq. (9)), the partition likeli-
hood involves integrating the likelihood (for Dk) over the poste-
rior (for D−k) (Eq. (11)). This is like using D−k to build a new
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Table 2. Time series model components with parameters θ used in this work.

Name Function θ Prior PDF, P(θ;α) θmin, θmax

TSMod1
Off b b N(b; mean, sd) −∞,∞
Sin

a
2

cos[2π(νt + φ)] a Gamma(a; shape, scale) 0,∞
ν Gamma(ν; shape, scale) 0,∞
φ U(φ) 0, 1

TSMod2
Stoch 1√

2πω
e−(z−η[t;θ1])2/2ω2

ω Gamma(ω; shape, scale) 0,∞
OUprocess see appendix A τ Gamma(τ; shape, scale) 0,∞

c Gamma(c; shape, scale) 0,∞
b N(b; mean, sd) −∞,∞
μ[z1] N(μ[z1]; mean, sd) −∞,∞√
V[z1] Gamma(

√
V[z1]; shape, scale) 0,∞

Notes. The penultimate column shows the prior PDFs over these parameters, which themselves have (hyper)parameters α. These prior PDFs
respect the limits on θ listed in the final column. U() is the uniform distribution between 0 and 1, so has no free parameters. Note that a in the Sin
model is the peak-to-peak amplitude of the sinusoid. The uniform model for TSMod3 is used throughout (Eq. (5)).

prior from “previous” data. We can use the product rule to write
the partition likelihood as

Lk ≡ P(Dk|D−k, σk,M) =
P(D|σ,M)

P(D−k|σ−k,M)
(15)

which shows that it is equal to the ratio of the evidence calcu-
lated over all the data to the evidence calculated on the subset of
the data used in the posterior sampling. As the same prior PDF
enters into both terms, it will, in some vague sense, “cancel” out,
although I stress that there is still a prior dependence.

It is important to realize that the model complexity is taken
into account by the model comparison with the K-fold CV like-
lihood (and therefore the LOO-CV likelihood), just as it is with
the Bayesian evidence. That is, more complex models are not
penalized simply on account of having more parameters. It is, as
usual, the prior plausibility of the model which counts.

3.3. Parameter priors

The model measures mentioned – the evidence, the K-fold CV
likelihood, also the DIC – are calculated by averaging the like-
lihood over the model parameter space. This parameter space
must therefore be sampled, and this requires that we specify a
prior PDF, P(θ|M), over these.

We invariably have some information about values of the pa-
rameters, such as bounds or plausible values. For example, stan-
dard deviations, frequencies and amplitudes cannot be negative,
and a phase (as defined here) must lie be between 0 and 1. Non-
negative quantities are common, and for these I adopt the gamma
distribution in the applications which follow. This is character-
ized by two parameters, shape and scale (both positive). The
mean of the gamma distribution is shape times scale, and its vari-
ance is the mean times scale.

The different components of the time series models used in
the applications, along with the prior distributions over their pa-
rameters, are shown in Table 2.

We have to assign values for the (hyper)parameters, α, of
the prior PDFs. Although we rarely have sufficient knowledge to
specify these precisely, we can use our knowledge of the prob-
lem and the general scale of the data to assign them. I adopt the

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

P
(x

)

shape=1.5, scale=0.5

shape=2, scale=0.5

shape=2, scale=1

Fig. 3. Three examples of the gamma PDF, used as the prior for non-
negative model parameters. The solid line, with shape = 1.5, scale =
0.5, is used as the prior PDF over frequency in units of inverse hours.

following procedure for assigning what I call the canonical pri-
ors, appropriate for the data which will be analysed in Sect. 6.
Some parameters are set according to the standard deviation of

the signal values, ςy =
√

1
J−1

∑
j(y j − y j)2, where y j is the mean

signal.

– For the Off model (parameter b), I use a Gaussian with zero
mean and standard deviation 1–2 times ςy. The exact value
is determined by visual inspection of the light curve.

– For the Sin model, I use a gamma prior on the frequency,
ν, with shape = 1.5 and scale = 0.5 (Fig. 3). This assigns
significant prior probability to a broad range of frequencies
believed to be plausible based on knowledge of the problem,
the temporal sampling, and the total span of the light curves.
For the amplitude, a, I use a gamma prior with shape = 2 and
scale 1–3 times ςy. The prior over the phase is uniform.

– For the Stoch model (parameterω), I use a gamma prior with
shape = 2 and scale 1–2 times ςy.

– For the OU process, I use a gamma prior on both τ and c
with shape = 1.5. τ is a decay time scale, so I set its scale
parameter to one quarter of the duration of the time series.
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The long-term variance of the OU process is cτ/2. Equating
this to ς2

y , I therefore set the scale of the diffusion coefficient,
c, to be 2ς2

y/τ. The parameters b and μ[z1] are both assigned
Gaussian priors with a standard deviation equal to ςy. The
mean of the former is set to zero, and the mean of the latter
to y1, the signal value of the first data point. The final pa-
rameter,

√
V[z1], a standard deviation, is assigned a gamma

distribution with shape = 1.5 and scale = ςy.

This scheme of “data-based” priors was arrived at after some
experimentation, and generally the calculating LOO-CV likeli-
hoods are robust to small changes in the priors (as demonstrated
later).

3.4. Markov chain Monte Carlo (MCMC)

For sampling the posterior I use the standard Metropolis algo-
rithm with a Gaussian sampling distribution with diagonal co-
variance matrix. Those model parameters which do not naturally
have an infinite range are transformed in order to be commen-
surate with Gaussian sampling: parameters with a range zero
to infinity (such as frequency) are logarithmically transformed;
phase (which has a range 0−1) is transformed using the logit
(inverse sigmoid) function. The standard deviations of the sam-
pling covariance matrix are set to fixed, relatively small values,
typically 0.05–0.1 for the logarithmically transformed parame-
ters (these are then scale factors). A consequence of this scal-
ing is that the parameter can never exactly reach the extreme
values (zero for the log transformation), but this is not neces-
sarily a disadvantage. I experimented with instead using a cir-
cular transformation rather than logit for the phase parameter
(by taking φ mod 1). While this has an affect on the posterior
phase distribution, it barely changed the resulting model average
likelihoods.

4. Practical application

Given a data set and a time series model we wish to evaluate,
the procedure for applying the model is as follows: (1) define
the (hyper)parameters of the prior parameter PDFs, as well as
the standard deviations of the MCMC sampling PDF and its ini-
tial values; (2) select a partitioning of the data (normally we will
use LOO-CV, so the choice is unique); (3) for each partition of
the data, use MCMC to sample the posterior PDF, retaining the
value of the likelihood at each parameter sample. Average these
likelihoods to get the partition likelihood (Eq. (12)); (4) sum the
logarithms of the partition likelihoods to get the K-fold CV log
likelihood (Eq. (13)). Note that each partition provides a poste-
rior PDF, which we could plot and summarize. In order to cal-
culate the evidence for a model (Eq. (9)), then after step (1) we
sample the prior PDF and use Eq. (10).

