Neutral production of hydrogen isocyanide (HNC) and hydrogen cyanide (HCN) in Titan’s upper atmosphere

E. Hébrard1,2, M. Dobrijevic1,2, J. C. Loison3, A. Bergeat3, and K. M. Hickson3

1 Univ. Bordeaux, LAB, UMR 5804, 33270 Floirac, France
e-mail: hebrard@obs.uj-bordeaux1.fr
2 CNRS, LAB, UMR 5804, 33270 Floirac, France
3 Institut des Sciences Moléculaires, UMR 5255, CNRS-Université de Bordeaux, 351 cours de la Libération, 33405 Talence Cedex, France

Received 18 January 2012 / Accepted 11 March 2012

ABSTRACT

\textbf{Aims.} Following the first detection of hydrogen isocyanide (HNC) in Titan’s atmosphere, we have devised a new neutral chemical scheme for hydrogen cyanide (HCN) and HNC in the upper atmosphere of Titan.

\textbf{Methods.} Our updated chemical scheme contains 137 compounds (with C, H, O and N elements) and 788 reactions (including 91 photolysis processes). To improve the chemistry of HNC and HCN, a careful review of the literature has been performed to retrieve critical reaction rates and to evaluate their uncertainty factors. We have also estimated the reaction rates of 48 new reactions using simple capture theory.

\textbf{Results.} Our photochemical model gives abundances of HNC and HCN in reasonable agreement with observations. An uncertainty propagation study shows large uncertainties for HNC and relatively moderate uncertainties for HCN. A global sensitivity analysis pinpoints some key reactions to study as a priority to improve the predictivity of the model.

\textbf{Conclusions.} In particular, our knowledge of the isomerization of HNC via the reaction $\text{H}+\text{HNC} \rightarrow \text{HCN} + \text{H}$ and the chemistry of H_2CN needs to be improved. This study of the neutral chemistry taking place in the upper atmosphere of Titan is a prerequisite for future ionospheric models since ion-neutral reactions may also contribute significantly to HNC and HCN production.

\textbf{Key words.} planets and satellites: individual: Titan – planets and satellites: atmospheres – planets and satellites: composition – astrochemistry

1. Introduction

Based on the fact that HCNI$^+$ was considered as an important ionospheric species in Titan’s atmosphere (Banaszkiewicz et al. 2000), Petrie (2001) made the hypothesis that hydrogen isocyanide (HNC) could be formed by the dissociative recombination of HCNI$^+$ in Titan’s upper atmosphere where it might be detectable and might also play a part in the formation of more complex nitriles found on Titan. Recently, observations of Titan performed with the HIFI heterodyne submillimeter instrument aboard the Herschel Space Observatory (as part of the guaranteed time key program “Water and related chemistry in the solar system” (HssO), Hartogh et al. 2009), allowed the first detection of HNC in Titan’s atmosphere through the measurement of its emission line from the $J = 6 \rightarrow 5$ rotational transition at 543.897 GHz (Moreno et al. 2010). Their preliminary analysis suggests that the bulk of this emission must originate at altitudes above 300 km. However, the observations cannot strictly establish a HNC vertical profile (Moreno et al. 2011). Petrie (2001) argued that HNC was likely to be formed almost entirely by an ion-molecule mechanism and that neutral formation pathways were not viable. As a consequence, Petrie (2001) suggested that the concentration profile for HNC as a function of altitude would follow the typical profile for a polyatomic ion rather than a neutral molecule. So, according to Petrie (2001), HNC might be located mainly in the ionosphere with a peak of abundance around 1200 km.

Since the neutral composition of the atmosphere is a prerequisite for ionospheric models, it is of prime importance to study carefully the production of neutral species production in addition to loss processes for HNC and HCN, since HCN is strongly related to HNC. Since HNC was not considered in previous photochemical models, it is necessary to build a new chemical scheme devoted to HNC chemistry and its putative interactions with other species. The chemistry of nitrogen compounds at low temperatures (between 100 and 200 K), either in cold planetary atmospheres or in protoplanetary disks, is not well known (Hébrard et al. 2006; Vasyunin et al. 2008; Hébrard et al. 2009). Therefore, it is also critical to evaluate the uncertainties attached to the reviewed reaction rates.

In the present paper, we investigate the production of HNC via neutral reactions. A careful investigation of neutral production and loss processes for both HNC and HCN has been carried out. A 1D photochemical model is used to infer the abundance of HNC as a function of altitude. Our study includes an uncertainty propagation study and a sensitivity analysis to determine the key reactions of our chemical scheme. We briefly present our photochemical model in Sect. 2. The methodology we have adopted to build the chemical scheme for HNC and HCN is presented in detail in Sect. 3. In Sect. 4, we compare the computed abundance profiles of HNC and HCN with the available observations. We present the main reactions for the neutral production and loss of these compounds in the current model. A local sensitivity study is carried out in Sect. 5 to highlight the importance
of the HNC isomerization reaction. An uncertainty propagation study is presented in Sect. 6 and a global sensitivity analysis is performed subsequently in Sect. 7 to determine the key reactions which are important to study in priority to improve the predictivity of our model. The main conclusions of our work are summarized in Sect. 8. Some selected reactions (reactions that are important for the production of HNC or HCN and reactions that contribute significantly to the uncertainties on their abundances) are commented in Sect. A.

2. Photochemical model

The photochemical model is derived from the Hébrard et al. (2007) model with a modification of the numerical solver presented in Dobrijevic et al. (2010a). Instead of using a classical Crank-Nicholson method, we now use the ODEPACK library, which implements Hindmarsh’s solvers for ordinary differential equations (Hindmarsh 1983). Our photochemical 1D model uses a constant background atmosphere with constant boundary conditions. Atmospheric parameter inputs \((T, P, n)\) were taken from Yelle et al. (1997) recommended engineering model. We use a non-uniform grid of altitude with 125 levels from the ground to 1300 km. Two consecutive levels are separated by a distance smaller than \(H(z)/5\), where \(H(z)\) is the atmospheric scale height at altitude \(z\). A zero flux was assumed as an upper boundary condition for most of the species, except for atomic hydrogen \(H\) and molecular hydrogen \(H_2\), which were allowed to escape with velocities following Jean’s thermal escape mechanism, and for water \(H_2O\), which exhibits an external influx equal to \(5 \times 10^6 \text{cm}^{-2} \text{s}^{-1}\) to account for the water influx arising from micrometeorites initiating oxygen chemistry in Titan’s atmosphere (Feuchtgruber et al. 1997). At the lower boundary, methane \(CH_4\) abundances was set to its tropopause abundance \(1.41 \times 10^{-5}\). The abundance of carbon monoxide CO at the surface was assumed to be \(5.2 \times 10^{-5}\) on the basis of the (Gurwell & Muhleman 2000) high resolution ground-based interferometric observations. Molecular hydrogen \(H_2\) abundance was assumed to be equal to \(1.1 \times 10^{-3}\) following (Samuelson & Krasnopolsky, 2009). Calculations are performed with a solar zenith angle of 50° to account for diurnally averaged conditions at the equator. The eddy diffusion coefficient \(K(z)\) is a free parameter of 1D photochemical models which is not well constrained. We use the value derived by Hörs et al. (2008) as a mean profile among all the different profiles that have been published so far (see Fig. 1).

3. Chemical scheme

The basis of the chemical scheme is presented in Hébrard et al. (2006) and Hébrard et al. (2009). In the present work, many rate constants have been updated and numerous reactions have been added. Our new chemical scheme includes 137 compounds and 788 reactions (91 photodissociation processes, 2 dissociation processes of \(N_2\) by cosmic rays, 694 bimolecular reactions and 94 termolecular reactions). The complete list of the reactions is available upon request or can be downloaded from the KInetic Database for Astrochemistry (KIDA, http://kida.obs.u-bordeaux1.fr). In the present paper, we only present reactions which are essential for the study of HCN and HNC, either because they are important for their neutral production and/or loss or because they contribute significantly to the uncertainties on their abundances.

