
A&A 545, A132 (2012)
DOI: 10.1051/0004-6361/201220010
c© ESO 2012

Astronomy
&

Astrophysics

Are 3C 249.1 and 3C 334 restarted quasars?
(Research Note)

A. Marecki
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ABSTRACT

This Research Note follows up a Letter in which I posit that J1211+743 is a restarted radio source. This means that its structure, where
the jet points to the relic lobe, is only apparently paradoxical. Here, I propose the same scenario and apply the same mathematical
model to 3C 249.1 and 3C 334. The ultimate result of my investigation is that these two well-known radio-loud quasars can be
understood best so far if it was assumed that they, too, had been restarted.
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1. Introduction

In principle, the “twin exhaust” model of a classical radio source
(Blandford & Rees 1974) predicts full symmetry of its doubled
structures, i.e. lobes and jets, but this is very often not the case
in reality. The main cause of asymmetries is the source orienta-
tion leading to beaming and Doppler-boosting that explain the
apparent one-sidedness of the jets very well. However, asymme-
tries of the lobes cannot be attributed to relativistic beaming be-
cause they are not moving with relativistic velocities (Longair &
Riley 1979). A good example of a class of object where asymme-
tries are conspicuous, but do not result from the orientation, are
the so-called HYbrid MOrphology Radio Sources (HYMORS)
(Gopal-Krishna & Wiita 2000; Gawroński et al. 2006), i.e.
sources each of whose sides are a different Fanaroff-Riley (FR)
type (Fanaroff & Riley 1974). Earlier, Gopal-Krishna et al.
(1996) highlighted several radio-loud quasars in which the
hotspot on the jetted side was barely detected. The authors
coined the term “weak-headed quasars” for them and argued
that the faintness of the nearer hotspot, i.e. the one on the jet
side, stemmed from the differential light-travel time caused by
the source orientation so that the near-side lobe was viewed at a
later evolutionary stage as compared to the far-side lobe.

Marecki (2012, hereafter Paper I) independently used the
same argument to show that in J1211+743 (4CT 74.17.01), a
source which, at first sight, could be labelled a HYMORS,
the asymmetric appearance of the lobes also resulted from dif-
ferential light-travel time. Therefore, J1211+743 is a pseudo-
HYMORS, not a real one, whereas the correlation between the
jet direction and the location of the relic lobe is only appar-
ently paradoxical. The case of J1211+743 is important for yet
another reason. It has been shown in Paper I that this object must
have been restarted to appear the way it does. Consequently,
not only the so-called double-double sources are those where
activity restart surely takes place – see the review of Saikia &
Jamrozy (2009). It thus seems timely to search for other objects
similar to J1211+743 and, if found, to check using the formal-
ism developed in Paper I whether their observed geometry fits
the activity re-ignition scenario combined with the differential
light-travel time.

2. In quest of J1211+743 analogues

In the 607-MHz map of J1211+743 (Pirya et al. 2011), the tip
of its one-sided jet is located close to the boundaries of its relic
lobe. However, from the point of view of the scenario presented
in Paper I, this circumstance is not at all essential for the model
to remain valid. The exact location of the tip of the jet can be
largely arbitrary within the lobe itself or its vicinity, although
it obviously cannot coincide with the expected location of the
hotspot, otherwise it would be hardly possible to prove that the
relic had no hotspot. When looking for other objects analogous
to J1211+743, therefore, the candidates only have to be tested
against the following two criteria:

1. the source has one FR II-like lobe with a hotspot and one
diffuse relic lobe without a hotspot;

2. the source has a one-sided jet and the relic is on the jet side.

I visually inspected the images of double-lobed radio sources
published in Black et al. (1992), Lonsdale et al. (1993),
Price et al. (1993), Bogers et al. (1994), Bridle et al. (1994),
Law-Green et al. (1995), Neff et al. (1995), Reid et al. (1995,
1999), Fernini et al. (1997), Hardcastle et al. (1997), Harvanek &
Hardcastle (1998), Riley et al. (1999), Gilbert et al. (2004, here-
after G04), Fernini (2007), and Kharb et al. (2008) to find ob-
jects meeting these criteria. It turned out that only two sources –
3C 249.1 and 3C 334 – clearly met them, so they are discussed
in detail below. Additionally, I made an exception for 1317+520
and 2209+152, and despite not meeting the criteria by these ob-
jects, I consider them in Sect. 2.4.

