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ABSTRACT

We present a theoretical analysis of the optical light curves (LCs) for short-period high-mass transiting extrasolar planet systems. Our
method considers the primary transit, the secondary eclipse, and the overall phase shape of the LC between the occultations. Phase
variations arise from (i) reflected and thermally emitted light by the planet; (ii) the ellipsoidal shape of the star due to the gravitational
pull of the planet; and (iii) the Doppler shift of the stellar light as the star orbits the center of mass of the system. Our full model
of the out-of-eclipse variations contains information about the planetary mass, orbital eccentricity, the orientation of periastron and
the planet’s albedo. For a range of hypothetical systems we demonstrate that the ellipsoidal variations (ii) can be large enough to be
distinguished from the remaining components and that this effect can be used to constrain the planet’s mass. To detect the ellipsoidal
variations, the LC requires a minimum precision of 10−4, which coincides with the precision of the Kepler mission. As a test of
our approach, we consider the Kepler LC of the transiting object HAT-P-7. We are able to estimate the mass of the companion, and
confirm its planetary nature solely from the LC data. Future space missions, such as PLATO and the James Webb Space Telescope
with even higher photometric precision, will be able to reduce the errors in all parameters. Detailed modeling of any out-of-eclipse
variations seen in new systems will be a useful diagnostic tool prior to the requisite ground based radial velocity follow-up.
Key words. techniques: photometric – methods: data analysis – planetary systems – methods: analytical – celestial mechanics

1. Introduction

Two observational methods have dominated the study of extraso-
lar planets so far: radial velocity (RV) measurements and transit
light curve (LC) analyses. Both have advantages and disadvan-
tages. While RV determinations provide estimates of the plan-
etary mass (Mp), the eccentricity (e) and the semi-major axis
(a), they do not constrain the inclination (i) of the orbital plane
with respect to the observer, thus only lower limits to Mp can
be determined. The transit method, on the other hand, provides
information on i, the ratio of the planetary to the stellar radius
(Rp/Rs), and the duration of the transit (D). So far, only a com-
bination of both strategies yields a full set of orbital and physical
parameters for extrasolar planets.

Currently, two space-missions are targeted at the detection of
transiting extrasolar planets: CoRoT launched in 2006 (Deleuil
et al. 1997) and Kepler launched in 2009 (Borucki et al. 1997).
Their instruments are monitoring hundreds of thousands of stars,
discovering thousands of planet candidates, whose RV follow-
up will take many years (and may never be completed for the
faintest candidates). Without RV follow-up, the most fundamen-
tal parameter of an extrasolar planet, its mass, remains undeter-
mined from CoRoT and Kepler observations alone. The mass is
the crucial parameter classifying an object as a planet, brown
dwarf or a star.

High-accuracy photometry has already been used for a num-
ber of systems to show that the planetary thermal emission, as
well as the reflection of the stellar light from the planet, are de-
tectable. In particular, Welsh et al. (2010) report the discovery
of ellipsoidal variations in the Kepler LC of HAT-P-7. This is an

effect more commonly known from close stellar systems, where
phase-dependent light variation arises from the gravitationally
distorted stars. In HAT-P-7, the planet is close enough and mas-
sive enough to induce the same effect.

Other authors (Loeb & Gaudi 2003; Faigler & Mazeh 2011)
have already presented treatments of reflected light, thermal
emission, ellipsoidal variations and Doppler beaming. Our ap-
proach to the problem includes two main differences: (i) we in-
vestigate the sensitivity of our technique on the adopted phase
function (Sect. 3.2); and (ii) we attempt to solve separately for
the reflected light and thermal emission from the planet. For hot
Jupiters around hot stars, the temperature of the planet increases
dramatically and reflected light alone fails to explain the LC.

In this paper, we investigate whether the presence of ellip-
soidal variations in a planetary system can be used to place
meaningful constraints on the mass of the planetary compan-
ion. In Sect. 2 we describe the basic phenomena included in our
simplified model of a planetary system’s LC. In Sect. 3 we com-
pare the magnitudes of the relative contributions and consider
the likely range of planetary systems for which ellipsoidal vari-
ations ought to be detectable with both CoRoT and Kepler. We
reanalyze the HAT-P-7 LC and demonstrate that the ellipsoidal
variations can be used to estimate the mass of the planet to within
10% of the radial-velocity measured mass. We summarize our
conclusions in Sect. 4.