The methodology we have adopted to build a chemical scheme for HNC and HNC is the following. As a first step, all the reactions related to HCN found in the chemical schemes published by Hébrard et al. (2006) and other photochemical models were checked and updated, by including in addition new reactions found in the literature. For all these reactions, we investigated their efficiency to produce HNC. In a second step, we completed the HNC scheme by introducing all neutral reactions producing of destroying HNC that we could find in the literature. Then, based on the relative abundance of the various chemical species computed by our photochemical model, we estimated what reactions currently missing in our chemical scheme might be important by systematically evaluating the cross-reactions involving HCN or HNC between the main species of Titan’s atmosphere: C, H, N, \(N^4(S)\), \(N^4(D)\), CH, CH\(_3\), CH\(_2\), C\(_2\)H\(_3\), C\(_2\)H\(_4\), NH, CN, C\(_2\)H\(_2\)N, C\(_3\)H\(_2\)N, etc. Finally, we also estimated what reactions might be relevant to improve the chemical scheme, in particular to avoid the artificial formation of important sink species (species which are efficiently produced but not destroyed in the model). At the end, the chemical scheme consists of 56 reactions with HCN and 22 reactions with HNC (including photolysis processes). Among these reactions, we have estimated in the present work the rate constants of 12 reactions for HCN and of 14 reactions for HNC. This illustrates the lack of information regarding HNC reactivity in the literature.

3.1. Estimation of reaction rates for new processes

When introducing reactions with unknown reaction rates (without experimental measurements and/or theoretical calculations to rely upon) in the temperature range of interest \((T \in [100–200] K)\), one major concern is to make a reasonable estimation of their reaction rates. In the following, we explain how we have estimated the rate constants and branching ratios for various reactions. For the evaluation of chemical rate constants between 150 K and 200 K the presence of an energetic barrier is critical. When no information was available, the presence and the values of any energetic barriers to the entrance valley for the important reactions (in terms of production and/or loss rate) were calculated at the M06-2X/cc-pVTZ level using the Gaussian09 software package (Frisch et al. 2009) except for the \(H + H_2CN, N^4(S) + H_2CN\) and \(N^4(D) + HCN\) reactions for which calculations were performed also at MRCl+Q/qvz level.
Table 1. New photodissociation processes included in the model (update of Hébrard et al. 2009).

<table>
<thead>
<tr>
<th>Reaction number</th>
<th>Quantum yield</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_2$NH + hv → HCN + H + H</td>
<td>$q = 0.3$, $\lambda \in [200, 250]$ nm</td>
<td>Bruna et al. (1985),</td>
</tr>
<tr>
<td>CH$_2$NH + hv → H$_2$CN + H</td>
<td>$q = 0.7$, $\lambda \in [200, 250]$ nm</td>
<td>Sumathi (1996),</td>
</tr>
<tr>
<td>CH$_2$NH + hv → HCN + H$_2$</td>
<td>$q = 1.0$, $\lambda \in [200, 320]$ nm</td>
<td>Chestnut (2001)</td>
</tr>
<tr>
<td>CH$_2$NH + hv → HNC + H$_2$</td>
<td>$q = 0.3$, $\lambda \in [321, 328]$ nm</td>
<td></td>
</tr>
<tr>
<td>N$_2$H$_4$ + hv → N$_2$H$_3$ + H</td>
<td>$q = 1.0$</td>
<td>Vaghjiani (1993)</td>
</tr>
<tr>
<td>CH$_2$NH + hv → CH$_2$NH + H + H</td>
<td>$q = 1.0$, $\lambda \in [139, 164]$ nm</td>
<td>Hubin-Franskin et al. (2002)</td>
</tr>
<tr>
<td>CH$_2$NH$_2$ + hv → HCN + H$_2$ + H + H</td>
<td>$q = 0.198$, $\lambda \in [165, 247]$ nm</td>
<td></td>
</tr>
<tr>
<td>CH$_2$CN + hv → CN + H$_2$ + H$_2$ + H</td>
<td>$q = 0.252$, $\lambda \in [165, 247]$ nm</td>
<td></td>
</tr>
<tr>
<td>C$_2$H$_3$CN + hv → CH$_2$H + HCN</td>
<td>$q = 0.15$</td>
<td>Eden et al. (2003),</td>
</tr>
<tr>
<td>C$_2$H$_4$N + hv → HCN + H$_2$</td>
<td>$q = 0.59$</td>
<td>Lavvas et al. (2008)</td>
</tr>
<tr>
<td>C$_2$H$_4$CN + hv → CH$_3$H + CN</td>
<td>$q = 0.01$</td>
<td></td>
</tr>
<tr>
<td>H$_2$CN + hv → HCN + H</td>
<td>$q = 1.0$, $\lambda \in [280, 288]$ nm</td>
<td>Nizamov & Dagdijian (2003)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teslija et al. (2006)</td>
</tr>
</tbody>
</table>

3.2. Photolysis processes

In our model we consider that the photolysis of HNC is similar to the photolysis of HCN (using the identical absorption cross sections, dissociative thresholds and quantum yields). Compared to the Hébrard et al. (2009) model, we add several photolysis processes which are presented in Table 1.

4. Photochemical model results

4.1. Comparison with observations

4.1.1. HNC observations

Very recently, Moreno et al. (2011) reported the first identification of HNC in Titan’s atmosphere from observations using the HIFI instrument on the Herschel Space Observatory. The column density of HNC inferred from these observations is in the range (0.6–1.5) \times 1013 cm$^{-2}$ for altitudes between 400 and 1000 km, but the authors noticed that it was not possible to constrain the vertical profile of HNC from these data. Several constant profiles of HNC give a satisfactory agreement with the observations depending on the mixing ratio and the altitude cutoff. These profiles are presented in Fig. 2 and are compared with our model. The column density we obtain is 3.4 \times 1013 cm$^{-2}$ above 500 km whereas the value derived by Moreno et al. (2011) at this altitude is 1.2 \times 1013 cm$^{-2}$ (about 3 times lower). We will see in the following that this discrepancy can be simply explained by our poor knowledge of some key reactions.

4.1.2. HCN observations

The neutral composition of Titan’s upper atmosphere between 1000 and 1100 km has been inferred from the interpretation of Cassini Ion and Neutral Mass Spectrometer (INMS) measurements by Magee et al. (2009). In particular, the global average mixing ratio of HCN at 1050 km is (2.44 ± 0.10) \times 10$^{-4}$. Previous interpretation of INMS data from Vuitton et al. (2007) gave a similar abundance of HCN of 2.0 \times 10$^{-4}$ at 1100 km, with an uncertainty factor of 2–3. Geballe et al. (2003) detected HCN emission features in a high resolution spectrum near 3 μm

1. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

Using the Molpro software package (Werner et al. 2010). For the other reactions, identified as being less important, the presence or the absence of a barrier was deduced from general considerations. When a reaction was thought to proceed through direct abstraction, its rate constant has been estimated by comparison with known similar reactions. When a reaction was thought to proceed through addition (as is the case with most of the radical-radical reactions), in the absence of theoretical calculations, we have considered that there was no barrier when the ground state of the adduct arises from pairing up electrons on the two radicals reactants, whereas the surface was likely be repulsive if all the electrons remain unpaired. Therefore, doublet + doublet reactions were considered to have no barrier for the singlet surface but a barrier for the triplet surfaces (which is in good agreement with experimental and theoretical results for H + alkyl or alkyl + alkyl reactions for example, Harding et al. 2005; Klippenstein et al. 2006).