2.1. The case of 3C 249.1

The object 3C 249.1 (PG 1100+772) is a z = 0.3115 quasar
whose radio structure is best shown in Figs. 5 and 6 of Lonsdale
& Morison (1983), Figs. 18–21 of Bridle et al. (1994), and
Figs. 37–39 of G04. The western lobe is FR II type while the
eastern one is devoid of a hotspot and remarkably featureless.
This, together with a high value of the spectral index α ∼ 0.9
(G04), which is directly responsible for a complete absence of
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eastern lobe in the 8.4-GHz image of 3C 249.1 (Fernini 2007),
combined with the diffuseness of that lobe, which is best seen in
the 408-MHz image (Lonsdale & Morison 1983), provide com-
pelling evidence that the eastern lobe is a relic.

A number of explanations of the peculiar morphology of
3C 249.1 have been proposed in the literature – see G04 for
references – including the “flip-flop” mechanism (Lonsdale &
Morison 1983). According to these authors, the jet was once di-
rected to the east, and it inflated the eastern lobe. After a rever-
sal, which is the essence of the “flip-flop” model, the jet was
oriented westerly so that the western lobe developed. The subse-
quent reversal is reflected in the direction of the jet as currently
perceived. Although the “flip-flop” mechanism is no longer used
to interpret double-lobed radio sources, one element of that the-
ory still remains viable: the jet is currently not energising the
eastern lobe because these two components belong to different
epochs and their alignment is a mere spatial coincidence. This
assertion is a cornerstone of the scenario I propose for 3C 249.1,
the same as the one devised for J1211+743 in Paper I.

My model posits that, instead of the reversals of the intrin-
sically one-sided jet, the activity of the nucleus is recurrent and
both jets were not produced for some time – a quiescence period,
tq. The transition of the nucleus to the quiescent mode combined
with a short lifetime of the hotspot (7×104 yr, Kaiser et al. 2000)
led to the swift disappearance of hotspots. However, if the source
does not lie on the sky plane then the differential light-travel time
makes it possible that for a limited period of time the relic is seen
only on the near side. If the activity of the nucleus is reinstated
within that time window then we observe a superposition of two
effects: the lobes’ decay asymmetry and the presence of appar-
ently one-sided jet pointing to the relic lobe. It has been shown
in Paper I that the above scenario requires fine-tuned timing, and
the necessary formalism has been developed there. I apply it here
to test whether the model is valid for 3C 249.1. The results are
given in Sect. 2.3.

2.2. The case of 3C 334

The object 3C 334 is a z = 0.5551 quasar whose radio structure is
best shown in Figs. 24–26 of Bridle et al. (1994), and Figs. 52–54
of G04. The western lobe is FR II type while the eastern one is
somewhat peculiar. In the 4.9-GHz VLA map (Bridle et al. 1994,
Fig. 25a), this lobe, although quite diffuse in general, has three
features denoted as “Q”, “R”, and “S”. None of these three dom-
inates to make it a good candidate for the actual hotspot. On
the other hand, in the 5-GHz VLA image shown in Fig. 54 in
G04, the eastern lobe is rather featureless. G04 claim that there
is a “clear trail of emission” made of components “S4” and “S5”
that provides a connection from feature “S3” in the jet all the
way to feature “S6” in the lobe. It could be, however, asserted
equally well that there is a clear gap in emission between com-
ponents “S4” and “S5” – see the lower panel of Fig. 54 – and the
lobe itself is isolated. Therefore, this image provides substantial
ground for suspecting that the eastern lobe of 3C 334 is in fact a
relic that is currently not fuelled by the jet that terminates with
component “S3” at the lobe’s outskirts.