In the applications in this article I adopt the uniform model
for the temporal component of the time series model, TSMod3
(Eq. (5)). The two parameters of this are fixed to the start and end
points of the measured light curve to include all of the data. (The
exact values are otherwise irrelevant, as they are the same for all
models for a given light curve. This effectively removes TSMod3
from the model.) I also assume that the signal component of the
measurement model is a Gaussian. I further assume that the un-
certainties on the times are small compared to the time scale on
which the time series model varies. This allows us to replace the
2D integration in the expression for the event likelihood (Eq. (7))
with an analytic expression, as shown in Sect. B.2. This results
in significantly reduced computational times.
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Fig. 4. Simulated sinusoidal data set. The solid red line is the true
model; the dashed lines show the ±σtrue variation about this. The black
points show the data set drawn from this model along with their ±σtrue

error bars.

In Sect. B.2 I define the no-model, the model which assumes
that the data are just Gaussian variations – with standard devi-
ation given by the error bars – about the mean of the data. As
this model has no parameters, its likelihood, LNM, is equal to its
LOO-CV likelihood and its evidence. This is therefore a conve-
nient baseline against which to compare all other models, so in
the text and tables I report the LOO-CV likelihood/evidence for
all models relative to this, i.e. log LLOO−CV − log LNM and E −
log LNM (the latter is the logarithm of the Bayes factor).

Once we have calculated these quantities for a number of
models, we need to compare them. It is somewhat arbitrary how
large the difference in the log likelihoods must be before we
bother discussing them. Clearly very small differences are not
“significant”, as small changes in the priors would produce “ac-
ceptable” changes in the likelihoods. Here I identify two models
as being “significantly different” if their log (base 10) likelihoods
differ by more than 1. I use this term merely for the sake of iden-
tifying which differences are worth discussing.

5. Application to simulated time series

In this section I demonstrate the method by applying it to data
drawn from a known model. The true model, z(t), is a sinusoid
(Eq. (4)) with amplitude a = 0.02, frequency ν = 0.1, phase φ =
0, and background b = 0. Fifty event times are drawn from a
uniform random distribution between t = 5 and t = 95. There is
no stochastic component. The measured signal, y, at each time is
simulated by adding to z Gaussian random noise with zero mean
and standard deviationσtrue = 0.01. In order to simulate a typical
astronomical light curve – one with long gaps corresponding to
day time – events lying in the range t = 20–40 and t = 60–80
were removed, leaving 28 events. (We can consider t as being in
units of hours and the signal in units of magnitudes.) The true
model and measured data are shown in Fig. 4. (Numerous other
experiments on other light curves have also been performed.)

I apply five models to the data, constructed by combining
components in Table 2.

– Off+Sin+Stoch: the single frequency sinusoidal model with
offset for TSMod1 (Eq. (4)), and the Gaussian stochastic
subcomponent for TSMod2 (Eq. (3)). The five adjustable pa-
rameters are θ = (a, ν, φ, b, ω).

– Sin+Stoch: as Off+Sin+Stoch, but with the offset b fixed to
zero (four adjustable parameters).

– Sin: as Sin+Stoch, but with the stochastic component in
the signal removed (ω → 0; see Sect. B.1 for how this is
achieved) (three adjustable parameters).
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Table 3. Log (base 10) LOO-CV likelihood of each model relative to that for the no-model (log LLOO−CV − log LNM), simulated sinusoidal light
curve.

{σy j } OUprocess Off+Stoch Sin Sin+Stoch Off+Sin+Stoch No-model

0.01 –0.74 0.19 2.63 2.04 2.40 –21.95
0.005 22.01 24.16 12.67 25.93 25.04 –45.85

Notes. The last column gives the log likelihood for the no-model, log LNM. The first row is for models using the true value of the signal standard
deviation, {σy j } = σtrue = 0.01. The second row is for models using half the true value.

– Off+Stoch: a simple offset (TSMod1) with a Gaussian
stochastic subcomponent for TSMod2. This model has two
adjustable parameters θ = (b, ω).

– OUprocess: the time series is modelled using the Ornstein-
Uhlenbeck stochastic process, as described in Appendix A.
This has five adjustable parameters θ = (τ, c, μ[z1],V[z1], b).

Model parameter priors and MCMC parameters are set follow-
ing the criteria described in Sect. 3. The method is then applied –
as described in Sect. 4 – to each of the five models, for two cases:
(1) the standard deviations in the measured signal, {σy j }, which
are our estimated uncertainties, are all set equal to the true value,
σtrue = 0.01; (2) {σy j } = σtrue/2 = 0.005, i.e. the uncertainties
are underestimated by a factor of two (the light curve itself is not
changed). The resulting values of the LOO-CV log likelihoods
are shown in Table 3.

Looking at the first row in this table, we see that all three
sinusoidal models are significantly favoured (difference greater
than 1) over the no-model (which has a relative LOO-CV log
likelihood of zero by construction), the OU process and the
Off+Stoch model. The true model, Sin, achieves the highest
likelihood, although the likelihood is not significantly lower in
the other two sinusoidal models. Inspection of the 1D posterior
PDFs of the Sin model for the 28 partitions shows that the pos-
terior peaks around the true frequency and amplitude in most of
the partitions, although it is relatively broad over amplitude. The
phase posterior PDF peaks sharply near to 0 or 1 in about half
the partitions, but in the rest is broader or at intermediate values.
Inspection of the posterior PDFs over the two extra parameters
in the Off+Sin+Stoch model – the offset, b, and the stochastic
component standard deviation, ω – shows that the mean for the
offset has an average across the partitions of about 0.0025. This
just reflects the fact that this particular data set has a small posi-
tive mean signal (of 0.0019). b = 0 generally lies within 1 stan-
dard deviation of the mean of the posterior PDF. The mean value
of ω in this five parameter model is also not zero, but ranges be-
tween 0.004 and 0.007 across the 28 partitions.

Overall, we see a reasonably confident detection of the true
model, by a factor of 100 in likelihood relative to the non-
sinusoidal models, and this with a relatively sparse, non-uniform
data set and low signal-to-noise ratio (a/σy j = 2 for all j).
Unsurprisingly it is not possible to distinguish between the dif-
ferent sinusoidal models. Although these provide some evidence
for a non zero b and ω, it is not enough to formally favour
Sin+Stoch or Off+Sin+Stoch over Sin.

In the second case (second row of Table 3) the true model
is now Sin+Stoch, because the supplied signal standard devia-
tion is now half the true value: an extra stochastic term is needed
to explain the missing variance. This reduces the likelihood of
the no-model. The LOO-CV likelihoods of all models are now
much larger relative to this. The Sin model is poorer than the
other models, because it too lacks the stochastic term needed
to explain the missing variance. In contrast, Off+Stoch has a

far higher likelihood: it is more important to have the stochas-
tic component than the sinusoidal one in order to explain these
data. The most favoured model is the true one, Sin+Stoch. Its
posterior PDF over ω is bell-shaped with a mean of 0.01 and
a standard deviation of 0.002 in essentially all partitions. Given
that the error bars supplied with the data were 0.05 and not zero,
we might expect that a value of ω less than 0.01 would be suf-
ficient to explain the variance on top of the sinusoid. A larger
value is needed, however, because this data set just happens to
have a larger actual variance than explained by σtrue, as we also
saw in the first case.