2. Parametrization of photometric transits

Standard models of LCs that have been used before the advent
of space missions are based on a flat curve out of transit and
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Fig. 1. The standard transit model includes the primary transit f1

(dashed line centred at orbital phase z = 0), the secondary eclipse f2

(dotted line around z = 0.5) and the reflected light from the planet f3

(solid line). The model is based on a HAT-7-b twin planet (Table 2).

Fig. 2. This sketch of the transiting planetary system, as seen from
above, explains the variables used in our calculations. We assume clock-
wise rotation.

a limb darkening during the transit. Seager & Mallén-Ornelas
(2003) proved analytically that for each package of planet-star
characteristics there is a unique LC. Analyses of high-accuracy
data from space required a revision of this simple approach. For
a high accuracy LC, the model should incorporate the reflected
light from the planet, thermal emission, ellipsoidal variations
and Doppler boosting, which deforms the overall shape of the
LC, and the secondary eclipse (Fig. 1).

In Fig. 2 we show the geometry of an arbitrary transiting sys-
tem assuming an elliptical orbit. Let i be the angle between the
observer’s line of sight and the orbital plane normal, while the
angle between the observer’s line of sight projected onto the or-
bit plane and the periastron is labeled φ. The star is in the center
of the reference frame and d is the distance between the star and
the planet; the distance between the star and the planet during the
primary transit is denoted by dPT

�,p, during the secondary eclipse
both bodies are separated by the distance dSE

�,p.
To decode the geometry of the system from the LC we split

it into three sub LCs. LC f1 describes the course of the primary
transit, when the planet blocks the star’s light, f2 describes the

form of the secondary eclipse, when the star blocks and plane-
tary light, and f3 the rest of the LC, when both star and planet
contribute to the total amount of light.

2.1. Transit and eclipse

The duration of the transit f1 is given by

D � PR�
πa2

d

dPT
�,p√

1 − e2

√(
1 +

Rp

R�

)2

− b2, (1)

where ad is the semi-major axis of the system, P is the orbital
period, R� and Rp are the radius of the star and the planet, re-
spectively, e is the orbital eccentricity, b = dPT

�,p cos i/R� is the
impact parameter (Ford et al. 2008) and i is the inclination of
the orbital plane with respect to the observer’s line of sight. To
model the shape of f1 we use Eq. (1) and the limb darkening
equation

Iμ
I0
= 1 − u1(1 − μ) − u2(1 − μ)2, (2)

with u1 and u2 the linear and quadratic limb darkening coeffi-
cients respectively (Claret 2004; Sozzetti et al. 2007), μ as the
cosine of the angle between the surface normal and the observer,
and I0 and Iμ as the intensities at the stellar disk center and at μ,
respectively. Once the period is known from observations, one
can fit the model to the observations to deduce R�, Rp, i, and
dPT
�,p. The transit of the secondary eclipse, f2, is fitted with the

same model but without the effects of limb darkening.

2.2. Phase-dependent light curve

The shape of the LC between the transit and the eclipse ( f3)
contains five contributions: (i) f�, a contribution from the stel-
lar photospheric flux, which almost certainly varies with time,
but which we assume to be constant throughout this analysis;
(ii) fref , a contribution from starlight reflected from the face of
the planet, which is phase dependent; (iii) fth contributions from
the intrinsic planetary thermal emission (split by day and night),
which depends sensitively on a large number of factors, includ-
ing the spectral range of the observation λ, the irradiation tem-
perature, and the atmospheric composition and structure; (iv)
fell, a contribution from ellipsoidal variations of the star itself
due to tidal forces from the planet; (v) flux variations fdop due
to a Doppler shift (Doppler boosting) of the stellar spectral en-
ergy distribution with respect to the bandpass of the instrument
(Mazeh & Faigler 2010). We normalize the LC by the stellar
flux, which can be determined as the minimum flux observed at
phase z = 0.5. The phase LC then becomes

f3(z) =
f� + fref + fth,d + fth,n + fell + fdop

f�
· (3)

In the following, we study each of these terms in more detail.