When no energetic barrier was found to be present, the value of the rate constant was estimated using long-range forces, mainly through dispersion interactions (Stoecklin & Clary 1992; Georgievskii & Klippenstein 2005), and by taking into account the electronic degeneracy γ_{el}. The electronic degeneracy factors were calculated by applying the spin and orbital correlation rules to the potential energy surfaces that correlate the separated reactants with the separated products. Using a capture rate, $k_{capture}$, generally overestimates the rate constant by a uncertainty factor $F_{capture} = 3$ at most (Georgievskii & Klippenstein 2005) except for specific mechanisms for which the potential coexistence of a van der Waals complex and a submerged barrier could play an important role and lead to low rate constant values at 300 K (like for OH + alkenes or CN + alkenes reactions). Accordingly, the nominal rate constant used in the model for such reactions is $k = \gamma_{el} \times k_{capture}/\sqrt{F_{capture}}$ to which is associated an uncertainty factor $F = \sqrt{F_{capture}}$. As a result, the minimum and maximum values expected for this effective rate constant are $k_{min} = \gamma_{el} \times k_{capture}/F_{capture}$ and $k_{max} = \gamma_{el} \times k_{capture}$, respectively. Values for the effective uncertainty factor F were estimated mainly by comparison with similar reactions and also by taking into account the uncertainties on electronic degeneracy when no ab-initio calculations were available. Branching ratios were estimated from ab-initio calculations except for the key H + H$_2$CN reaction for which we performed statistical calculations of the microcanonical rate constants of the various steps of the mechanism (Berget et al. 2009).
acquired at the Keck II telescope. These data were re-analyzed by Yelle & Griffith (2003) with a model for fluorescence of sunlight in the v3 band of HCN and by Kim et al. (2005) with an updated model. Their results were in agreement in the upper atmosphere. The HCN mixing ratio is from \((1-3) \times 10^{-3}\) around 1000 km. The density of HCN between 600 and 1000 km has also been inferred by Shemansky et al. (2005) from observations of stellar occultations by the atmosphere of Titan using the Cassini Ultraviolet Imaging Spectrometer (UVIS). The HCN mixing ratio at 1000 km is about \(4 \times 10^{-3}\). Recently, Adriani et al. (2011) used the limb observations of the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft to retrieve vertical profiles of HCN from its 3 \(\mu\)m non-LTE emission in the region from 600 to 1100 km altitude at daytime. The mixing ratio of HCN is about \((5.5 \pm 1.5) \times 10^{-3}\) at 1050 km. This result is in agreement with the upper value of the HCN profile derived by Yelle & Griffith (2003) and Kim et al. (2005). HCN has been also detected in Titan’s upper atmosphere in the ultraviolet by the UltraViolet Spectrometer (UVS) instrument aboard Voyager 1 (Vervack et al. 2004). The mixing ratio of HCN is around \(10^{-4}\) at 500 km (about 20 times lower than other observations) and then increases with altitude leading to a value in agreement with all the other observations (but with large uncertainties).

It is difficult to compare all these observations taken at different times, using different techniques and corresponding to different spatial resolutions. In addition, these observations are more or less model-dependent and a direct comparison with our nominal profile is not straightforward. Due to the inconsistency of the published observational data (error bars do not overlap), we can conclude that our nominal neutral model, which does not include ions, is roughly consistent with these observations.

4.1.3. Sensitivity to eddy diffusion

If restricted above 1000 km, the mixing ratio of HNC derived from observation of Moreno et al. (2011) is about \(6 \times 10^{-5}\) and the mixing ratio of HCN is in the range \((0.2-6) \times 10^{-3}\) according the various observations. This leads to a HNC/HCN ratio of about 0.01–0.3. In our current model, the HNC/HCN ratio is about 0.1. At 500 km, the HNC/HCN ratio from the various observations is around \(5 \times 10^{-3}\) (assuming a constant mixing ratio of HNC above 500 km). In our model, the ratio is \(2 \times 10^{-5}\), more than 100 times lower.

Since the eddy diffusion coefficient is not well constrained in the atmosphere of Titan, we have tested other \(K(z)\) profiles in order to test the sensitivity of this ratio to transport. For instance, in the case of the eddy diffusion profile \(K(z)\) derived by Höst et al. (2008), the methane homopause is located around \(z_h = 800\) km and \(K_h = 3 \times 10^7\) \(\text{cm}^2\) \(\text{s}^{-1}\). In the case of the eddy diffusion profile \(K(z)\) obtained by Strobel et al. (1992), the methane homopause is around \(z_h = 1100\) km and \(K_h = 10^9\) \(\text{cm}^2\) \(\text{s}^{-1}\). Figure 4 shows that the HNC/HCN ratio is not sensitive to \(K(z)\) down to 700 km but is different by a factor of 100 at 500 km. At 500 km, the discrepancy between our model using the \(K(z)\) of Strobel et al. (1992) and observations is more pronounced since the ratio is only \(3 \times 10^{-7}\).

HNC and HCN mixing ratios for the two eddy profiles are also presented in Fig. 4. Their abundances differ by a factor of 3 above 1000 km. As explained in the following section, both HNC and HCN are mainly produced from the reaction of \(\text{H}_2\text{CN}\), which is produced by the reaction between \(\text{N}(4\text{S})\) and \(\text{CH}_3\). So, these differences are directly linked to the mixing ratio of \(\text{CH}_3\) which depends on the photolysis and the molecular diffusion of \(\text{CH}_3\) above the homopause.

Consequently, the sensitivity of HNC and HCN to \(K(z)\) is lower than the uncertainties on the model (see also Figs. 8 and 9) and can not be used to constrain the eddy diffusion coefficient profile in the upper atmosphere of Titan.

4.2. Main production and loss processes for HNC

The main production and loss processes for HNC (for the current chemical scheme) are presented in Fig. 5 and are listed in Table 2. Here we summarize the main processes leading to the production and loss of HNC from the primary radicals.

4.2.1. Production

At 1300 km, HNC is produced from:

- \(\text{H}_2\text{CN} + \text{H} \rightarrow \text{HNC} + \text{H}_2\) (64%)
- \(\text{N}(4\text{S}) + 3\text{CH}_2 \rightarrow \text{HNC} + \text{H}\) (34%).

At 1000 km, HNC comes mainly from the reaction:

- \(\text{H}_2\text{CN} + \text{H} \rightarrow \text{HNC} + \text{H}_2\) (98%).
Table 2. Main reactions for the production (top) and loss (bottom) of HNC.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Arrhenius coefficients α</th>
<th>β</th>
<th>γ</th>
<th>Uncertainty F_0</th>
<th>g</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH $+$ 32D \rightarrow HNC $+$ H</td>
<td>5.0×10^{-12}</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0</td>
<td>This work</td>
</tr>
<tr>
<td>HNC $+$ H \rightarrow HCN $+$ H$_2$</td>
<td>1.2×10^{-11}</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>14</td>
<td>This work</td>
</tr>
<tr>
<td>N(4S) $+$ 32D \rightarrow HNC $+$ H</td>
<td>3.0×10^{-11}</td>
<td>0.17</td>
<td>0.0</td>
<td>3.0</td>
<td>0</td>
<td>This work</td>
</tr>
<tr>
<td>HNC $+$ H \rightarrow HCN $+$ H</td>
<td>4.0×10^{-11}</td>
<td>0.0</td>
<td>1200</td>
<td>10.0</td>
<td>100</td>
<td>This work</td>
</tr>
<tr>
<td>HNC $+$ CH \rightarrow CHCN $+$ H</td>
<td>1.4×10^{-10}</td>
<td>-0.17</td>
<td>0.0</td>
<td>3.0</td>
<td>7</td>
<td>Estimated from HCN + CH</td>
</tr>
<tr>
<td>HNC $+$ CH \rightarrow C$_2$N $+$ H$_2$</td>
<td>1.4×10^{-10}</td>
<td>-0.17</td>
<td>0.0</td>
<td>3.0</td>
<td>7</td>
<td>Estimated from HCN + CH</td>
</tr>
<tr>
<td>N(4S) $+$ HNC \rightarrow C$_2$N $+$ H</td>
<td>8.0×10^{-11}</td>
<td>0.0</td>
<td>0.0</td>
<td>10.0</td>
<td>0</td>
<td>This work</td>
</tr>
<tr>
<td>N(4S) $+$ CH \rightarrow C$_2$N $+$ H</td>
<td>8.0×10^{-11}</td>
<td>0.0</td>
<td>0.0</td>
<td>10.0</td>
<td>0</td>
<td>This work</td>
</tr>
<tr>
<td>HNC $+$ C$_2$H \rightarrow C$_2$N$_2$ $+$ H</td>
<td>2.0×10^{-10}</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0</td>
<td>This work</td>
</tr>
<tr>
<td>HNC + C$_2$N \rightarrow C$_2$N$_2$ $+$ H</td>
<td>2.0×10^{-10}</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0</td>
<td>This work</td>
</tr>
</tbody>
</table>

Notes. Reaction rates are expressed as $k = \alpha \times (T/300)^\beta \times \exp(-\gamma/T)$ cm3 molecule$^{-1}$ s$^{-1}$. Uncertainties are expressed as $F(T) = F_0 \times \exp(g \times [1/T - 1/300])$ (T in K).