In this example we have seen that the models lacking the
stochastic component have likelihoods which are very sensitive
to the estimated signal standard deviations. As these are usually
hard to estimate accurately, we should generally use a model
with a stochastic component (TSMod2) with a free parameter in
order to accommodate such missing variance. Comparing results
from this with those from a model without such a component
will help us establish whether the additional variance is required.

6. Application to astronomical light curves

6.1. Background and data

I now apply the method to a set of (sub)stellar light curves. Each
light curve shows the variation over time of the total light re-
ceived (in the I band) from a very low mass star or brown dwarf,
objects collectively referred to as ultra cool dwarfs (UCDs).
The variability of these sources has been the subject of nu-
merous studies, because the light curves may reveal something
about the processes operating in these objects’ atmospheres (e.g.
Morales-Calderón et al. 2006; Bailer-Jones 2008; Radigan et al.
2012). Variability could plausibly occur on time scales of hours
to tens of hours due to the evolution of surface features, which
might be star spots or dust clouds. If the opacity or brightness
of these surface features differs from the rest of the (sub)stellar
photosphere, a change in the coverage of the features with time
would modulate the integrated light received by the observer (the
stars are not spatially resolved). Another plausible cause of vari-
ability is the star’s rotation when it has inhomogeneous (but oth-
erwise stable) surface features. (The rotation periods of these ob-
jects have been measured to be between a few hours and a few
days, e.g. Bailer-Jones 2004; Reiners & Basri 2008.) In general,
both mechanisms could generate observable variability.

Here I use a set of 11 light curves previously obtained and
analysed by Bailer-Jones & Mundt (2001; hereafter BJM)1. The
data are shown in Fig. 5. In BJM, the light curves were subject to
a simple orthodox hypothesis test using the χ2 statistic. The null

1 Tables 1 and 2 of BJM lists the properties of the objects. There are
two light curves obtained at different times for the object 2M1145. The
label 2m1145a is used in the present work to indicate the shorter du-
ration light curve in Table 2 of BJM, i.e. the one with tmax = 76 h.
2m1145b labels the longer duration one.
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Fig. 5. Ultra cool dwarf light curves, showing the variation in brightness over time. Note that increases in brightness are downwards in the y axis
(more negative magnitudes). 2m1145a and 2m1145b are light curves of the same object, but observed more than a year apart.

hypothesis was that the light curve was constant, with fluctua-
tions due only to heteroscedastic Gaussian noise, with zero mean
and standard deviations estimated in the data reduction process.
(This is equivalent to the no-model in the present paper.) The
p-value of the χ2 statistic was calculated, and if less than 0.01 the
object was declared as being “variable”2. Of the 22 light curves
analysed in BJM, 12 were declared as variable in this way, of
which 11 are analysed here. (The other 11 light curves are no
longer available unfortunately.)

Although this statistical test is widely used in this and other
contexts, it is vulnerable to some of the standard – and valid
– criticisms of orthodox hypothesis testing (see CBJ11 and

2 BJM then go on to look for significant peaks in the CLEAN peri-
odogram, and identify the variability as non-periodic if there is no sig-
nificant peak in the periodogram. This suggests that the variability is
not due to a simple rotational modulation, according to what was later
called the “masking hypothesis”: the rapid evolution of surface features
“erases” the rotational modulation signature from the periodogram.

references therein for further discussion). These are: the p-value
is defined in terms of the probability of the χ2 being as large as
or larger than the value observed, i.e. it is defined in terms of
unobserved and therefore irrelevant data; the p-value does not
measure the probability of the hypothesis given the data, so does
not answer the right question; a low p-value is used to reject the
null hypothesis and therefore accept the (implicit) alternative,
but without ever actually testing any alternative, even though the
alternative may explain the data even less well. This final point
is important, because all but the most trivial models generally
give a very low probability for any particular data set, so a low
p-value per se tells you little. What is important is the relative
likelihoods of different models. At best, a small p-value is just
an indication that the null hypothesis may not be adequate to ex-
plain the data, but it is not a substitute for proper model assess-
ment, i.e. model comparison. The onus is then on us to define
alternative models and compare them in a suitable way, which is
what I do here. I use the same five models as were used in Sect. 5
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Table 4. Log (base 10) LOO-CV likelihood of each model relative to that for the no-model for each light curve (log LLOO−CV − log LNM).

Light curve OUprocess Off+Stoch Sin Sin+Stoch Off+Sin+Stoch No-model p-value

2m0345 3.26 2.07 0.15 2.06 2.66 –13.60 4e-4
2m0913 0.44 0.72 0.23 0.97 0.10 –53.39 7e-4
2m1145a 15.23 8.59 3.01 12.26 11.70 –63.83 <1e-9
2m1145b –0.73 1.96 2.00 2.69 2.95 –39.71 1e-3
2m1146 0.67 0.56 –0.08 0.21 1.17 –26.83 3e-3
2m1334 14.95 12.82 4.06 16.86 16.12 –65.88 1e-9
sdss0539 5.50 1.99 4.93 4.48 4.67 –19.62 3e-5
calar3 3.60 1.43 5.65 5.11 4.28 –28.06 6e-4
sori31 2.04 2.12 1.02 2.59 1.90 –11.16 4e-5
sori33 1.49 0.66 2.14 1.85 2.12 –8.39 2e-3
sori45 6.70 4.32 5.08 6.23 6.32 –29.93 5e-9

Notes. The penultimate column gives the value of the log likelihood for the no-model, log LNM. The last column is the p-value for the hypothesis
test from BJM.

Although the measured data points have negligible timing
uncertainties, they do have a finite duration (the integration
time of the observations), either 5 or 8 min (fixed for a given
light curve). This could be accommodated into the measurement
model (Sect. 2.2) by using a top-hat distribution instead of a
Gaussian. I nonetheless approximate this as a delta function, for
two reasons: (1) it accelerates considerably the likelihood cal-
culations, because it allows us to replace the 2D likelihood in-
tegral (Eq. (7)) with an analytic calculation (Sect. B.2); (2) the
method of calculating the likelihood of the OU process (derived
in Sect. A.2) is only defined for this limit.

6.2. Results: LOO-CV likelihood

I follow the procedure outlined in Sect. 4 to define the priors and
to sample the posterior with MCMC. The results are summarized
in Table 4. A first glance over the table shows that for ten of the
light curves, most of the models are significantly better than the
no-model at explaining the data, often by a large amount.