2.2.1. Reflected light

The phase pattern of the reflected stellar flux depends on the
phase angle z, i.e., the angle between star and observer as seen
from the planet. Counting the orbital phase θ from primary min-
imum, the angles z, i and θ are related through

cos(z) = − sin(i) cos(θ). (4)
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The reflected flux fref can then be expressed as

fref (z) = αg f�
(RP

d

)2

Φ(z), (5)

where αg is the geometric albedo of the planet, f� is the stellar
flux at a distance d from the star, and Φ(z) is the so-called phase
function. It is not entirely clear which phase function provides
the most appropriate description of extrasolar planets. A popular
assumption is

ΦL(z) =
1
π

(sin z + (π − z) cos z) , (6)

which models the planet as a Lambert sphere (Russell 1916),
assuming that the intensity of the reflected light is ΦL = 1/π at
at phase z = π/2 (Venus case). An alternative choice is

ΦC(z) =
1
2

(1 + cos (z)) , (7)

which assumes that the reflected light is ΦC = 0.5 at phase z =
π/2. In our model, we investigate both cases.

The sum φ + θ is related to the eccentric anomaly E through

φ + θ = 2 tan−1

⎛⎜⎜⎜⎜⎝
√

1 + e√
1 − e

tan (E/2)

⎞⎟⎟⎟⎟⎠ , (8)

and E is related to the mean anomaly M through Kepler’s equa-
tion

E = M − e cos(E). (9)

If e � 0 then the geometrical albedo is not constant and it is
given by the equation Eq. (10) (Kane & Gelino 2010)

αg =
ed−1 − e1−d

5(ed−1 + e1−d)
+

3
10
· (10)

2.2.2. Ellipsoidal variations

When a Jupiter-like planet orbits close to its host star, say
a � 0.1 AU, then the star will be distorted. Hence, the sky-
projected shape will vary, causing flux variations. Their magni-
tude is given by

fell

f�
= β

Mp

M�

(
R�
ad

)3 (
1 + e cos(φ + θ)

1 − e2

)3

sin3(i)| sin(θ)|, (11)

where

β =
log10

(
GM�/R2

�

)
log10 Teff

(12)

is the gravity darkening term (radiative energy transfer –
von Zeipel 1924), and Mp and M� are the masses of the planet
and the star, respectively. As these equations show, the detec-
tion of the ellipsoidal distortion of the star provides information
about the planetary mass with respect to the stellar mass.

2.2.3. Doppler boosting

Finally, the relative flux because of stellar Doppler shifts given
by

fdop

f�
= (3 − ρ) K

c
, (13)

with c as the speed of light,

K = 28.4 · P−1/3 · Mp · sin(i) · M−2/3
�

(
sin(θ) + e sin(φ)√

1 − e2

)
(14)

as the star’s velocity amplitude, and ρ given by

ρ =
ehc/kλTeff (3 − hc/kλTeff) − 3

ehc/kλTeff − 1
· (15)

Explanations of Eqs. (13–15)) and of the underlying phe-
nomenon are given by Loeb & Gaudi (2003). If this Doppler shift
can be measured in addition to the variations induced by the stel-
lar ellipsoidal deformation, then indeed the planetary mass can
be constrained independently from the stellar mass.

In the next section, we will firstly explore constraints on ac-
curacy raised by our method and then, as test cases, we will de-
rive the mass of the known transiting exoplanet HAT-P-7, based
on Kepler data. Finally, we predict the value of our method for
the upcoming ESA mission PLATO.

2.2.4. Thermal emission

The equations for the planetary emitted light are similar to those
from Cowan & Agol (2011). Thus

fth,d(z)
f�

= Φ(z)

(
Rp

R�

)2 ehc/λkTeff − 1
ehc/λkTd − 1

(16)

and

fth,n(z)
f�

= (1 − Φ(z))

(
Rp

R�

)2 ehc/λkTeff − 1
ehc/λkTn − 1

, (17)

Teff is the effective temperature of the star, and Td and Tn are the
temperatures on the day and night side of the planet, respectively.
Using the equations from Hansen (2008) and Cowan & Agol
(2011), we calculate the mean temperature of the planetary day
and night sides:

Td = To (1 − αbol)1/4

(
2
3
− 5

12
ε

)1/4

(18)

Tn = To (1 − αbol)1/4
(
ε

4

)1/4
, (19)

where To = Teff(R�/d)0.5 and 0 ≤ ε ≤ 1 is the energy
circulation.