Fig. 4. Mixing ratios of HNC and HCN and HNC/HCN ratio as a function of altitude for two eddy diffusion coefficients.

H$_2$CN is mainly produced by two reactions:

N(4S) $+$ CH$_3$ \rightarrow H$_2$CN $+$ H (90%)
CH$_2$NH $+$ hv \rightarrow H$_2$CN $+$ H (9%)

while CH$_2$NH comes from:

N(4S) $+$ CH$_4$ \rightarrow CH$_2$NH $+$ H (60%)
NH $+$ CH$_3$ \rightarrow CH$_2$NH $+$ H (35%)

and NH comes from:

N(4S) $+$ CH$_2$ \rightarrow NH $+$ CH$_3$ (64%)
N(4S) $+$ H$_2$CN \rightarrow NH $+$ HCN (21%)
N(4D) $+$ H$_2$ \rightarrow NH $+$ H (11%).

At 600 km, the scheme for the production of HNC is a little bit different; HNC comes fully from the reaction:

H$_2$CN $+$ H \rightarrow HNC $+$ H$_2$ (100%)

but H$_2$CN is produced from:

CH$_2$NH $+$ hv \rightarrow H$_2$CN $+$ H (74%)
CH$_2$NH $+$ H \rightarrow H$_2$CN $+$ H$_2$ (22%)

and CH$_2$NH comes from:

CH$_3$NH$_2$ $+$ hv \rightarrow CH$_2$NH $+$ H $+$ H (37%)
N(4S) $+$ CH$_3$ \rightarrow CH$_2$NH $+$ H (93%)
N(4D) $+$ C$_2$H$_6$ \rightarrow CH$_2$NH $+$ CH$_3$ (21%)
NH $+$ CH$_3$ \rightarrow CH$_2$NH $+$ H (11%).

As a conclusion, H$_2$CN and CH$_2$NH are key species in the production of HNC in the upper atmosphere of Titan.
4.2.2. Loss
At 1300 km, HNC is mainly destroyed by its reaction with N(2D):
\[
\text{N}(2\text{D}) + \text{HNC} \rightarrow \text{CN}_2 + \text{H} (41\%)
\]
\[
\text{N}(2\text{D}) + \text{HNC} \rightarrow \text{CH} + \text{N}_2 (41\%).
\]
At 1000 km, the isomerization of HNC into HCN begins to contribute to the HNC loss as well:
\[
\text{N}(2\text{D}) + \text{HNC} \rightarrow \text{CN}_2 + \text{H} (25\%)
\]
\[
\text{N}(2\text{D}) + \text{HNC} \rightarrow \text{CH} + \text{N}_2 (25\%)
\]
\[
\text{HNC} + \text{H} \rightarrow \text{HCN} + \text{H} (24\%).
\]
At 600 km, HNC is fully destroyed through its isomerization into HCN:
\[
\text{HNC} + \text{H} \rightarrow \text{HCN} + \text{H} (99\%).
\]

4.3. Main production and loss processes for HCN
The main production and loss processes for HCN are presented in Fig. 6 and are listed in Table 3. Here we summarize the main processes leading to the production and loss of HCN from the primary radicals.

4.3.1. Production
At 1300 km, several reactions contribute to the production of HCN:
\[
\text{H}_2\text{CN} + \text{H} \rightarrow \text{HCN} + \text{H}_2 (52\%)
\]
\[
\text{N}(4\text{S}) + \text{CH}_2 \rightarrow \text{HCN} + \text{H} + \text{H} (19\%)
\]
\[
\text{N}(4\text{S}) + 3\text{CH}_2 \rightarrow \text{HCN} + \text{H} (9\%)
\]
\[
\text{H}_2\text{CN} + \nu \rightarrow \text{HCN} + \text{H} (7\%)
\]
\[
\text{N}(4\text{S}) + \text{H}_2\text{CN} \rightarrow \text{HCN} + \text{NH} (6\%).
\]
At 1000 km, the situation is simpler, HCN comes from:
\[
\text{H}_2\text{CN} + \text{H} \rightarrow \text{HCN} + \text{H}_2 (78\%)
\]
\[
\text{N}(4\text{S}) + \text{CH}_2 \rightarrow \text{HCN} + \text{H} + \text{H} (9\%)
\]
\[
\text{C}_2\text{N} + \text{H} \rightarrow \text{HCN} + \text{C} (7\%).
\]
In a similar manner to HNC, the production of HCN is strongly related to the production of H2CN. Again, the reaction between N(4S) and CH2 is important since it produces both H2CN and HCN.

At 600 km, several reactions contribute equally to the production of HCN. Many of them involve CN radicals.
\[
\text{CN} + \text{C}_2\text{H}_6 \rightarrow \text{HCN} + \text{C}_2\text{H}_5 (25\%)
\]
\[
\text{C}_2\text{H}_3\text{CN} + \nu \rightarrow \text{C}_2\text{H}_2 + \text{HCN} (24\%)
\]
\[
\text{HNC} + \text{H} \rightarrow \text{HCN} + \text{H} (16\%)
\]
\[
\text{CN} + \text{C}_2\text{H}_6 \rightarrow \text{HCN} + \text{C}_2\text{H}_5 (14\%)
\]
\[
\text{C}_2\text{N}_2 + \text{H} \rightarrow \text{HCN} + \text{CN} (9\%)
\]
\[
\text{CN} + \text{CH}_2 \rightarrow \text{HCN} + \text{CH}_2 (6\%)
\]
\[
\text{H}_2\text{CN} + \text{H} \rightarrow \text{HCN} + \text{H}_2 (5\%).
\]
Where C2H3CN comes from:
\[
\text{CN} + \text{C}_2\text{H}_4 \rightarrow \text{C}_2\text{H}_3\text{CN} + \text{H} (99\%).
\]
And CN comes from:
\[
\text{HCN} + \nu \rightarrow \text{CN} + \text{H} (23\%)
\]
\[
\text{HC}_2\text{N} + \nu \rightarrow \text{CN} + \text{C}_2\text{H} (55\%)
\]
\[
\text{C}_2\text{N}_2 + \nu \rightarrow \text{C}_2\text{N} + \text{CN} (15\%).
\]
As a conclusion, H2CN (z > 1000 km) and CN (z < 1000 km) are important intermediate compounds for the production of HCN in the upper atmosphere of Titan.