According to the χ2 test of BJM, all of these objects have a
variability which is inconsistent with Gaussian noise on the scale
of the error bars, so there should be a better model than the no-
model (although it may not be among those I have tested). We
see from the Table that the no-model is not favoured for any light
curve. However, for 2m0913, none of the models is significantly
more likely than the no-model, so there is no reason to “reject” it.
As the no-model is equivalent to the null hypothesis of BJM’s χ2

test, and this gave a p-value of 7e−4, this shows that the p-value
is not a reliable metric for “rejecting” the null hypothesis.

On the other hand, in the three cases where the p-value is
very low – 2m1145a, 2m1334, sori45 – the relative log likeli-
hood for at least one model is high. This suggests that a very
low p-value sometimes correctly indicates that another model ex-
plains the data better, although this is of limited use as we do not
know how low the p-value has to be. But at least it might moti-
vate us to define and test other models. The converse is not true:
a relatively high p-value does not indicate that the null hypothe-
sis is the best fitting model.

We turn now to identifying the best models. For all light
curves, there is no significant difference between Off+Sin+Stoch
and Sin+Stoch, which just means that the offset is not needed.
That is not surprising, because the light curves have zero mean
by construction. For eight of the light curves, the LOO-CV like-
lihood for Sin+Stoch is significantly larger than for Sin, imply-
ing there is a source of (Gaussian) stochastic variability which
is not accounted for by the error bars in the data, {σy j }. This

indicates either an additional source of variance (variability), or
that the error bars have been underestimated. (In only two of
these cases – 2m1145a and 2m1334 – are the differences be-
tween Sin and Sin+Stoch very large.)

Of course, there is no reason a priori to assume that a si-
nusoidal model is the appropriate one. In 9 of the 11 light
curves, the sinusoidal models give a higher likelihood than
the Off+Stoch model, and in the other two cases the value is
not significantly lower. We can therefore state that for none
of the 11 light curves is Off+Stoch significantly better than
the sinusoidal models. But only with five or six light curves
can we say that a sinusoidal model is significantly better than
Off+Stoch. For the remaining light curves, the data (and priors!)
do not discriminate sufficiently between the models, so neither
can be “rejected”.

Turning now to the OU process, we see that this is signifi-
cantly better than all other models only for 2m1145a, but by a
confident margin. In seven other cases the OU process is still
better than the other models, or at least not significantly worse
than the best model, so cannot be discounted as an explanation.
In the remaining three cases – 2m1145b, 2m1334, calar3 – at
least one other model is significantly better than the OU process.

The results for 2m1145a and 2m1145b are interesting, as
these are light curves of the same object observed a year apart.
At one time the OU process is the best explanation, at the other
either a sinusoidal model or Off+Stoch. Although it is plausible
that the object shows different behaviour at different times, e.g.
according to the degree of cloud coverage, we should not over-
interpret this. We should also not forget that another, untested
model could be better than any of these.

To summarize: based just on the LOO-CV likelihood, I con-
clude that 10 of 11 light curves are explained much better by
some model other than the no-model, by a factor of 100 or more
in likelihood. The exception is 2m0913, for which all models are
equally plausible (likelihoods within a factor of ten). Three light
curves can be associated with one particular model: 2m1145a
is best described by the OU process; 2m1334 and calar3 are
best described by a sinusoidal model, the former requiring an
additional stochastic component (Sin+Stoch), the latter could
be either with or without it (Sin). This would seem to be con-
sistent with a rotational modulation of the light curve (but see
the next section). For the remaining seven light curves, no sin-
gle model emerges as the clear winner, although some models
are significantly disfavoured. In three of these seven cases –
2m0345, sdss0539, sori45 – both the OU process and a sinu-
soid model explain the data equally well (for 2m0345 and sori45
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Fig. 6. Posterior PDF (black solid line) and prior PDF (red dashed line) over the five parameters in the Off+Sin+Stoch model of 2m1334, for one
of the data partitions. The posterior PDFs for most of the other partitions look similar.

the sinusoidal model needs a stochastic component). For the re-
maining four light curves – 2m1145b, 2m1146, sori31, sori33 –
the Off+Stoch model is at least as plausible as the other mod-
els. This model describes the data as having a larger Gaussian
variance than is described by the error bars (with a possible con-
stant offset to the light curve in addition). This could betray a
variance intrinsic to the UCD, but it could equally well indicate
that the error bars have been underestimated, something which
is quite plausible given the multiple stages of the data reduction
and approximations therein.

6.3. Results: posterior PDFs

To calculate the LOO-CV likelihood for a light curve with J
events, we had to sample from J different posterior PDFs – one
per partition – each given by Eq. (14). Here I examine the pos-
teriors for the three light curves which could be associated with
one particular model: 2m1334, calar3, and 2m1145a.

Figure 6 shows the 1D projections of the 5D posterior PDF
for the Off+Sin+Stoch model on the 2m1334 light curve. The
most probable model was Sin+Stoch, and the PDFs over the pa-
rameters this model has in common with Off+Sin+Stoch are
similar. In the first panel we see that the offset is consistent
with being zero, as expected. Most of the probability for the
frequency (second panel) lies between 0.004 and 0.006 h−1, or
periods of 170–250 h. This is considerably larger than the peri-
ods 6.3±0.4 h (ν = 0.16 h−1) and 1.01±0.08 h identified by BJM
(at a signal-to-noise ratio of 6 and 7 respectively). 170−250 h is
also relatively long for a rotation period for a UCD and longer
than the duration of the light curve. Thus the models to which
this frequency range corresponds are in fact not periodic (no
complete cycle) but just long term trends. A visual inspection
of the light curve supports this. This could be intrinsic to the
UCD or could be a slow drift of the zero point of the photomet-
ric calibration.

A more detailed study could overcome this by introducing
an explicit trend model which is distinct from a periodic model.
The prior PDF over frequency of the sinusoidal model would

then be truncated at low values to ensure that such a model is
truly periodic. This was done in CBJ11, where the evidence was
calculated by averaging the likelihoods over a limited range of
the period parameter.

Examining further Fig. 6, we see strong evidence for a non-
zero value of ω (the prior permits much smaller values), indicat-
ing that we need a stochastic component to explain variance on
top of the (low frequency) sinusoidal component. Note finally
that the posterior PDFs are far narrower than the corresponding
prior PDFs (plotted as red dashed lines), which are essentially
flat for three of the parameters (cf. Fig. 3). This suggests that
the priors are relatively uninformative, so the results are not very
sensitive to their exact choice.

The other light curve for which a sinusoidal model is sig-
nificantly favoured is calar3. The posterior PDFs of the three
parameters of the Sin model are shown in Fig. 7 for two parti-
tions. The PDFs are very similar for these and all other partitions.
We see two distinct peaks in frequency, at around 0.075 h−1

and 0.12 h−1, or periods of 13.3 h and 8.3 h. Both are plausi-
ble rotation periods. In comparison, BJM found peaks in the
CLEAN periodogram at 14.0 h and 8.5 h, although at less than
five times the noise they were described as “barely significant”.
These nonetheless agree with the periods found in the present
analysis to within the uncertainties. As the integrated probabil-
ity in these peaks in Fig. 7 is very large, then if Sin is the cor-
rect model (and not just the most probable of those tested) then
these periods are significant. The double-peaked posterior PDF
means that there is evidence supporting models at both periods
(or one is an alias), but Sin is still a single component model.
In particular, the posterior PDF over amplitude in Fig. 7 is the
distribution over amplitudes for all models, i.e. for the entire fre-
quency range. In order to determine the best fitting amplitudes
for a model with two sinusoidal components we would need to
calculate the posterior PDF for a six parameter model.