The spectrum of the planet will strongly depend on the ab-
sence or presence of clouds, the magnitude of the greenhouse
effect and non-grey opacities. For the most of our analysis we
assume that the planet emits as a black body. Anyhow, the dif-
ferences between a black body and a non-black body emission
are small (a factor of 1.5–3.5, see Hansen 2008). Assuming
main sequence stars and planetary energy circulation ε = 0.0
(for the maximum thermal emission assuming black bodies), we
found that for most hot Jupiters, the thermal emission from the
planet is very weak in optical wavelengths. For our analysis we
assume a blackbody, observed through the Kepler’s sensitivity
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Fig. 3. Thermal emission flux maps for three different bolometric albedo
values (top: αbol = 0.0, middle: αbol = 0.3, bottom: αbol = 0.5). Thermal
emission is stronger for short term period planets around hot stars. For
all the plots, we assume RP = 1.0RJ. The white part of the diagram
refers to fth < 10−7.

curve, which peaks at 575 nm and covers 420 to 900 nm (Kepler
Handbook). Figure 3 shows the star’s effective temperature Teff
versus the period of the planet for three different bolometric
albedo (αbol) values. Colors refer to the expected stellar relative
flux.

The thermal contribution only becomes comparable to, or
even larger than, the reflected light component for short period,

Fig. 4. Color map of fth / fref as a function of Teff and Period for three
different albedo cases (αg,αbol = 0.05, αg,αbol = 0.3, αg, αbol = 0.5
for the top, middle and bottom figure respectively). We have fixed the
energy circulation to ε = 0.5 and RP = 1.0 RJ. The white part of the
diagram refers to fth/ fref < 107.

low albedo planets around hot stars. Distinguishing the relative
contributions from a LC measured in a single passband, without
any knowledge of the planet’s albedo is hard, if not impossible.
Both thermal and reflected components will have similar phase
shapes. In Fig. 4 we compare fth and fref for three albedo cases
(αg, αbol = 0.05, αg, αbol = 0.3, αg, αbol = 0.5).
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Table 1. Physical parameters of our two models.

Stellar parameter Hot Jupiter super-Earth
R� 1.64 R� 0.87 R�
M� 1.36 M� 0.93 M�
Teff 6290 K 5275 K
β 0.53 0.61
ε 0.75

Planetary parameter Hot Jupiter super-Earth

Rp 1.16 RJ 0.15 RJ

Mp 8.75 MJ 0.0151 MJ

αg 0.30 0.30
αbol 0.65 1.0
u1 0.34 0.20
u2 0.35 0.57

Orbital parameter Hot Jupiter super-Earth

P 5.63347 d 0.85360 d
i 86.72◦ 80.10◦
e 0.52 0.05
ω 72◦ 5◦

Notes. For the super-Earth planet we assume no thermal emission
(αbol = 1.0).

The ellipsoidal variations occur on half the orbital period,
and present a rather different phase dependent LC. Even if
we cannot accurately distinguish between thermal and reflected
components, we show in this paper, that they can be jointly dis-
tinguished from ellipsoidal variations (Fig. 7).

3. Results

3.1. Simulations

To assess the data accuracy required by our method to yield sat-
isfying constraints on the planetary parameters, we simulate two
LCs using the equations from above. One of our model plane-
tary systems is a hot Jupiter, analogue to the transiting planet
HAT-P-7b (Pál et al. 2009b), whereas the other one resembles
the transiting super-Earth CoRoT-7b (Queloz et al. 2009). We
customize these models in terms of the geometric albedo, for
which we optimistically apply αg = 0.3 in both cases (Sudarsky
et al. 2000). Though observations of CoRoT-7b are reconcilable
with e = 0, we chose e = 0.05 to simulate enhanced phase varia-
tions in the LC. After all, we are not heading for a reconstruction
of these systems but we want to estimate how accurate compa-
rable systems could be parametrized and, as an example, if a
putative small eccentricity of CoRoT-7b could be determined.
This is particularly important given the significant activity of
CoRoT-7b.

