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ABSTRACT

Aims. To obtain diagnostics tools for solar flare current sheets, we numerically studied impulsively generated magnetoacoustic waves
in the Harris current sheet.

Methods. We used two-dimensional (2-D) magnetohydrodynamic (MHD) and wave dispersion models. Tests of these models were
performed for waves in the density slab, where analytical solutions are known. In the MHD model, we solved the full set of ideal MHD
equations by means of the modified two-step Lax-Wendroff algorithm. The initial perturbation was chosen to generate preferentially
the fast sausage magnetoacoustic waves. To determine the dispersion characteristics of MHD waves in the Harris current sheet, we
numerically solved the equation of plasma motions by means of the Runge-Kutta fourth order method together with the bisection
iteration one. To establish some diagnostics of these waves and their corresponding flare current sheets, we used the wavelet analysis
method.

Results. We find that the results of tests of our 2-D MHD and wave dispersion models for the density slab are in good agreement with
analytical results. We analyze the magnetoacoustic waves in the current sheet and compare them with those in the density slab. In
both cases, for similar geometrical and plasma parameters, we find that wave trains were generated and propagated in a similar way.
Their signals registered at selected locations of the Harris current sheet and density slab are also similar. Nevertheless, a dependence
of the period of the magnetoacoustic waves on the width of the Harris current sheet differs from that for the density slab. The form
of the wave front inside the current sheet similarly differs from that in the density slab. We find that the wavelet spectra of the signals
of incoming magnetoacoustic waves at selected locations in the current sheet have the form of wavelet tadpoles. We distinguish that
the form of these wavelet tadpoles becomes longer and the heads of the wavelet tadpoles are detected later in time as the distance of
the detection point from that of the initial wave perturbation increases. We also find that the wavelet tadpole period depends on the
plasma beta parameter. The results are discussed from the point of view of their use as diagnostics of the flare current sheets or flare

loops.
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1. Introduction

Oscillations and magnetohydrodynamic (MHD) plasma waves
play a very important role in the many phenomena observed in
the solar atmosphere (see e.g. Priest 1982; Aschwanden 2004).
These MHD waves and oscillations have been analyzed by the-
oretical and numerical research Nakariakov et al. (2004, 2005),
Selwa & Murawski (2004), Selwa et al. (2005, 2007), or Jelinek
& Karlicky (2009, 2010). The various oscillation modes in solar
coronal loops have been observed with highly sensitive instru-
ments such as SUMER (SoHO) and TRACE, as well as by more
recent missions, e.g., EIS/Hinode or EUVI/STEREO. The ob-
served oscillations include propagating waves similar to those of
DeMoortel et al. 2002 and slow standing magnetoacoustic waves
similar to those described by Ofman & Wang (2002), as well as
a branch of fast magnetoacoustic waves, horizontal kink, verti-
cal kink, and fast sausage waves (see e.g. Aschwanden 2004 or
Wang & Solanki 2004).

The impulsively generated MHD waves and oscillations
can be excited by various processes in the solar corona. The
impulsive flare process, which provides either single or mul-
tiple sources of disturbances, is the most probable one. The
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impulsively generated magnetoacoustic waves are trapped in re-
gions of higher density, i.e. in regions with a lower Alfvén speed,
which act as waveguides. The periodicity of propagating fast
sausage waves is formed by the time evolution of an impulsively
generated signal (see Roberts et al. 1983, 1984; and Murawski &
Roberts 1994). These waves in a coronal waveguide have three
distinct phases: 1) periodic phase (long-period spectral compo-
nents arrive as the first at observation point); 2) quasi-periodic
phase (as both long and short-period spectral components arrive
and interact), and finally; 3) decay (or Airy) phase (as the signal
passes), (Roberts et al. 1984).

The wavelet analysis of impulsively generated (fast sausage)
magnetoacoustic wave trains shows the typical tadpole shape
where a narrow-spectrum tail precedes a broadband head. These
tadpole signatures (wavelet tadpole) were firstly observed by the
SECIS instrument in the 1999 solar-eclipse data (see Katsiyannis
et al. 2003). Similarly, Mészarosova et al. (2009a,b) detected, for
the first time, the tadpoles in the wavelet spectra in some radio
sources, which have also been confirmed numerically, see e.g.
Nakariakov et al. (2004, 2005).