Of the 11 light curves explored here, BJM identified signif-
icant periods for 2m1146, 2m1334, sdss0539, and sori31. The
present analysis suggests all of these could be explained by
a periodic model, but only for 2m1334 is the periodic model
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Fig. 7. Posterior PDF (black/solid line for one partition, blue/dot-dashed for another) and prior PDF (red dashed line) over the three parameters of
the Sin model of calar3. The posterior PDFs for the other partitions are likewise very similar.
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Fig. 8. Posterior PDF (black solid line) and prior PDF (red dashed line) over the five parameters in the Off+Sin+Stoch model of 2m1145a, for one
of the partitions. The posterior PDFs for the other partitions look virtually identical.

significantly better than the others (although we just saw that
this “period” is actually a trend). Furthermore, for 2m1146 only
the Off+Sin+Stoch model is more significant than the no-model,
and then only barely (LOO-CV log likelihood difference of
just 1.17). So there is no strong evidence supporting periodic-
ity in these four light curves.

The only other light curve with a clear “winner” model in
terms of the LOO-CV likelihood is 2m1145a, for which the OU
process was identified. The PDFs over one partition are shown
in Fig. 8. Noticeable here is that the posterior PDFs are not much
narrower than the prior PDFs. In Bayesian terms, the Occam fac-
tor (the ratio of volume of the parameter space occupied by the
posterior to that occupied by the prior) is not much smaller than
one, which means the data are not providing a strong discrimi-
nation over parameter solutions. This can be interpreted to mean
that the model is quite flexible: a wide range of parameter set-
tings are able to explain the data. This is perhaps not surpris-
ing given the nature of the OU process and the low signal-to-
noise ratio of the data (the standard deviation of the signal, ςy,
is only 1.7 times the mean error bar, σy j ). Alternatively, we can
interpret this similarity between prior and posterior to mean that
we used a comparatively informative (narrow) prior – see next
section.

6.4. Results: sensitivity of the LOO-CV likelihood to the prior

An important issue discussed in Sect. 3.2 is the sensitivity of re-
sults to the priors adopted. I investigate this here by increasing
the scale over which the prior PDFs extend. Specifically, I mul-
tiply by 2, then by 4, the standard deviation of Gaussian priors
and the scale parameter of beta priors, then re-run the MCMC to
recalculate the LOO-CV likelihood. The results of doing this for
the sdss0539 light curve are shown in Table 5. Although the like-
lihoods do change, they do not change by more than the factor
of ten adopted here to indicate a significant difference. This pat-
tern is generally seen with the other light curves also. However,
there are a few cases in which we can get larger changes in the
likelihood for apparently innocuous changes in the priors. This
requires further study.

6.5. Results: Bayesian evidence

I have introduced the LOO-CV likelihood as an alternative to the
Bayesian evidence, on the basis that it is less sensitive to changes
in the prior. I investigate this here.

As the no-model has no adjustable parameters, its evidence
is equal to its likelihood and its LOO-CV likelihood. I therefore
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Table 5. Log (base 10) LOO-CV likelihood of each model relative
to that for the no-model (log LLOO−CV − log LNM), for the light curve
sdss0539.

Priors OUprocess Off+Stoch Sin Sin+Stoch Off+Sin+Stoch

canonical 5.50 1.99 4.93 4.48 4.67
×2 scale 5.14 2.02 4.51 4.11 4.13
×4 scale 4.60 1.98 5.08 4.51 4.83

Notes. Each line corresponds to different settings of the parameters of
the prior PDFs.

Table 6. Log (base 10) evidence of each model relative to that for the
no-model, log E − log LNM, for the light curve sdss0539.

Priors OUprocess Off+Stoch Sin Sin+Stoch Off+Sin+Stoch

canonical 5.38 1.07 3.24 2.31 2.03
×2 scale 4.72 0.30 2.42 0.65 –0.90
×4 scale 3.97 –0.53 1.81 –0.87 –2.63

Notes. Each line corresponds to different settings of the parameters of
the prior PDFs (cf. Table 5).

use this again as a baseline against which to report the evidence.
This relative evidence is reported in Table 6 for sdss0539, for
the same models and priors as shown in Table 5. Comparing
the first lines between these tables (canonical priors), we ar-
rive at a similar conclusion based on the evidence as based
on the LOO-CV likelihood: the OU process is the single best
model; Off+Stoch and the no-model are significantly less likely.
However, based on the evidence we would now say that the sinu-
soidal models are also significantly less likely. Examining how
the evidence changes with the priors, we see significant (more
than unity) changes for all models, something we do not see
for the LOO-CV likelihood in Table 5. The evidence is indeed
more sensitive to the priors in this case. We observe a similar
behaviour for other light curves (although there are cases where
doubling the scale of the priors changes the evidence by less than
a factor of ten). Prior sensitivity nonetheless remains an issue for
LOO-CV likelihood, and this should always be investigated in
any practical application.

7. Summary and conclusions

This article has introduced three ideas

1. a fully probabilistic method for modelling time series with
arbitrary temporal spacing. It can accommodate any kind of
measurement model (error bars) on both the time and signal
variables, as well as any functional model for the signal-time
dependence and the stochastic variations in both of these. In
contrast to many other time series modelling methods, it can
model a stochastic variation in the time axis too. It can in
fact be used to model any 2D data set, and not just temporal
data: with a linear model it offers an alternative solution to
the total least squares solution for data sets with errors in
both variables, for example.

2. a cross-validation alternative to the Bayesian evidence,
which is based on the posterior-averaged likelihood (com-
bined over partitions of the data) as opposed to the prior-
averaged likelihood. In theory this is less sensitive to the
prior parameter PDFs than the evidence, something con-
firmed by the initial experiments reported here. Experiments

on simulated data suggest that this metric is an effective
means of model comparison. Its main drawback in compari-
son to the evidence is that it takes longer to calculate.

3. the use of the Ornstein-Uhlenbeck process in a Bayesian
time series model, i.e. one in which we sample rather than
maximize the posterior. (Theoretical results similar to the
event likelihood and the recurrence relation for the poste-
rior PDF – derived in Appendix A – have been published
elsewhere.)