4.3.2. Loss
At 1300 km, HCN is mainly destroyed by its reaction with N(2D) and by its photolysis:
\[
\text{N}(2\text{D}) + \text{HCN} \rightarrow \text{CH} + \text{N}_2 (88\%)
\]
\[
\text{HCN} + \nu \rightarrow \text{CN} + \text{H} (7\%).
\]
At 1000 km, the situation is quite similar:
\[
\text{N}(2\text{D}) + \text{HCN} \rightarrow \text{CH} + \text{N}_2 (72\%)
\]
\[
\text{HCN} + \nu \rightarrow \text{CN} + \text{H} (14\%)
\]
\[
\text{HCN} + \text{CH} \rightarrow \text{CHCN} + \text{H} (6\%)
\]
\[
\text{HCN} + \text{CH} \rightarrow \text{C}_2\text{N}_2 + \text{H}_2 (6\%).
\]
At 600 km, HCN is partly destroyed through its reaction with C2N radical:
\[
\text{HCN} + \nu \rightarrow \text{CN} + \text{H} (62\%)
\]
\[
\text{HCN} + \text{C}_2\text{N} \rightarrow \text{C}_2\text{N}_2 + \text{H} (28\%)
\]
\[
\text{HCN} + \text{C}_2\text{N} \rightarrow \text{C}_2\text{N}_2 + \text{H} (6\%).
\]

Remark. While studying the relative importance of the individual contribution of each reaction to the production and loss rates of a given compound, it is important to keep in mind the following fact: due to the large current uncertainties in reaction rates, the relative importance of each reaction might change drastically as we go along in the improvement of reaction rates accuracy at low temperature. As a consequence, the set of reactions given here for our current nominal model might not be the set of reactions that would dominate had some of the initial rate constants been different in the production or loss of HNC and HCN (see Sect. 6 for an illustration of the impact of uncertainties on reaction rates in model outputs).
Table 3. Main reactions for the production (top) and loss (bottom) of HCN.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Arhenius coefficients</th>
<th>Uncertainty</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2H2CN + hν → C2H2 + HCN</td>
<td>α</td>
<td>β</td>
<td>γ</td>
</tr>
<tr>
<td>N(4S) + CH3 → HCN + H + H</td>
<td>6.0 × 10^{-12}</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CN + CH4 → HCN + CH3</td>
<td>6.0 × 10^{-12}</td>
<td>0.0</td>
<td>721</td>
</tr>
<tr>
<td>CN + C2H2 → HCN + C2H</td>
<td>2.08 × 10^{-11}</td>
<td>0.22</td>
<td>-58</td>
</tr>
<tr>
<td>CN + C2H4 → HCN + C2H7</td>
<td>2.14 × 10^{-11}</td>
<td>1.19</td>
<td>-378</td>
</tr>
<tr>
<td>HNC + H → HCN + H</td>
<td>4.0 × 10^{-11}</td>
<td>0.0</td>
<td>1200</td>
</tr>
<tr>
<td>C2N2 + H → HCN + CN</td>
<td>8.59 × 10^{-16}</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>H2CN + H → HCN + H</td>
<td>6.0 × 10^{-11}</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>N(4S) + CH3 → HCN + H</td>
<td>5.0 × 10^{-11}</td>
<td>0.17</td>
<td>0.0</td>
</tr>
<tr>
<td>HCN + hν → CN + H</td>
<td>1.4 × 10^{-10}</td>
<td>-0.17</td>
<td>0.0</td>
</tr>
<tr>
<td>HCN + CH → CHCN + H</td>
<td>1.4 × 10^{-10}</td>
<td>-0.17</td>
<td>0.0</td>
</tr>
<tr>
<td>HCN + CH → C2N + H2</td>
<td>1.4 × 10^{-10}</td>
<td>-0.17</td>
<td>0.0</td>
</tr>
<tr>
<td>HCN + N(2D) → CH + N2</td>
<td>1.6 × 10^{-10}</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>HCN + C2 → C2N + H</td>
<td>2.0 × 10^{-10}</td>
<td>0.17</td>
<td>0.0</td>
</tr>
<tr>
<td>HCN + C2N → C2N2 + H</td>
<td>2.0 × 10^{-10}</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Notes. Reaction rates are expressed as $k = \alpha \times (T/300)^{\beta} \exp(-\gamma/T)$ cm3 molecule$^{-1}$ s$^{-1}$. Uncertainties are expressed as $F(T) = F_0 \times \exp(g \times |1/T - 1/300|)$ (T in K).

5. Local sensitivity analysis: a critical reaction study

Figure 5 shows that the most important loss reaction for HNC around 500 km is the isomerization reaction $\text{H} + \text{HNC} \rightarrow \text{HCN} + \text{H}$ (see also Table 3). The reaction rate of this process is not very well known at low temperature (≈ 150 K) with an uncertainty factor that we estimate to be about 10 (see Appendix A). So, this reaction is clearly critical for the abundance of HNC in our model. In order to pinpoint the importance of this reaction, we performed a local sensitivity analysis, which consists of changing the rate of this reaction by a factor of 10 whilst keeping all other rates unchanged. It is important to note that this kind of study gives only incomplete information about the importance of this reaction. A global sensitivity analysis is required to study how the uncertainty of this reaction rate propagates in the model through the set of strongly coupled and non-linear differential equations (Dobrijevic et al. 2010b). Results are presented in Fig. 2. Whilst there is only a factor of 2 between the extreme HNC mole fractions at 1300 km, the difference reaches a factor of 10^2 at 500 km. As a consequence, the poor knowledge of the rate of this reaction limits strongly the accuracy of photochemical models.

6. Uncertainty propagation study

6.1. Method

The methodology used to study the propagation of uncertainties in the model is described in Hébrard et al. (2007) and Hébrard et al. (2009). There are many sources of uncertainty in a 1D photochemical model. In the present study, we focus exclusively on its chemical sources through the uncertainties of the photodissociation and reaction rates. These uncertainties originate in their experimental or theoretical determination, and are generally quantified by a standard deviation or a relative uncertainty. Because of the profoundly non-linear nature of the photochemical model and the potentially large uncertainties displayed by many parameters, a linear uncertainty propagation is not expected to produce valid results. Propagation of distributions by Monte Carlo sampling is better adapted to such problems (BIPM et al. 2008, 2006). Due to the positivity constraint on these properties, their distributions are modeled by lognormal probability density functions:

$$p(x) = \frac{1}{\sqrt{2\pi \sigma x}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

with $\mu = \ln k(T)$, the logarithm of the nominal value of the reaction rate at temperature T, and $\sigma = \ln F(T)$, the logarithm of the geometric standard uncertainty $F(T)$ of the log-normal distribution. With these notations, the 67% confidence interval for a reaction rate at a given temperature is given as $[k(T)/F(T), k(T) \times F(T)]$.

Estimation of the uncertainty factor $F(T)$ of a reaction rate $k(T)$ at any given temperature follows an expression adapted from KIDA (Wakelam et al. 2012):

$$F(T) = F(300\text{ K}) \exp\left[g \left(\frac{1}{T} - \frac{1}{300}\right)\right]$$

where $F(300\text{ K})$ is the uncertainty in the rate constant $k(T)$ at $T = 300\text{ K}$ and g is the “uncertainty-extrapolating” coefficient defined for use with $F(300\text{ K})$ in the above expression to obtain the rate constant uncertainty $F(T)$ at different temperatures. These assigned uncertainty factors $F(300\text{ K})$ and g are evaluated to construct the appropriate uncertainty factor, $F(T)$, following an approach based on the fact that rate constants are almost always known with a minimum uncertainty at room temperature. The knowledge of both $F(300\text{ K})$ and g parameters allows to quantify the temperature-dependent uncertainties carried by each reaction rate present in the standard sets of reaction rates in a temperature range adequate for Titan’s atmosphere.

Most of the reaction rate coefficients and their associated uncertainty factors used in the present study are extracted from our previous reviews (Hébrard et al. 2006; Hébrard et al. 2009). Reaction rates and uncertainties for new processes are estimated according to the methodology introduced in Sect. 3. The uncertainty factor is set to 1.2 for all the photodissociation rates for simplicity (see Peng et al. 2012, for a valuable discussion about uncertainties on photodissociation rates). We perform 1000 runs to have statistically significant results. The integration time for each run is set to 10^{17} s for simplicity and to limit the computation time. This time is sufficient to reach a steady state in the
upper atmosphere. For instance, the most important relative variation of the HNC mole fractions is lower than 1.0 \times 10$^{-2}$ for all the runs with very few exceptions.