Karlicky et al. (2011) found the wavelet tadpoles in sources
of narrowband dm-spikes. They concluded that these wavelet
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tadpoles indicate that magnetoacoustic waves propagate in the
global current sheet (current layer) in the turbulent reconnection
outflows. This paper served as a motivation of a more extended
and detailed study of magnetoacoustic (fast sausage) waves in
the current sheet. In particular, much interest has been placed on
the parameters of the current sheets (e.g. the current sheet width,
the plasma beta parameter, and the distance between the wave
initiation and detection sites) that influence the detected signal
and its corresponding wavelet spectrum. Assuming that these
waves modulate the radio fluxes (or even UV fluxes) in various
locations of the current sheet, we propose that this knowledge
can help us to determine the parameters of flare current sheets.
For model tests and comparison, a similar study of the density
slab was made. Therefore, a similar method can be used to de-
termine the diagnostics of the density slabs, which correspond to
flare loops in coronal conditions.

The structure of the present paper is as follows. Section 2 de-
scribes our numerical models, and Sect. 3 contains initial condi-
tions and a form of initial perturbations. In Sect. 4, the numerical
results, obtained by means of our computer models, are shown
and discussed. Finally, in Sect. 5 our conclusions are presented.

2. Numerical model

2.1. Numerical solutions of MHD equations
In our present model, we describe the plasma dynamics by the

ideal magnetohydrodynamic equations (see Priest 1982; Chung
2002)

de
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where o is a mass density, v is the flow velocity, p is the gas
pressure, and B is the magnetic field. The plasma energy density
U is given by

2
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g

2u0”

where the adiabatic coefficient is y = 5/3, and the flux vector S
is expressed as

2
S=(U+p+B—)v—(vB)£' (7)
2o Ho

The magnetohydrodynamic Egs. (1)—(4) were transformed into
a flux conserving form, i.e.

ﬂ N OF(Y) N oG(Y)
ot 0x oy
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and solved numerically. The vector ¥ in the two-dimensional
case is expressed as

o
PUx
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The vector functions F(¥) and G(¥) are too complex to be re-
produced here, hence for more information we refer to either
Sankaran et al. (2002) or Chung (2002).

For the numerical solution of this type of equations, we used
the modified two-step Lax-Wendroft algorithm (Kliem et al.
2000). The numerical region was oriented in the x, y-plane, im-
plemented at 0 < x < L and 0 < y < H and covered by a uni-
form grid with 1250 x 300 cells. Open boundary conditions were
applied and the time step satisfied the Courant-Friedrichs-Levy
condition in the form given by Chung (2002)

CFLAx

~ max(cs + [v])’ (10)

where CFL = 0.8 is called the Courant number.

To stabilize the-two step Lax-Wendroff numerical scheme,
we applied artificial smoothing (see Sato & Hayashi 1979). At
each grid point, all variables were replaced after each full time
step of the algorithm according to the formula

S+ P
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(11)
with the coefficient 4 = 0.98 during the simulation (see Kliem
et al. 2000).

2.2. Calculations of phase and group speeds

For the calculations of phase and group velocities of plasma
waves in current sheets and the density slab, we numerically
solved the wave equation for plasma motions, as described by
e.g. Smith et al. (1997), Roberts (1981a,b), or Edwin & Roberts
(1982, 1983), where the equilibrium parameters of the loop (den-
sity and pressure) depend on the y coordinate

d dy,
d_y [f(y)d_y] +o (w2 - kxvilf) vy =0, (12)
where v, is the velocity component normal to the magnetic field,
w is the frequency, k, is the longitudinal wavenumber along the
sheet, and the Alfvén speed is calculated as v}, = B*/uo0.

The function f(y) from Eq. (12) is expressed as

~ gc? (w2 - k)%.c%)

L prwrey (13)

where ¢, = (yp/o)'/? is the sound speed. The tube speed cr

and fast speed c¢ are implied as cr = covar/(c? + vi)"* and
cr = (c2 +v3,)"?, respectively.

Equation (12) has a singular point called either the cusp res-
onance or cusp singularity. This point plays an important role in
the case of slow magnetoacoustic waves, whereas it is not seen
in numerical simulations of the fast magnetoacoustic waves (see
e.g. Zhukov 1989).
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Fig. 1. The sketch of a 2-D Harris current sheet (or density slab) con-
sidered to be along the x-axis. Positions of the initial pulse Lp, data
collection Lp, and magnetic field orientations are shown.