To these models, we add increasingly more noise simulating
data accuracies between 10−7 and 10−4. The phase effect in the
LCs, i.e. in f3, is significant only for accuracies �10−4, which
is why this phenomenon has not been detected in the LCs of
CoRoT (Costes et al. 2004). We then fit the noiseless model from
Sect. 2 to each of these – more or less – noisy LCs and use 1000
Monte Carlo simulations to calculate the standard deviations for
each parameter in each fit using a bootstrap method explained
by Alonso et al. (2008). In Fig. 5 we show the relative errors
resulting from these fits for the planetary geometrical albedo αg
(σαg /αg), eccentricity (σe/e), orientation of periastron (σω/ω)
and the mass ratio (σM/M) as a function of the root mean square

(rms) of the data. With an accuracy provided by Kepler of 10−4

(Koch et al. 2010), the eccentricity of a CoRoT-7b-like super-
Earth could merely be determined with a unsatisfactory relative
error higher than 1.0 which has no physical use. For a hot Jupiter
similar to HAT-P-2b, however, the relative error in e is about
0.001 in the best case (hot Jupiter – rms 10−7). The orientation
of periastron for the super-Earth could be constrained to approxi-
mately ±4◦ in the worse case (rms 10−4) while for the hot Jupiter
the accuracy is as low as ±0.001◦ in the best case (rms 10−7).
Restrictions of the geometrical albedo αg are ±0.001 in the best
case (hot Jupiter – rms 10−7) to ±1.1 in the worst case (Earth like
– rms 10−4) with no physical meaning. The respective accuracies
in planet mass MP are ±0.028 MJ for hot Jupiters (best case) and
±0.95 MJ for super-Earths (worst case).

3.2. Relative contributions

Different phase functions (Eqs. (6) and (7)) lead to different
peaks in the thermal emission and reflected LC. The ratio be-
tween thermal emission and reflected light over ellipsoidal varia-
tions becomes smaller (for the Lambert sphere) or larger (for the
geometrical sphere), which is why different phase functions lead
to different mass values. The mass difference (ΔMP) between
the two cases is a constant (36.4%). For example, if we use a
wrong sphere, the mass we measure for HAT-P-7b exoplanet is
ΔMP ∼ 0.67 MJ smaller (geometrical) or larger (Lambert) than
the true mass. Seeking out the most plausible phase function, we
fit two models, both differing only in the assumption of either
the Lambertian or the geometrical sphere, to the data. For most
systems, if the components fref , fth and fell are very weak, it is
impossible to distinguish between the two phase functions. In
this case we select the Lambert sphere in order to calculate the
upper mass limit of the planet. In Fig. 6 we show the residuals
between the two different phase functions. Notice that the shape
and the phase (x-axis) of residuals is identical to ellipsoidal vari-
ations curve.

For most hot Jupiter systems thermal emission in optical
wavelengths is much weaker than variations due to the varying
projected shape of the star. For orbital periods of 1 and 5 days of
a G0V star, ellipsoidal variations are 3 and 10 times larger than
thermal emission, respectively, while fth/ f� ∼ 10−5 and 10−9

(Figs. 3 and 4). As the star becomes hotter (F or A type), or the
period shorter (<5 days), the thermal component become to be
more significant.

Thermal emission, stellar ellipsoidal deformations, and
Doppler shift changes are very weak phenomena (fainter than
10−5), which require very high-accuracy observations to be de-
tected. So far, it has been impossible to detect these effects from
the ground but based on data from the recent space-based mis-
sion Kepler, our system of equations offers a new gate for exo-
planet mass determinations. Neither RV measurements nor tran-
sit timing variations are necessary for our procedure.

Our parametrization of reflected and thermal planetary emis-
sion are nearly identical, so our model is by definition unable to
distinguish between these two effects. Both Eqs. (5) and (16)
are only function of the orbital phase (ΦL,C) and both compo-
nents (thermal and reflected) provide exactly the same LC. We
are not able to distinguish between the two components by fit-
ting our model in a hot Jupiter system, which the planet is tidal
locked by its host star. If the planetary rotation and orbital pe-
riod are different (for a case of a high eccentric orbit and the
simple assumption that there are no winds), then reflected light
and thermal emission LCs will show different shapes.
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Fig. 5. Relative errors in e, ω, αg and MP as functions of data accuracy. The solid line denotes the HAT-P-2b twin while the dashed line labels the
CoRoT-7b analog.