I thus propose the following interpretation of 3C 334. The
activity of its nucleus ceased at some point in the past. This led
to the cut-off of the stream of relativistic plasma to both lobes
we still observe. The western lobe is farther from us. That’s why
we perceive it as a being of FR II type, while the eastern lobe
is seen as a relic of a former FR II-type lobe. After a period of
quiescence tq, the activity was renewed and the jet is a conspicu-
ous signature of that. However, the central engine of 3C 334 was

repositioned during the restart so now the jet misses the eastern
lobe slightly and is not connected to it; the alleged bridge made
of components “S4” and “S5” is an illusion caused by the bend
of the jet. (The bend of the jet is likely to be forced by the pres-
sure gradient on the boundary of the cocoon of the radio source.)

Based on the above scenario, application of the model de-
veloped in Paper I to 3C 334 seems to be justified. However, be-
cause of the misalignment between the straight section of the jet
and the line connecting the core and the position of the tip of the
relic lobe, the meaning of d (see Fig. 1 of Paper I) has changed –
it is now the length of the projection of the jet onto that line.
Consequently, βadv is not the actual jet advance speed but the
speed of the tip of the jet projection, so the true βadv is somewhat
higher than the values of projected βadv used in the model.

2.3. Application of the model to 3C 249.1 and 3C 334

In Paper I, the constraints on the length of the quiescence pe-
riod tq were analysed, and it was shown that tq must stay
within certain limits for the model to be valid. To calculate the
lower and the upper limits to tq, one has to use Eqs. (2) and (4)
(Paper I), respectively. They require several parameters: l1, l2,
d – see Fig. 1 of Paper I for the explanation of their meaning –
have to be extracted from the images of the sources; βadv and βjet,
which are common for 3C 249.1 and 3C 334, are taken from
the literature; and θ (see Fig. 1 of Paper I) is a free parameter.
Arshakian & Longair (2004) calculated jet speeds for a number
of double sources including 3C 249.1 and 3C 334 and they ob-
tained βjet ≈ 0.8 for them. It is adopted here. As for βadv, I use
four values from the range 0.2 ≤ βadv ≤ 0.35 that is similar to
the one found for B 1834+620 by Schoenmakers et al. (2000).

On the basis of the map of 3C 249.1 in G04 and using the
standard cosmological parameters, I adopted the following pa-
rameters for this source: l1 sin θ = 88 kpc, l2 sin θ = 128 kpc,
d sin θ = 41 kpc. Since one of the lobes is diffuse, estimating
the size of the whole source reliably is hardly possible. What
I did was simply to measure it based on the range of the low-
est contour in the published figure. After substituting them to
Eq. (2) of Paper I, I found that it was fulfilled for any value
of θ if βadv = 0.2, for θ < 78.◦8 if βadv = 0.25, for θ < 61.◦3
if βadv = 0.3, and for θ < 47.◦8 if βadv = 0.35. Given that 3C 249.1
is a quasar and that according to Barthel (1989) θ < 44.◦4 for
quasars, the above constraints on θ are not critical.

On the basis of the map of 3C 334 in G04 and using the
standard cosmological parameters, I adopted the following pa-
rameters for this source: l1 sin θ = 206 kpc, l2 sin θ = 156 kpc,
d sin θ = 106 kpc. As in the case of 3C 249.1, I measured the
source’s size based on the range of the lowest contour in the
published figure. After substituting them to Eq. (2) of Paper I,
I found that it was fulfilled for any value of θ if 0.2 ≤ βadv ≤ 0.35.

Substitution of the parameters for 3C 249.1 and 3C 334 to
Eq. (4) of Paper I yielded the upper limits to the length of the
quiescent period for the respective sources. They are given in
Table 1 for a wide range of values of θ. The lack of a number
at the crossing of a given row and column of Table 1 means that
the respective combination of parameters is not allowed if the
scenario is to be viable. On the other hand, following the argu-
ment in Paper I, the existence of upper limits for the remaining
combinations of parameters proves that the model is plausible.

2.4. The cases of 2209+152 and 1317+520

The object 2209+152 is a z = 1.502 quasar whose entire radio
structure is best shown in Fig. 159 of Lonsdale et al. (1993). It

A132, page 2 of 3



A. Marecki: Are 3C 249.1 and 3C 334 restarted quasars? (RN)

Table 1. Upper limits to the length of tq in 3C 249.1 and 3C 334 [Myr].