The second order ordinary differential Eq. (12) is rewritten in
terms of two first order equations in the new functions &) and &

dv,
& = f(y)d—y, & =y, (14)
such that
d
diy‘ = o (ki — ?) &, (15)
and
der _ &1
Ay fy) (16

The boundary conditions at the point y = 0 for the “kink” mode
are given by & = 0,& = c. The “sausage” mode satisfies the
conditions &1 = ¢ f(0), & = 0, whereas the constant c is arbitrary
in both cases.

To obtain a solution of Eq. (12) we used a fixed value of &,
and integrating between y = 0 and y = ymax the two first order
Egs. (15) and (16) by means of the Runge-Kutta fourth order
method. The exact value of the frequency w was obtained with
the bisection iteration method when the velocity v, satisfied the
boundary condition at the second point v,(y = Ymax) = 0 for both
wave modes (kink and sausage mode).

3. Initial conditions and perturbations

The sketch of the studied two-dimensional (2-D) solar coronal
structure is shown in Fig. 1. The arrows show the positions of
the initial perturbation at Lp, the point where the data were de-
tected at Lp, and the orientation of the magnetic field in both of
the studied cases, the first the density slab with the parallel mag-
netic field (solid arrow) and the second the Harris current sheet
(dashed arrows).

The length and width of the simulation region, for both stud-
ied cases, were L = 100 Mm and H = 24 Mm, respectively.

In the dense part of the density slab and the whole simulation
box of the Harris current sheet, the temperature was assumed to
be constant, at T = 107 K, and the corresponding sound speed
is cg ~ 166 T = 525 kms~! (see Priest 1982). In the state of
equilibrium, we assumed the initial plasma velocity v = 0 and
calculated the initial energy density Uy from Eq. (6).

In view of our interest in studying impulsively generated
wave trains in the solar coronal structures, we launched a pulse in
the velocity in the y-axis direction. The point where the velocity
is perturbed was located at (Lp, H/2), (see Fig. 1) and the initial
velocity pulse followed a (Gaussian) profile (see e.g. Nakariakov
et al. 2004, 2005)

(x—Lp>r [<y—H/2)]2
T sl T

% A7)

v, = Apg— exp[

X

where Ag = 1.5 x 10* ms~! is the initial amplitude of the pulse,

and A, = 1.5Mm and 4, = 0.5 Mm are the widths of the velocity
pulse in the longitudinal and transverse directions, respectively.
This type of pulse generates preferentially the sausage waves.
The initial pulse in the velocity was generated at the start of the
numerical simulation at time ¢ = 0 s.

3.1. Density slab

The flare loop in this case is represented by a slab with a half-
width w = 1 Mm. The slab is embedded in a magnetic environ-
ment with a magnetic field given by the plasma beta parameter

2
B = P _ ,U(;P’
Pmag B
where the plasma beta S is assumed to be 0.1. The magnetic field
is parallel to the x-axis (see Fig. 1) and is assumed to be constant
in the whole simulation region.

The mass density profile in a flare loop along the x-axis is
also considered to be constant, and along the y-axis the mass
density profile is expressed by the formula (see Nakariakov &
Roberts 1995)

o(x, ) = 00 + (051 — 00) sech? {[@} },

where the power index @ determines the steepness of the profile.
The cases where the power index a equals either unity or in-
finity correspond to the symmetric Epstein profile or to the step
function profile, respectively (see Nakariakov et al. 2005). In this
study, @ = 8 was used for the calculations. The exact values of
the mass density of the magnetic environment o, as well as the
mass density in the center of the slab o is given in Sect. 4.

(18)

19)

3.2. Harris current sheet

The magnetic field in this current sheet is given by the equation

- H/2
B = B,y tanh [M} e, (20)
Wes
where B,y is the magnetic field at y — oo and wg is the half-
width of the current sheet, wes = 1 Mm.

Magnetic field Boy is determined from the equation

/2 s
Bout — MO Pcs .
1+

The kinetic pressure at the center of the current sheet p is
calculated from the plasma density at the center of the current
sheet o.s. We assumed that the plasma beta parameter outside of
the current sheet is the same as in the case of density slab, i.e.
B =0.1.

Because of the zero magnetic field at the center of the current
sheet B.; = 0, one can calculate, from the condition of equilib-
rium, of

2
p + — = const,,
2o
that the distribution of the mass density in the simulation box is
as follows

21

(22)

2
mB(y)
2/10]{3 T ’
where m is the proton mass, p is the magnetic permeability, and
kg is the Boltzmann constant.

o(X, y) = Ocs — (23)
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4. Results

We present our numerically obtained results, firstly for the sim-
ple density slab and the Harris current sheet and secondly by
comparing the numerical results for both magnetic structures.