The main purpose of this article was to give a detailed theoretical
exposition of the model. A more comprehensive application to
time series analysis problems will be published elsewhere. In the
present work I have demonstrated the method using simulated
data, and through an analysis of 11 brown dwarf light curves.
The main conclusions of this study are as follows

– 10 of 11 light curves are explained significantly better by
one of the models tested than by the no-model, the “null hy-
pothesis” that the variability is just due to Gaussian fluctu-
ations with standard deviation given by the error bars about
the mean of the data. “Significantly better” here means the
LOO-CV likelihood is at least 100 times larger, something
we might interpret as a 99% confidence level. For compar-
ison, in BJM all 11 light curves were flagged as variable at
a (different) 99% confidence level based on an orthodox χ2

test of the same null hypothesis. The Bayesian model com-
parison performed here has a sounder theoretical basis, gives
us more confidence in the results, and supplies more infor-
mation. The two methods disagree on 2m0913, which is ad-
equately explained by the no-model here.

– three light curves are described significantly better by one
model than any of the others: 2m1145a by the OU process;
2m1334 by a sinusoid with an additional Gaussian stochas-
tic component; calar3 by a sinusoid either with or without
an additional stochastic component. However, the probable
periods for 2m1334 are longer than the duration of the time
series, so this is best interpreted as a long-term trend rather
than a periodic variation. For calar3 we see two distinct and
significant peaks in the posterior PDF over the frequency,
at 0.12 h−1 (period = 8.3 h) and 0.075 h−1 (period = 13.3 h).
Both had been identified in earlier work, but as barely statis-
tically significant.

– the other 8 light curves can be described by more than one
model, either the OU process, or a constant with stochastic
component or a sinusoid with stochastic component.

It must be remembered that we can only comment on models
we have explicitly tested: it remains possible that other plausible
models exist which could explain the data better. Future work
with this method will focus on its practical application to scien-
tific problems, the inclusion of more time series models, as well
as further testing of the LOO-CV sensitivity to the prior PDFs.

Acknowledgements. I would like to thank Rene Andrae and the referee, Jeffrey
Scargle, for useful comments.

Appendix A: Fully stochastic time series processes

The signal component of the time series model is the PDF
P(z j|t j, θ,M). For a physical process which has a well-defined,
time-variable signal on top of which there is some random-
ness, Sect. 2.3 shows a convenient way of expressing this as
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two independent subcomponents: one which describes the time-
dependence of the mean of the PDF and the other which de-
scribes the PDF itself and its time-independent parameters, e.g.
its variance.

A fully stochastic process, in contrast, is one in which all of
the parameters of the PDF can have a time dependence. Given
a functional form for this time dependence, we can in principle
just introduce this into θ and calculate the likelihood as before.
A simple fully stochastic process is one with a constant mean
and variance, a white noise process. This is achieved by setting
TSMod1 to a uniform model (η = b in Eq. (4)) with TSMod2 a
Gaussian.

However, incorporating a stochastic process which has mem-
ory, such as a Markov process, is more complicated. Here I show
how to introduce a particular but widely used stochastic process,
the Ornstein-Uhlenbeck process.

A.1. The Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck (OU) process (Uhlenbeck & Ornstein
1930) is a stochastic process which describes the evolution of
a scalar random variable, z. The equation of motion (Langevin
equation) for t > 0 can be written

dz(t) = −1
τ

z(t)dt + c1/2N(t; 0, dt) (A.1)

where τ and c are positive constants, the relaxation time (di-
mension t) and the diffusion constant (dimension z2t−1) respec-
tively, dt is an infinitesimally short time interval, N(t; 0, dt) is
a Gaussian random variable with zero mean and variance dt,
and dz(t) = z(t + dt) − z(t). The OU process is the continuous-
time analogue of the discrete-time AR(1) (autoregressive) pro-
cess, and is sometimes referred to as the CAR(1) process. In the
context of Brownian motion, z(t) describes the velocity of the
particle. There are alternative, equivalent forms of this equation
of motion. For more details see Gillespie (1996a).

The OU process is stationary, Gaussian and Markov3. The
PDF of z(t) is Gaussian with mean and variance given by

μz = z0υ (A.2a)

Vz =
cτ
2

(1 − υ2) (A.2b)

respectively, for any t > t0, where z0 = z(t = t0) and

υ = e−(t−t0)/τ. (A.3)

Given the initial condition z0 at t0, we know the PDF of the pro-
cess at any subsequent time. The relaxation time, τ, determines
the time scale over which the mean and variance change. The dif-
fusion constant determines the amplitude of the variance. The
OU process z(t) is a mean-reverting process: for t − t0 � τ the
mean tends towards zero and the variance asymptotes to cτ/2
(for finite τ). From this we can derive an update equation to give
the value of the process at time t,

z(t) = z0υ + n1

√
Vz (A.4)

3 Put loosely: Stationary means that the joint PDF of a set of events
from the process is invariant under translations in time; Markov means
that the present value of the process depends only on the value at one
previous time step; Gaussian means that the joint PDF of any set of
points is a multivariate Gaussian, in particular the PDF of a single point
is Gaussian.

where n1 is unit random Gaussian variable (Gillespie 1996a).
This is just the sum of the mean and a random number drawn
from a zero-mean Gaussian with the variance at time t. For a
given sequence of time steps, (t0, t1, . . .), we can use this to gen-
erate an OU process. Because the time series is stochastic and
must be calculated at discrete steps, then even for a fixed random
number seed, the generated time series depends on the actual se-
quence of steps.

The reader may be more familiar with the Wiener process.
This can be considered a special case of the OU process in
which τ → ∞ (Gillespie 1996b), in which case υ → 1. The
update equation becomes z(t) = z0 + n1

√
Vz, where now Vz =

c(t − t0).

A.2. Likelihood of the Ornstein-Uhlenbeck process

A Markov process is one in which we can specify the PDF of
the state variable, z j at time t j, using P(z j|t j, z j−1, t j−1, θ,M), i.e.
there is a dependence on the previous state variable, z j−1. For
the OU process, this PDF is a Gaussian with mean and variance
given by Eq. (A.2). Clearly, the nearer t j−1 is to t j the better a
measurement of z j−1 will constrain z j.

We could therefore write the signal component of the time
series model (see Eq. (2)) as

P(z j|t j) =
∫

t j−1,z j−1

P(z j|t j, z j−1, t j−1)P(z j−1, t j−1|t j) dt j−1dz j−1

=

∫
t j−1,z j−1

P(z j|t j, z j−1, t j−1)P(z j−1|t j−1)P(t j−1) dt j−1dz j−1

(A.5)

where conditional independence has been applied in the second
line to remove the t j dependence from the second two terms.
Note that everything is implicitly conditioned on M and its pa-
rameters θ, but these have been omitted for brevity. The first term
under the integral is the PDF for the Markov process we aimed to
introduce. The second term is also a PDF for the Markov process
but referred to the previous event. We could replace that with
another 2D integral over (t j−2, z j−2) of exactly the same form as
Eq. (A.5). We could then continue recursively to achieve a chain
of nested 2D integrals going back to the beginning of the time
series, and use that in our likelihood calculation. Although this
is a plausible and general solution for a Markov process, it is not
very appealing.