3.3. Application to Kepler data: the case of HAT-P-7b

Kepler is a space-based mission, launched on Mar. 7, 2009, with
the primary goal to detect Earth-sized and smaller planets in the
habitable zone of solar-like stars. For a mV = 12 star, the pho-
tometric precision is log10(rms) ∼ −4.35 for 6 h combined dif-
ferential photometry (Borucki et al. 2011). We choose the well-
studied transiting planet HAT-P-7 in the Kepler field, with mass
and system parameters constrained by both photometric and RV
observations, to test our photometry-only method. We use all
the short exposure data (1 min exposures) from Kepler’s public
archive. Our sample includes 67 transits and the phase folded LC
was made by ∼180 000 epochs binned by a factor of ∼50.

Welsh et al. (2010) already found ellipsoidal variations in
HAT-P-7. Using the established physical parameters of the sys-
tem, we calculate that the effect of ( fell ∼ 3.1 × 10−5) is
∼10.3 times more pronounced than the Doppler shift variations
( fdop ∼ 3.0×10−6). Nevertheless, we include both effects in our
model.

We assume that the stellar radius and effective temperature
are known (Teff = 6350 K). We fix the ratio of stellar and plane-
tary radius Rp/R� = 0.0778, the inclination i = 83.1◦ and the rel-
ative semi-major axis a/R� = 8.22 (Welsh et al. 2010). For our
first fit, we use Eq. (3), but we exclude fell and fdop. We only fit
fref plus fth in order to check if only these two components could
successfully explain the data (χ2

ref+th). Our second fit includes all
four components from Eq. (3) (χ2

all). The χ2 ratio between the

reflected light plus the thermal emission model and the model
which includes all four components is χ2

ref+th/χ
2
all = 3.04. Using

an F-test, we found that the complete model explains the data
better than the simple model of the reflected plus thermal emis-
sion. There is a 0.01% chance that the more complex model do
not produce a better fit to the data (F-Ratio:116.28, P-Value:
0.0001). In Fig. 7 we show the observed LC of HAT-P-7 with our
best fit as well as a comparison to a model, which includes only
reflected stellar light from the planet, and our enhanced model.
In Table 2 we list the output parameters of the fit. Because fth is
very weak (10−6–10−7, see Fig. 3 for the black body case), αbol,
Td and Tn values can not be calculated accurately (very large er-
rors). Welsh et al. (2010), used the secondary eclipse depth of
HAT-P-7b, in order to measure the flux from the night side of
the planet ( fth,n = 2.2 × 10−5). From Fig. 3 (bottom diagram) is
clear that the planet is much brighter and much hotter than ex-
pected, and other heating mechanisms might exist. We can not
disentangle fref from fth, however this does not affect our main
result.

We find the ratio of the planetary mass over the stellar
mass to be Mp/M� = 1.27 MJ/M�, compared to Mp/M� =
1.20 MJ/M� deduced by Welsh et al. (2010). Because the fell
component is uncorrelated with fref and/or fth, the accuracy of
the mass ratio (MP/M�) can be calculated with high accuracy.
Although our values are not as accurate as those from RV mea-
surements, we can infer the planetary nature of the companion.
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Fig. 6. Residuals flux between Lambert & geometrical sphere. The
residuals curve is identical to the ellipsoidal variations curve. By se-
lecting the wrong phase function we over/under estimate the planetary
mass.

Fig. 7. LC of HAT-P-7. The solid line shows the best fit solution of
our synthetic model, i.e. including stellar ellipsoidal distortions and
Doppler effect variations. The dashed red line refers to the reflected
light component, the blue dotted line refers to the ellipsoidal variations
and the purple, almost consant dashed line refers to the thermal emis-
sion. The Lambert sphere assumption produced the best fit.

Table 2. HAT-P-7b system parameters.