Figure 7 presents an example of a rate constant histogram generated by our Monte-Carlo procedure for a reaction rate constant estimated by capture theory. As explained in Sect. 3, this kind of rate constant is in practice

$$k = \gamma_{el} \times k_{\text{capture}} / \sqrt{F_{\text{capture}}}$$

and its uncertainty factor $F = \sqrt{F_{\text{capture}}}$. Our simulation is in good agreement with what was expected and we see that only a limited fraction of runs (<15%) give rates greater than the k_{capture} value.

6.2. Results: HCN and HNC profiles

The type of abundance distribution depends on the compound and can vary with altitude: distributions are not always normal or log-normal. In this case, quantiles are useful measures to represent the distributions. Figures 8 and 9 show the 5th and 15th of the 20-quantiles and the 1st and 19th of the 20-quantiles which give the intervals containing respectively 50% and 90% of the profiles.

The HCN and HNC profiles obtained from the uncertainty propagation study are presented in Fig. 8. We obtain large uncertainties for HNC, especially below 900 km, whereas uncertainties are quite reasonable for HCN throughout the upper atmosphere. At 1300 km, the mean value of the HNC mole fraction is 10$^{-4}$ and 50% of the profiles lie between 5.3 \times 10$^{-5}$ and 2.0 \times 10$^{-4}$. For HCN, the mean mole fraction is 1.2 \times 10$^{-3}$ and 50% of the profiles lie between 8.0 \times 10$^{-4}$ and 1.6 \times 10$^{-3}$.

The HNC/HCN ratio as a function of altitude is given in Fig. 9. The determination of this ratio is important with respect to the detection of HCN by the Cassini Ion Neutral Mass Spectrometer (INMS) (Magee et al. 2009). Since HNC and HCN have the same mass, it is likely that both species contributed significantly to the same peak in this instrument. We see in Fig. 9 that the ratio HNC/HCN can statistically reach a value as high as 0.5. More precisely, 90% of the HNC/HCN profiles are within the range [0.015, 0.5] and 50% in the range [0.04, 0.17]. By comparison with observations, Moreno et al. (2011) estimated that this ratio is about 0.3 (based on the abundance of HCN retrieved by INMS).

The main conclusion of these results is that the current accuracy of photochemical models for HNC is very poor, especially below 800 km. Theoretical and experimental studies are required to improve the situation. We see in the next section that a global sensitivity analysis can pinpoint the key reactions that are responsible for these huge uncertainties.

7. Global sensitivity analysis: determination of key reactions

The technique we use is based on the computation of the Rank Correlation Coefficients (RCCs) between rate constants and abundances at different altitudes. It has been previously used and described in Carrasco et al. (2007); Dobrijevic et al. (2008); Hébrard et al. (2009). The greater the absolute value of a RCC is, the more important the contribution a given reaction rate has on the abundance uncertainty for a given species. As a consequence, all reactions with a high absolute value of RCC should be studied in priority to improve the accuracy of the model concerning HNC and HCN in the upper atmosphere of Titan. The power of this technique, based on the uncertainty propagation study and the knowledge of RCCs, to improve photochemical models has
Table 4. Key reactions responsible for HNC (top) and HCN (bottom) abundance uncertainties at 1000 km and 600 km.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>F</th>
<th>g</th>
<th>RCC at 1300 km</th>
<th>RCC at 1000 km</th>
<th>RCC at 600 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNC + H \rightarrow HCN + H</td>
<td>10.0</td>
<td>100</td>
<td>0.25</td>
<td>-0.41</td>
<td>-0.95</td>
</tr>
<tr>
<td>H$_2$CN + H \rightarrow HCN + H$_2$</td>
<td>2.0</td>
<td>14</td>
<td>0.39</td>
<td>-0.40</td>
<td>-0.12</td>
</tr>
<tr>
<td>H$_2$CN + H \rightarrow HNC + H$_2$</td>
<td>3.0</td>
<td>14</td>
<td>0.77</td>
<td>0.71</td>
<td>0.18</td>
</tr>
<tr>
<td>N(^3D) + HNC \rightarrow CN$_2$ + H</td>
<td>10.0</td>
<td>0</td>
<td>-0.18</td>
<td>-0.12</td>
<td>-</td>
</tr>
<tr>
<td>N(^3D) + HNC \rightarrow CH + N$_2$</td>
<td>10.0</td>
<td>0</td>
<td>-0.16</td>
<td>-0.11</td>
<td>-</td>
</tr>
<tr>
<td>N$_2$ + hv \rightarrow N(^4S) + N(^4S)</td>
<td></td>
<td></td>
<td></td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>N(^3D) + CH$_2$ \rightarrow CH$_2$NH + H</td>
<td>1.6</td>
<td>7</td>
<td></td>
<td>0.12</td>
<td>0.17</td>
</tr>
<tr>
<td>HCN + CH \rightarrow C$_2$N + H$_2$</td>
<td>3.0</td>
<td>7</td>
<td></td>
<td></td>
<td>-0.15</td>
</tr>
<tr>
<td>H$_2$CN + H \rightarrow HCN + H$_2$</td>
<td>2.0</td>
<td>14</td>
<td>0.28</td>
<td>0.29</td>
<td>0.16</td>
</tr>
<tr>
<td>H$_2$CN + H \rightarrow HNC + H$_2$</td>
<td>3.0</td>
<td>14</td>
<td>-0.17</td>
<td>-0.19</td>
<td>-</td>
</tr>
<tr>
<td>N(^3D) + HCN \rightarrow CH + N$_2$</td>
<td>10.0</td>
<td>0</td>
<td>-0.85</td>
<td>-0.83</td>
<td>-0.78</td>
</tr>
</tbody>
</table>

Notes. Only reactions with RCCs greater than 0.15 are given.

The aim of the present work is to investigate as exhaustively as possible the neutral chemistry of HNC and HCN in order to construct a chemical scheme as complete as possible, to evaluate the uncertainties on the results that originate from the ones attached to the neutral reactions and to determine the key reactions that should be studied in priority to improve the model’s precision regarding neutral chemistry. We show that the precision on the HCN abundance predicted by photochemical models is currently strongly limited by the poor knowledge of some reaction rates, especially the isomerization reaction H + HNC \rightarrow HCN + H. Further studies of the reactivity of H$_2$CN with H and the reactivity of N(^3D) with HNC and HCN are also very important.

Our results are a basis for studying the production and loss of HNC and HCN in the ionosphere of Titan. For instance, Krasnopolsky (2009) stated that 24% of the production of HCN comes from ion reactions, while ion reactions account only for 17% of the loss of HCN. More recently, Plessis et al. (2012) found that the production of HCN and HNC are about 5.9 ± 2.5 molecule cm$^{-2}$ s$^{-1}$ and that 65% of this production comes from the dissociative recombination reaction HCNH$^+ + e^-$. So, we can expect that the production of HCN and HNC should be greater than the production we find in the present study taking into account only neutral chemistry. However, we can also predict that uncertainties in ion-reaction rates might increase the uncertainty on HNC and HCN mole fractions obtained by the models. In conclusion, a coupled neutral and ion model is required to investigate the impact of ion chemistry on these compounds, to determine the uncertainties on the computed abundances and to pinpoint the key reactions involving ions.

8. Conclusions

Following the prediction of Petrie (2001), Moreno et al. (2011) concluded that a purely ionospheric source may be quantitatively viable for HNC, provided that the protonation rates are not too high. Here we show that a purely neutral source is efficient enough to produce HNC and HCN in the upper atmosphere of Titan in agreement with current observations. Our study does not mean that ion-molecule mechanisms are not relevant to produce HNC but it shows that neutral reactions are competitive processes in the upper atmosphere and in the middle atmosphere as well.

Acknowledgements. The authors acknowledge partial financial support from the Observatoire Aquitain des Sciences de l’Univers (OASU), from the CNRS “Programme National de Planétologie” and from the CNRS interdisciplinary program “Environnements Planétaires et Origines de la Vie (EPOV)”.