4.1. Density slab

We show the results that we obtained for a simple flare loop —
density slab in the magnetic field oriented parallel to the slab.
We analyzed the incoming signal and compared the calculated
period of the wave signal by the wavelet method with the an-
alytical formula. The location of the perturbation point was
Lp = {L/6,H/2} and the position of the point where the data
were collected was Lp = {L/2, H/2}, respectively (see Fig. 1).

To estimate the period of the wave signal, we use the equa-
tion provided by Roberts (1984)

2w | 00
JOVAIf Osl

P =

~ 2.6w/varf, (24)

where op and vas are the values of mass density outside and the
Alfvén speed inside the density slab, respectively. The square
root in the Eq. (24) can be neglected when og > 0¢; we then ob-
tain the period in the form shown on the right side of the equa-
tion, because jo ~ 2.4 is the first zero of the Bessel function
Jo(x).

In the presented case, the mass density of the magnetic en-
vironment is o9 = 6.082 x 10~'> kgm™ and the mass density
at the center of the slab is oy = 6.688 x 107! kgm™, i.e. the
mass density ratio d = op/0s = 0.091. Thus, from Eq. (24) we
obtained the period of the wave signal P ~ 6.8 s.

In Fig. 2, we also compare the results of different numerical
tests. In its upper part, the time evolution of the incoming sig-
nal and the times when the first signal is detected T, as well
as the time of the decay phase Tgqp, is shown. In the middle
panel, the global wavelet spectrum of the incoming signal (full
line) with the dominant wave period P, and the 99% significance
level (dash-dotted line) (see Torrence & Compo 1998) is shown.
The most dominant period in this wavelet spectrum is the period
P =~ 7.0 s. This “mean” period is in good agreement with that
given by the analytical Eq. (24), derived for the typical period of
oscillation in the density slab. Finally, in the bottom part of the
figure, we display the group speed of the wave vg;.

To asses the quality of our numerical model, we calculated
the wave periods for different half-widths of the density slab (see
Table 1 second column). The computed values show a linear de-
pendence on the density slab half-width w, which is in agreement
with the analytical Eq. (24).

To estimate the time of the decay (Airy) phase of the wave
signal, we found the minimum of the group velocity, (see Fig. 2
bottom), v™" = 0.2542va150 = 3.27 x 10° ms™!, where vair
is the Alfvén speed outside the density slab. The time of decay
phase is then Tqp, = |Lp — Lp|/v‘g’}in ~ 102.0 s (see Roberts et al.
1984). The time, when the first signal arrived is calculated as
Tt = |Lp — Lp|/vairo = 25.9 s, which should be compared with
these values in the upper panel of Fig. 2.

Our presented results served mainly to verify that our numer-
ical code works properly and the numerical results are compara-
ble to the results obtained by means of known analytical formu-
lae. After these successful tests, we applied our numerical codes
for the calculations to more complicated structures in the solar
corona, such as the Harris current sheet.
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Fig.2. Upper panel: time evolution of the mass density o(Lp =
{L/2,H/2},1). Middle panel: the global wavelet spectrum of the incom-
ing signal (full line) with dominant wave period P, and the 99% sig-
nificance level (dash-dotted line). Bottom panel: the group speed of the
wave vy, = dw/dk in units of the external Alfvén speed as a function of
wave number k,w (bottom panel). All for the density slab.

Table 1. Wave periods calculated by wavelet analysis for three selected
half-widths w.

w[Mm]  Pggp [s]  Pcs [s]
1.00 7.0 6.8
1.25 8.6 7.6
1.50 104 8.2

Notes. Periods for the density slab (second column) and for the Harris
current sheet (third column) are shown.

4.2. Harris current sheet

We present the numerical results obtained for the Harris cur-
rent sheet configuration. We compare our results for different
widths of the current sheet as well as for different plasma beta
parameters.

In this studied case, we used values of the mass density sim-
ilar to those of simple density slab, i.e. the mass density out-
side the Harris current sheet was gy = 6.082 x 10712 kgm™
and the mass density at the center of the current sheet was
ocs = 6.688 x 107! kg m™3. The location of the point where the
velocity is perturbed was placed at Lp = {L/6, H/2} and the po-
sition of the detection point was assumed to be Lp = {L/2, H/2},
respectively.
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Fig. 3. Comparison of wave signals (left column) and corresponding wavelet tadpole shapes (right column) for two different widths of the Harris
current sheet; wes = 0.50 Mm (first row) and wes = 1.50 Mm (second row). The data were recorded in the position Ly = {L/2; H/2}.