3C 249.1 3C 334
θ βadv βadv

[◦] 0.2 0.25 0.3 0.35 0.2 0.25 0.3 0.35
10 0.60 1.37 1.88 2.25 0.65 2.64 3.97 4.92
20 0.25 0.64 0.90 1.09 0.20 1.21 1.88 2.36
30 0.11 0.38 0.55 0.68 – 0.68 1.14 1.47
40 0.02 0.23 0.37 0.46 – 0.37 0.73 0.98
50 – 0.12 0.24 0.32 – 0.14 0.45 0.66
60 – 0.04 0.14 0.22 – – 0.23 0.42
70 – – 0.06 0.13 – – 0.04 0.21
80 – – – 0.05 – – – 0.03

consists of a core, a curved jet and two lobes, both relics. It can
be speculated that 2209+152 is restarted, i.e. the lobes were in-
flated in the previous active period but now are fading out due
to the lack of fuelling, while the jet is a signature of the cur-
rent active phase. The radio source 2209+152 is not featured by
the lobe asymmetry that could give us a clue to its orientation
caused by differential light-travel time. Nevertheless, owing to
the presence of a conspicuous Laing-Garrington effect (Laing
1988; Garrington et al. 1988) in this source (Garrington et al.
1991, Fig. A25) it is confirmed that the source does not lie in
the sky plane, the eastern, i.e. the jet-side, lobe being nearer the
observer. It follows that 2209+152 could possibly meet the cri-
teria listed at the beginning of this section. An explanation for
why it does not meet them anyway is quite straightforward: the
actual quiescence period of its nucleus must have exceeded the
upper limit calculated from the model for given parameters. As
a result, the information that the far-side lobe had started to de-
cay reached the location of the observer too early relative to the
development of the jet and now we perceive that lobe as a relic.
In other words, wavefront “1” passed the observer earlier than
wavefront “5” – see Fig. 1 in Paper I.

The above speculation can be extended. If the length of the
quiescence period goes beyond the upper limit given by the
model even further than in the case of 2209+152, then the near-
side lobe vanishes, while the far-side lobe remains barely ob-
servable. A z = 1.061 quasar 1317+520 imaged at several fre-
quencies by Reid et al. (1995, Fig. 28), but see also Jorstad &
Marscher (2008, Fig. 2), is perhaps a good specimen to illustrate
such a situation: there is no trace of the lobe on the jetted side,
whereas the lobe on the opposite side is clearly a relic, because
it is devoid of a hotspot and very diffuse.

3. Concluding remarks

Cessation of activity in galactic nuclei, possibly followed by its
restart, is a phenomenon that can manifest itself in a number
of ways, the existence of double-double radio sources being
perhaps the most spectacular as shown in the review of Saikia &
Jamrozy (2009). A restarted radio source need not be symmetric,
though. For example, Marecki & Swoboda (2011) highlighted
a small group of galaxies where the production of the jet had
stopped, leading to the decay of the radio lobes. Owing to the
light-travel time difference between the lobes, that decay is
perceived as asymmetric. In Paper I, the effect of differential
light-travel time was analysed quantitatively also taking the
activity re-ignition into account. The analysis carried out there

proved that the scenario suggested for the sources with asym-
metric lobes and the jet pointing to the relic was plausible for at
least one source: J1211+743.

Here, I show that two well-known quasars, 3C 249.1 and
3C 334, can also be interpreted this way and that they have been
restarted as well. The key parameter of my model is the upper
limit to duration of the quiescent period between the two active
periods, tq. Possible values of the upper limits to tq for 3C 249.1
and 3C 334 have been displayed in Table 1. They are lower that
their counterparts for J1211+743 shown in Table 1 of Paper I.
This can be attributed to smaller sizes of 3C 249.1 and 3C 334
as compared to J1211+743. Also, it is interesting to note that
all the values of the upper limits to tq shown here are of the
same order of magnitude as those obtained for J0041+3224 and
J1835+6204 by Konar et al. (2012) using a completely different
approach.
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