Fortunately a significant simplification is possible. Let us
first neglect the time uncertainties. In that case the event like-
lihood (Eq. (7)) becomes

P(D j|σ j, θ,M) =
∫

z j

P(y j|z j, σy j )P(z j|t j, θ,M)P(t j|θ,M) dz j

(A.6)

with t j = s j. P(y j|z j, σy j) is the signal part of the measurement
model (the time part has dropped out). If this is Gaussian in y j−z j
(cf. Eq. (1)) and P(z j|t j, θ,M) is Gaussian in z j, then Eq. (A.6)
is a convolution of two Gaussians, which is another Gaussian,
multiplied by P(t j|θ,M) (which is independent of z j). A general
result is that if f is a Gaussian with mean μ f and variance V f ,
and g is a Gaussian with mean μg and variance Vg then

∫ +∞

−∞
f (y − z)g(z)dz = f ⊗ g (A.7)
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is a Gaussian with mean μ f + μg and variance V f + Vg. For
the Gaussian measurement model, f is Gaussian in the argu-
ment y j − z j with μ f = 0 and V f = σ

2
y j

. g is then the time series
model.

We now turn specifically to the OU process in order to de-
termine its time series model, P(z j|t j, θ,M). We can derive this
from Eq. (A.4). With the state variable now written as z j rather
than z(t), this update equation is

z j = z j−1υ + n1

√
Vz (A.8)

with

υ = e−(t j−t j−1)/τ (A.9a)

Vz =
cτ
2

(
1 − υ2

)
. (A.9b)

z j has a Gaussian distribution (by definition of the OU process)
with mean and variance4

μ[z j] = μ[z j−1]υ (A.10a)

V[z j] = V[z j−1]υ2 + Vz (A.10b)

respectively (see also Berliner 1996). Specifically, P(z j|t j, θ,M)
is a Gaussian with this mean and variance, which are specified
by the parameters θ = (μ[z j−1],V[z j−1], υ, τ, c)5. We will look in
a moment at how we estimate μ[z j−1] and V[z j−1].

We can now write the likelihood, the result of the Gaussian
convolution, Eqs. (A.6) and (A.7), as

P(D j|σ j, θ,M) = P(t j|θ,M)
∫

z j

P(y j|z j, σy j )P(z j|t j, θ,M) dz j

= P(t j|θ,M)
1√

2πV[y j]
exp

(−(y j − μ[y j])2

2V[y j]

)

(A.11)

where the mean and variance of this Gaussian are

μ[y j] = 0 + μ[z j] (A.12a)

V[y j] = σ2
y j
+ V[z j] (A.12b)

respectively. Recall that P(t j|θ,M) is just the time component
of the time series model with t j = s j. Normally we will use a
uniform model (Eq. (5)), so this is just a constant.

To estimate μ[z j−1] and V[z j−1] we make use of the data, y j−1.
For an event t j, P(z j|t j, θ,M) – which has mean and variance
given by Eq. (A.10) – is our estimate of the PDF of the state vari-
able at t j prior to taking into account the measurement y j. It is
therefore the appropriate thing to use to calculate the likelihood
of y j, as we have done in Eq. (A.11). But in parallel to this we
want to use y j to improve our estimate of z j, i.e. we want to cal-
culate the posterior PDF of z j. This is given by Bayes’ theorem

P(z j|y j, t j) ∝ P(y j|z j, t j)P(z j|t j) (A.13)

(ignoring the normalization constant 1/P(y j|t j), and omitting a
lot of dependencies). These two terms are again the measure-
ment model (so the dependence on t j drops out) and the time

4 These we calculate explicitly from Eq. (A.8). The variance is just the
sum of the variances of the two terms in that equation. Recall that in
general V( f g) = f 2V(g) + g2V( f ), and that V(υ) = 0.
5 If we instead had an actual value of z j−1, then P(z j|t j, θ,M) would be
Gaussian with mean z j−1υ, variance Vz, and θ = (z j−1, υ, τ, c).

series model, both of which are Gaussian in z j. Thus the pos-
terior PDF over z j is also a Gaussian with mean and variance6

μ′[z j] =
y jV[z j] + μ[z j]σ2

y j

V[z j] + σ2
y j

(A.15a)

V ′[z j] =
V[z j]σ2

y j

V[z j] + σ2
y j

(A.15b)

respectively, where the prime symbol is used to distinguish these
posterior moments from the prior ones in Eq. (A.10). It is these
quantities which we then use at the next event as the estimates
of the mean and variance of the state variable. Thus, at iteration
(event) j, when we calculate Eq. (A.12) and hence the likeli-
hood, we use μ′[z j−1] and V ′[z j−1] as our estimates of μ[z j−1]
and V[z j−1]. This is how we introduce a dependence on the pre-
vious measurement (the Markov property). We then calculate the
mean and variance of the posterior for z j using Eq. (A.15), and
will then use these in the next iteration. Thus we have a recur-
rence relation for the posterior PDF of z j, at each iteration si-
phoning off the relevant quantities in order to calculate the event
likelihood.

To initialize the process we must specify initial values μ[z1]
and V[z1]. We use these in Eq. (A.12) to calculate μ[y1]
and V[y1] and hence the likelihood for the first event, y1, from
Eq. (A.11). We then calculate the posterior moments using
Eq. (A.15). For the next event, j = 2, these posterior moments
are assigned to μ[z j−1] and V[z j−1] in Eq. (A.10) and the likeli-
hood calculated. The procedure is iterated through all the events.

The model prediction of the OU process is a Gaussian dis-
tribution at each event (at time t j) with mean and variance given
by Eq. (A.10). Unlike the memoryless time series models, the
OU process requires the measurement of the one previous event
in addition to the model parameters in order to predict the next
event (this is the Markov property). The relevant model predic-
tion of event j is therefore given by the prior distribution of
Eq. (A.10) – which has not yet looked at y j – and not by the
posterior distribution of Eq. (A.15), which has.

The parameters of the process are θ = (μ[z1],V[z1], τ, c) (and
implicitly the initial time, t1). Figure A.1 shows an example of a
simulated OU process and the model predictions thereof.

As it stands, the long-term mean of this OU process is zero.
We can introduce this long-term mean as an additional parame-
ter, b, of the model. Equation (A.10a) then becomes

μ[z j] = μ[z j−1]υ + b(1 − υ). (A.16)

The variance is unchanged. (See also Brockwell & Davis 2002,
Sect. 10.4.) Note that this corresponds to solving a different dif-
ferential equation, namely one in which we have the additional
term (b/τ)dt on the right-hand-side of Eq. (A.1). (Note that b is
the long-term mean of the process rather than the mean of the
data.)