Appendix A: Comments on selected reactions

A.1. N(^4S) + CH$_3$ → products

We have shown that the reaction N(^4S) + CH$_3$ \rightarrow products is of prime importance in the production of H$_2$CN, which appears to be a key compound for initiating both HCN and...
A.2. HCN → HNC isomerization

A specific problem in HCN/HNC formation is the possibility of isomerization. The HCN → HNC isomerization barrier is calculated equal to 186 kJ mol\(^{-1}\), and the HNC → HCN isomerization barrier is calculated equal to 124 kJ mol\(^{-1}\) at the RCCST(T)/cc-pVTZ level (DePrince III & Mazzotti 2008). Some reactions producing HCN and all reactions producing HNC are highly exothermic. In Titan’s atmosphere, relaxation occurs through collisional stabilization. The collisional stabilization time may be estimated (Forst 2003) as equal to 4 × 10\(^{-7}\) s at 1 Torr, much greater than the interconversion time-scale estimated as 10\(^{-13}\) s (Herbst et al. 2000). Thus, as relaxation slowly occurs, isomerization leads to equilibrated isomeric abundances at each internal energy. The final balance is determined at or near the effective barrier for isomerization. As the available energy of the exothermic reactions producing HCN and HNC can be distributed among the translational and vibrational-rotational modes of both products, a fraction of HCN/HNC molecules will possess enough internal energy to overcome the isomerization barrier. To a first approximation we assumed roughly statistical distribution of energy in the fragments and consider that all of the HCN or HNC produced above the isomerization barrier will lead to equal amounts of HCN and HNC (Herbst et al. 2000).

The HNC + H → HCN + H reaction (Δ\(H\)_\(r\)(298 K) = −53 kJ mol\(^{-1}\)) has been calculated to possess a low barrier. The first estimation of the barrier was performed by Talbi & Ellinger (1996) at a relatively high level of theory (MP4/6-311++G(d,p)) with a best estimate value equal to 17.6 ± 4 kJ mol\(^{-1}\). Sumathi & Nguyen (1998) found a barrier equal to 13.8 kJ mol\(^{-1}\) at the CCSD(T)/6-311++G(d,p) level and more recently Petrie (2002) found a value equal to 8.0 kJ mol\(^{-1}\) at the CBS/RAD or B3LYP/6-311G** level and 12.9 kJ mol\(^{-1}\) at the QCISD/6-311G* level. With estimated values between 8.0 kJ mol\(^{-1}\) (960 K) and 18.0 kJ mol\(^{-1}\) (2160 K), the rate will be low, but not negligible, for relaxed HNC. Moreover, as HNC is produced mainly with high internal energy there is a possibility of rate enhancement. For relaxed HNC we recommend the rate constant calculated by Sumathi & Nguyen (1998) with an average value of the various calculations for the barrier including Petrie (2002):

\[
\begin{array}{lcl}
\text{Reaction} & \quad \frac{k}{(\text{cm}^3 \text{ molecule}^{-1} \text{s}^{-1})} & F \quad g \\
\text{N}^+(S) + \text{H}_2 \rightarrow \text{H}_2\text{CN} + \text{H} & 5.6 \times 10^{-11} & 1.6 \quad 7 \\
\text{N}^+(S) + \text{H}_2 \rightarrow \text{HCN} + \text{H} + \text{H} & 0.6 \times 10^{-11} & 2 \quad 7 \\
\end{array}
\]

A.3. N\(^2\)D + CH\(_4\)

The N\(^2\)D + CH\(_4\) reaction has been studied experimentally (Takayanagi et al. 1999; Umemoto et al. 1998) and theoretically (Ouk et al. 2011; Takayanagi & Kurosaki 1999; Takayanagi et al. 1999) and a review has been performed by Herron (1999). Theoretical calculations suggest two pathways for this reaction, direct H atom abstraction and N\(^2\)D insertion in one C-H bond, both mechanism presenting a barrier in the entrance valley (Ouk et al. 2011; Takayanagi & Kurosaki 1999; Takayanagi et al. 1999). It should be noted that ab-initio calculations with DFT and CCSD methods lead to the absence of a barrier for the insertion (Balucani et al. 2009). The N\(^2\)D + CH\(_4\) reaction has been studied experimentally in detail by Takayanagi et al. (1999) leading to \(k(222–292 \text{ K}) = 7.13 \times 10^{-11} \times \exp(-755/T) \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}\)

\[
\frac{\text{Reaction}}{\frac{k}{(\text{cm}^3 \text{ molecule}^{-1} \text{s}^{-1})} \quad F \quad g} \\
\text{N}^2\text{D} + \text{H} \rightarrow \text{H}_2\text{NN} + \text{H} & 3.5 \times 10^{-11} \times \exp(-755/T) & 1.6 \quad 7 \\
\text{N}^2\text{D} + \text{H} \rightarrow \text{H}_2\text{NN} + \text{H} & 1.3 \times 10^{-11} \times \exp(-755/T) & 1.6 \quad 7 \\
\]

Umemoto et al. (1998) found a ratio between H\(_2\)CNH + H/NH + CH\(_2\)N equal to 0.8/0.3. Balucani et al. (2009) studied this reaction in a crossed beam experiment at high collision energy (above 22 kJ mol\(^{-1}\)) which corresponds to \(T > 2600 \text{ K}\) suggesting an increasing NH branching ratio with the temperature and also H\(_2\)CNH and CH\(_3\)NH production. As their results are ambiguous and correspond to high collisional energies, we preferred to use the Herron (1999) average value for the global rate constant (there is a typographical error in the Herron paper: it should be \(A = 4.8 \times 10^{-11}\) instead of \(4.8 \times 10^{-12}\) in Table 3) associated with Umemoto et al. (1998) branching ratios:

\[
\begin{array}{lcl}
\text{Reaction} & \quad \frac{k}{(\text{cm}^3 \text{ molecule}^{-1} \text{s}^{-1})} & F \quad g \\
\text{N}^2\text{D} + \text{H} \rightarrow \text{H}_2\text{NN} + \text{H} & 3.5 \times 10^{-11} \times \exp(-755/T) & 1.6 \quad 7 \\
\text{N}^2\text{D} + \text{H} \rightarrow \text{H}_2\text{NN} + \text{H} & 1.3 \times 10^{-11} \times \exp(-755/T) & 1.6 \quad 7 \\
\end{array}
\]
A.4. H + H₂CN

The H + H₂CN reaction is a key reaction for both HCN and HNC production. The rate constant for this reaction has been measured to be greater than 7×10^{-11} cm³ molecule⁻¹ s⁻¹ (Nesbitt et al. 1990) and the authors also determined HD/(HCN+HNC) branching ratios for the H + D₂CN reaction, leading to HD/(HCN+HNC) = 5 ± 3. This reaction has two exothermic bimolecular exit channels:

\[\text{H}_2\text{CN} + \text{H} \rightarrow \text{H}_2 + \text{HNC} \quad \Delta H_r(298 \text{ K}) = -276 \text{ kJ mol}^{-1} \]

\[\rightarrow \text{H}_2 + \text{HCN} \quad \Delta H_r(298 \text{ K}) = -331 \text{ kJ mol}^{-1} \]

Previous theoretical calculations (Nguyen et al. 1996; Larson et al. 2006) show no barrier in the entrance valley for H₂CNH formation. We performed new ab-initio calculations at the DFT/M06-2X/VTZ and MRCI+Q/vtz levels (Loison et al., in prep.) showing unambiguously that H₂CNH formation occurs in addition to the direct H atom abstraction without barriers in the entrance valley. The only possible evolution of the H₂CNH molecule is back-dissociation or H₂ + HNC formation, the H₂ + HCN exit channel involving a high energy exit barrier located well above the reactant energy and therefore forbidden at 150–200 K. H₂ + HNC production also involves a high exit barrier calculated close to the energy level of the reactants. The position of the transition state VS varies with the calculation level and has been found to range between +15 kJ mol⁻¹ and −9 kJ mol⁻¹ by comparison with the reactants energy (Zhou & Schlegel 2009; Nguyen et al. 1996).