HAT-P-7 parameters Our model Other studies
Mp/M� 1.27 ± 0.10 MJ/M� 1.20 ± 0.05 MJ/M�α
e 0.0 ± 0.1 0.003 ± 0.012β

φ 0.0 ± 1.0 o 0.0β

αg 0.21 ± 0.08 0.18α

Notes. (α) (Welsh et al. 2010); (β) (Pál et al. 2009a).

3.4. PLATO mission

PLATO is a prospective ESA mission aiming at the character-
ization of transiting exoplanets. The mission will use 40 small
telescopes covering 42 × 42 deg2 in total with a supposed over-
all accuracy of ∼2.8 × 10−5 (Claudi 2010). This will satisfy
the needs of our procedure. In the following, we demonstrate the
capabilities of our photometry-only method in parameterizing
hypothetical exoplanet systems.

Fig. 8. Combination of stellar ellipsoidal distortion and Doppler shift ef-
fects in simulated PLATO observations. The panels show the amplitude
of flux variations ΔF in the LCs for three different planetary masses:
MP = 0.5 MJ (top), 1 MJ (middle), and 5 MJ (bottom) around a range
of main-sequence stars. Diamond symbols represent known transiting
planets with similar masses. The white part of the diagram refers to
fell < 10−5.5.

We investigate the detectability of fell and fdop in a range
of different systems, assuming that our target stars belong to
the main sequence. For each combination we calculate the am-
plitude of the flux variations ΔF in the LC. In Fig. 8 we
present three plots, each belonging to a different planetary mass:
Mp = 0.5 MJ (top), 1 MJ (middle), and 5 MJ (bottom). For com-
parison we indicate some known transiting systems with similar
masses. In the upper panel ΔF is dominated by fell. Here, for the
sample of known systems ΔF > 10−5, which would be chal-
lenging to be detected. Nevertheless, with PLATO one will be
able to detect fell for planets with P < 3 d around stars with
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spectral type K0 or later (blue zone in the top panel of Fig. 8). In
the middle diagram (Mp = 1 MJ) both fell and fdop affect the LC
and ΔF ∼ 5 × 10−5 for most of the known systems – detectable
with PLATO. In the bottom panel, where the model planet is
most massive, the LCs are mostly affected by the Doppler shift
variations rather than by the ellipsoidal geometry of the star. The
phenomenon is fairly detectable for the most cases of the known
planets while ΔF ∼ 12 × 10−5.

4. Conclusions

The mathematical tools presented in this article can be used for
a complete parametrization of transiting exoplanet systems on
the basis of high-accuracy LCs only. In our model, for a specific
range of systems, RV measurements are not necessary to con-
strain the mass of the planet (Mp), orbital eccentricity (e), the
orientation of periastron (ω), and the geometric albedo of the
planet (αg). Our model also incorporates the characterization of
the ratio of planetary and stellar radius (Rp/R�), orbital period
(P), and the orbital inclination (i). In order for this method to be
fully applicable, the planet must be massive enough and orbit its
host star close enough as to distort the stellar structure signifi-
cantly.

With the current Kepler and potential future missions such
as PLATO, we are able to measure the mass of the hot Jupiters,
where the orbital periods must be ≤1.5, ≤4, and ≤10 days in
order to measure planetary masses of 0.5 MJ, 1 MJ, and 5 MJ re-
spectively. Furthermore, for host stars with spectral types earlier
than FV, thermal emission component is detectable in the LC
(assuming black bodies). This will affect the accuracy and even
the detection of ellipsoidal variation.

As we show, the Kepler mission provides an accuracy
suitable enough for our procedure to be applied for the charac-
terization of extrasolar planets. We confirm the planetary natures
of the hot Jupiters HAT-P-7 from Kepler data alone. Our method
yields masses of Mp = 1.27+0.10

−0.45 MJ × M�/M� for HAT-P-7b.
Our results (MP, αg, αbol, e, Td, Tn) are in good agreement with
Welsh et al. (2010) and we also confirm the ellipsoidal variations
of HAT-P-7b system. Using ellipsoidal variations we calculate

the planetary mass from the photometric LC itself, without any
RV measurments. Our technique will benefit from future space
missions such as PLATO and the James Webb Space Telescope
(Deming et al. 2009) with rms ∼ 3 × 10−5 and �10−6, respec-
tively.
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