Now that we can calculate the likelihood, we can calculate
the evidence or sample the posterior PDF. By partitioning the
data set we can also use posterior sampling to evaluate the cross-
validation likelihood, as described in Sect. 3.2. Note that what-
ever partitioning we do, when it comes to calculating the parti-
tion likelihood for data Dk we must still use all of the data to

6 The product of two Gaussians f and g with means μ f and μg and
variances Vf and Vg is another Gaussian with

mean
μ f Vg + μgVf

Vf + Vg
and variance

Vf Vg

Vf + Vg
· (A.14)
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Fig. A.1. Example simulated OU process. The black points (with a uni-
form random time distribution) have been simulated from an OU pro-
cess with parameters τ = 10, c = 20 and initial conditions t1 = 0, z1 = 0,
to which Gaussian measurement noise with mean zero and unit standard
deviation has been added (as indicated by the black error bars). This red
points show the predictions of this process using the OU process time
series model with parameters τ = 10, c = 20, μ[z1] = 0, V[z1] = 0.
The prediction for each event is a Gaussian in the signal with mean and
variance given Eq. (A.10).

predict the full sequence of events. That is, for a given θn, we
predict the entire sequence of J events using all the data, but
only make use of those event likelihoods which are appropriate.
Specifically, to calculate the posterior to use in MCMC sampling
(Eq. (14)) we just select the likelihood for the events in D−k, and
to calculate the likelihoods in Eq. (11) (or (12)) we just use the
events in Dk. The OU process depends not only on the model
parameters but also on the state at the previous time step, so
we should not be changing these time steps by removing events
when predicting the sequence.

A.3. Literature note

I am not aware of an explicit derivation in the literature either of
the above posterior recurrence relation (although Berliner 1996
outlines the same thing) or of the event likelihood for the OU
process. Kelly et al. (2009) write down similar equations for
the latter (their Eqs. (6)–(12)), but in a significantly rearranged
form. Kelly et al. also assume a specific initial value (zero) for
the initial state variable, z0 (their Eq. (8)), whereas I give this a
distribution. (In my formulation we can achieve a specific ini-
tial value by setting V[z1] = 0.) My expression for the variance
(Eq. (A.10b)) therefore has an additional term compared to theirs
(their Eq. (A.5), which is Vz in my notation), because they are
conditioning on an fixed value of the process at the previous step
whereas I assume this itself has a variance, V[z j−1]. (See also
Sect. 10.4 of Brockwell & Davis 2002.) Closely related formu-
lations of this process – but not the likelihood calculation – are
given in Jones (1986; Sects. 4 and 5) and Kozlowski et al. (2010;
appendix).

Appendix B: Simplifying the event likelihood
integration

The calculation of the likelihood for a single event in princi-
ple requires a 2D integration (Eq. (7)). This can, however, be
reduced to a 1D integration or even just a function evaluation
under certain circumstances.

B.1. Dropping the stochastic signal component of the time
series model (TSMod2 bypass)

If TSMod2 is a Gaussian (Eq. (3)) in which ω is very small com-
pared to the scale of signal variations, then the only contribution

to the event likelihood is at the prediction of the signal by
TSMod1. For given θ1, the magnitude of the event likelihood
is then dictated only by the measurement model, i.e. how close
the measured y j is to the prediction z j. In this limit ω → 0,
the signal part of the time series model (Eq. (2)) becomes
P(z j|t j, θ1, θ2,M) = δ(z j − η[t j; θ1]). This gives us a purely deter-
ministic signal in the time series model; we “bypass” TSMod2.
The event likelihood integration (Eq. (7)) then becomes a 1D
integration7

P(D j|σ j, θ,M) =
∫

t j

P(D j|t j, z j = η[t j; θ1], σ j)︸���������������������������︷︷���������������������������︸
Measurement model

P(t j|θ3,M)︸�������︷︷�������︸
Time series model

dt j.

(B.1)

B.2. Small uncertainties on the measured times

If the uncertainty on the measured time, σs j , is very small com-
pared to the time scale over which the time series model varies,
then the integral over t j in the event likelihood will have a signif-
icant contribution only for times t j close s j. This must hold for
any sensible measurement model or definition of uncertainties.
The time part of the measurement model can then be approxi-
mated by the delta function δ(t j − s j), and the integration over
t j is just unity. If the signal part of the measurement model is
Gaussian, the event likelihood equation (Eq. (7)) becomes

P(D j|σy j , θ,M) =
∫

z j

1√
2πσy j

e−(y j−z j)2/2σ2
y j

︸���������������������︷︷���������������������︸
Measurement model

P(t j= s j, z j|θ,M)

︸���������������︷︷���������������︸
Time series model

dz j.

(B.2)

When TSMod2 is the Gaussian model this becomes

P(D j|σy j , θ,M) =∫
z j

1√
2πσy j

e−(y j−z j)2/2σ2
y j

︸���������������������︷︷���������������������︸
Measurement model

1√
2πω

e−(z j−η[s j;θ1])2/2ω2
P(s j|θ3,M)

︸���������������������������������������︷︷���������������������������������������︸
Time series model

dz j.

(B.3)

This can be written as

P(D j|σy j , θ,M) = P(s j|θ3,M)
∫

z j

f (y j − z j)g(z j)dz j. (B.4)

This is just a convolution of two Gaussian functions, f and g,
which is another Gaussian with mean equal to the sum of the
means of f and g and variance equal to the sum of the variances
of f and g. The event likelihood is therefore

P(D j|σy j , θ,M) =

P(s j|θ3,M)
1√

2π(σ2
y j
+ ω2)

e−(y j−η[s j;θ1])2/2(σ2
y j
+ω2) (B.5)

i.e. involves no integration. The time part of the time series
model, P(t j = s j|θ3,M), is simply evaluated at the measured

7 As we now have no stochastic element in either t or z, the reader
may wonder why this integral is over t rather than z, i.e. why there is an
asymmetry. The point is that we need to integrate along the path of the
(deterministic) function z j = η[t j; θ1]. As this only requires one param-
eter, we only have a one-dimensional integral. Whether we parametrize
this with t j or z j is unimportant, but having written the function as
z j = η[t j; θ1] rather than t j = η

′[z j; θ1], t j is the more natural choice.
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time, s j. One particular application of this is to calculate the
event likelihood for the no-model, the time series model in which
there is no stochastic component and the deterministic compo-
nent is just the mean of the signal. This is obtained by setting
ω = 0 and η = y j in Eq. (B.5). The signal is therefore ex-
pected to be just Gaussian noise fluctuations about a constant.
The total likelihood for the no-model, LNM, is the product of
these event likelihoods (Eq. (8)). This is a useful baseline model
against which to compare the likelihood of other models. As this
model has no adjustable parameters, this likelihood is equal to
both the evidence and the K-fold CV likelihood.

B.3. Both TSMod2 bypass and negligible time uncertainties

If, in addition to a purely deterministic time series model, we
also have negligible uncertainties on time, then the time part of
the measurement model in Eq. (B.1) is a delta function, δ(t j− s j).
The likelihood then involves no integration. If the signal part of
the measurement model is a Gaussian, the likelihood is

P(D j|σy j , θ,M) = P(s j|θ3,M)
1√

2πσy j

e−(y j−η[s j;θ1])2/2σ2
y j . (B.6)

We also reach this result if we set ω = 0 in Eq. (B.5).
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