As this energy is critical to the branching ratio determination (Marston et al. 1989b), the authors also determined the results of Nesbitt et al. (1990) we attribute the result of the reaction sequence N²(S) + HCN → H₂ + HCN followed by N²(S) + H₂CN → NH + HCN. However in their experiment, N²(S) was in excess and the HCN produced could have been the result of the reaction sequence N²(S) + CH₃ → H + HCN followed by N²(S) + H₂CN → CH₂ + N₂ and N²(S) + CH₂ → H + HNC/HNC. The experimental rate constant ($k(T) = 1.0 \times 10^{-10} \times (T/300)^{0.17} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}$ in the 200–363 K range) has large uncertainties (Nesbitt et al. 1990) and cannot be extrapolated to low temperature as it may be the result of the two reaction channels including the direct abstraction with a barrier. We point out that a simple capture model, with the dispersion term only, leads to a rate constant equal to $k(N²(S)+H₂CN) = 4.5 \times 10^{-10} \times (T/300)^{0.17} \times (3/8) = 1.7 \times 10^{-10} \times (T/300)^{0.17} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}$, 4 times higher than the experimental rate constant equal to $4.4 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}$ at 300 K. Considering the uncertainties in the experimental results we propose:

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k (cm³ molecule⁻¹ s⁻¹)</th>
<th>F</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N²(S) + H₂CN \rightarrow NH + HCN$</td>
<td>1.0×10^{-11}</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>$N²(S) + H₂CN \rightarrow N₂ + CH₂$</td>
<td>3.0×10^{-11}</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

A.6. HCN + CH

The total rate constant for this reaction has been measured between 296 and 674 K equal to $(5.0 \pm 0.4) \times 10^{-11} \times \exp((500 \pm 30)/T) \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}$ (Zabarnick et al. 1991). This expression cannot be extrapolated to low temperature as it yields unrealistically large values. The measured $k(296 \text{ K})$ is equal to $2.7 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}$ at 298 K due to the strong dipole-dipole interaction. We propose to scale the capture rate constant to the value at room temperature and to conserve the temperature dependence appropriate for the dipole-dipole interaction, leading to $k(T) = 2.7 \times 10^{-10} \times (T/300)^{-0.17} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}$.

Theoretical calculations (Du & Zhang 2006) show no barrier for H₂CCN formation through CH + HCN → HCC(H)N → H₂CCN. H₂CCN can lead subsequently to $H₂ + N₃$ with a TS energy given by the MRCI

\[\Delta H_r(298 \text{ K}) = -331 \text{ kJ mol}^{-1} \]

\[\rightarrow \text{H}_2 + \text{HCN} \quad \Delta H_r(298 \text{ K}) = -229 \text{ kJ mol}^{-1} \]

\[\rightarrow \text{H}_2 + \text{CNN} \quad \Delta H_r(298 \text{ K}) = -150 \text{ kJ mol}^{-1} \]

Cimas & Largo (2006) performed ab-initio calculations and found a small barrier for direct H atom abstraction, located at 11 kJ mol⁻¹ at the CCSD(p)-vptz level but at -13 kJ mol^{-1} at the G2 level. This negative barrier is due to the ZPE variation. We performed calculations at the UHF-M06-2X/VTZ level and also found a barrier for direct abstraction (+6.4 kJ mol⁻¹ without ZPE and -3.6 kJ mol^{-1} including ZPE). No barrier was found for H₂CCN adduct formation quickly leading to CH₂ + N₂ formation. This corresponds to pressures above those relevant for Titan’s upper atmosphere where H₂CN is stabilisation plays a role. This corresponds to pressures above 10⁻⁵ mbar. As this energy is critical to the branching ratio determination (Marston et al. 1989b), the authors also determined the results of Nesbitt et al. (1990) we attribute the result of the reaction sequence N²(S) + HCN → H₂ + HCN followed by N²(S) + H₂CN → NH + HCN. However in their experiment, N²(S) was in excess and the HCN produced could have been the result of the reaction sequence N²(S) + CH₃ → H + HCN followed by N²(S) + H₂CN → CH₂ + N₂ and N²(S) + CH₂ → H + HNC/HNC. The experimental rate constant ($k(T) = 1.0 \times 10^{-10} \times (T/300)^{0.17} \times (3/8) = 1.7 \times 10^{-10} \times (T/300)^{0.17} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}$, 4 times higher than the experimental rate constant equal to $4.4 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}$ at 300 K. Considering the uncertainties in the experimental results we propose:

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k (cm³ molecule⁻¹ s⁻¹)</th>
<th>F</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N²(S) + H₂CN \rightarrow NH + HCN$</td>
<td>1.0×10^{-11}</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>$N²(S) + H₂CN \rightarrow N₂ + CH₂$</td>
<td>3.0×10^{-11}</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

A.5. N²(S) + H₂CN

There is one experimental determination of the rate constant between 200 K and 363 K (Nesbitt et al. 1990) and one indirect branching ratio determination (Marston et al. 1989b). The possible exit channels are:

\[\text{H}_2\text{CN} + N²(S) \rightarrow \text{H}_2 + \text{N}_2 \quad \Delta H_r(298 \text{ K}) = -331 \text{ kJ mol}^{-1} \]

\[\rightarrow \text{NH} + \text{HCN} \quad \Delta H_r(298 \text{ K}) = -229 \text{ kJ mol}^{-1} \]

\[\rightarrow \text{H}_2 + \text{CNN} \quad \Delta H_r(298 \text{ K}) = -150 \text{ kJ mol}^{-1} \]

Osamura & Petrie (2004) have determined that H + HCCN production has no barrier in the exit channel and that H₂ + CCN production exhibits a tight TS located only 6 kJ mol⁻¹ above this
exit channel. These two exit channels should therefore have similar branching ratios to a first approximation, even if RRKM calculations are necessary to estimate more precisely their value.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k (cm3 molecule$^{-1}$ s$^{-1}$)</th>
<th>F</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCN + CH \rightarrow HCCN + H</td>
<td>$1.4 \times 10^{-10} \times (T/300)^{-0.17}$</td>
<td>3.0</td>
<td>7</td>
</tr>
<tr>
<td>HCN + CH \rightarrow H$_2$ + CCN</td>
<td>$1.4 \times 10^{-10} \times (T/300)^{-0.17}$</td>
<td>3.0</td>
<td>7</td>
</tr>
</tbody>
</table>

A.7. N(2D) + HCN

The first electronically excited state of atomic nitrogen, N(2D) is known to react quickly with most radicals and molecules (Herron 1999). We performed ab-initio calculations at various levels for N(2D) attack on HCN in C$_3$ and C$_2$$_v$ symmetry. The most attractive pathways have been found at MRCl+Q/vtz and R-CCSD(T)/vztz levels for C$_3$$_v$ geometry for which the 2B$_1$ and 2B$_2$ states show no barrier for HCNN adduct formation. The similar branching ratios to a first approximation, even if RRKM calculation data – Supplement 1 to the GUM: Propagation of distributions using a Monte-Carlo method, Tech. rep., BIPM

References

Dobrijevic, M., Cavalié, T., Hébrard, E., et al. 2010a, Planet. Space Sci., 58, 1555
Hébrard, E., Dobrijevic, M., Bénilan, Y., & Raulin, F. 2007, Planet. Space Sci., 55, 1470
Herbst, E., Terzieva, R., & Talbot, D. 2000, MNRRS, 311, 869
Hindmarsh, A. C. 1983, Scientific Computing, 55
Krasnopolsky, V. A. 2009, Icarus, 201, 226
Moreno, R., Lellouch, E., Hartogt, P., et al. 2010, BAAAS, 42, 1088
Petrie, S. 2001, Icarus, 151, 196

A21, page 12 of 13
Takayanagi, T., & Kurosaki, Y. 1999, J. Mol. Struct. (Theochem), 492, 151