4.2.1. Current sheet width

In Fig. 3, we compare the of wave signals and the corresponding
wavelet tadpole shapes for two different widths of the Harris cur-
rent sheet. For the calculations, we used the widths of the Harris
current sheet wes = 0.50 Mm and wes = 1.50 Mm. The plasma
beta parameter was 8 = 0.1.

The figure shows that as the width of the Harris current sheet
increases, the wave period also increases. However, this increase
in the wave period is smaller than that for the density slab, as
can be seen comparing the second and third columns of Table 1.
Analyzing this difference, we conclude that it is caused by dif-
ferences in the density and magnetic field profiles of both struc-
tures. In the density slab, its boundaries are similar to those of a
step function for a broad range of half-widths (as in the analyti-
cal approach), while the current sheet profile becomes broader
and less steep as the half-width increases. We also analyzed
the average propagation speeds in the density slab and current
sheet and found that after increasing the widths of both struc-
tures their average propagation speeds insides them remain prac-
tically the same. The average propagation speeds in the density
slab and the current sheet for the same width are comparable.
Considering these results and the values of the periods shown
in Table 1, we can conclude for the current sheet that, if there
is a relation similar to that for the density slab (Eq. (24)), then
the constant of the proportionality in this relation for the current
sheet is a slowly decreasing function with the increasing width
of the current sheet, instead of the constant 2.6 for the density
slab (Eq. (24)).

The wavelet analysis of the wave signal also reveals that for
higher values of the Harris current sheet half-width, the wavelet
tadpoles become shorter and the heads of the wavelet tadpoles
are more distinct. These results agree with those presented in
Nakariakov et al. (2005), where the longitudinal driver width
was varied for a fixed width of the density slab. As shown by
Nakariakov et al. (2005), narrower longitudinal drivers produce
a broader k-spectrum above the cutoff for wave propagation and
thus a broader interval of periods is detected.

4.2.2. Plasma beta parameter

Figure 4 shows the comparison of wave signals and correspond-
ing wavelet tadpole shapes for two different plasma beta param-
eters. We present the results for plasma beta parameter 5 = 0.01
and 8 = 0.05, which are typical of values in the solar corona (see
Aschwanden 2004).

We found that the higher the plasma beta parameter is, the
shorter is the observed wave period. We compare these results
with the value of the wave period in Fig. 11 (right column) for a
plasma beta parameter 8 = 0.1.

We can also see that the changes in the plasma beta param-
eter have almost no effect at all on the shapes of the wavelet
tadpoles. However, the time of the “first” signal is later in the
case of a lower value of the plasma beta parameter. This is be-
cause when the plasma beta parameter decreases, the external
Alfvén speed vairp increases, hence the arrival time of the first
signal decreases.

In Fig. 5, we depict the group speeds of the magnetoa-
coustic waves for two different plasma beta parameters. The
graphs show the positions and values of the minimum group
speeds Ugp, min-

The minima of the group speed for the plasma beta param-
eter of 8 = 0.05 were found to be Vg min = 0.18va1r0 = 3.27 X
10° ms~!, and for a plasma beta 8 = 0.10 the minimal value of
the group speed was Ugrmin = 0.26va150 = 3.34 X 10° ms~!, re-
spectively. In spite of the different ratio of minimal group speed
to external Alfvén speed vgrmin/vairo for both of the studied
cases, the time of the decay (Airy) phase is very similar (because
of the very similar minimal group speeds vg min) at Tgp ~ 110 s
(see Fig. 4 for comparison).

4.3. Comparison of the density slab and the Harris current
sheet

To compare the numerical results obtained for the density slab
and the Harris current sheet, we use the physical quantities 8 =
0.1, W] = WS = 1.0 Mm.

The perturbation point was located at Lp = {L/6, H/2} for
all cases that we studied and compared, whereas the detection
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Fig. 4. Comparison of wave signals (left column) and corresponding wavelet tadpole shapes (right column) for plasma beta parameters 8 = 0.01
(first row) and 8 = 0.05 (second row), calculated for the Harris current sheet. The data were recorded in the position Ly = {L/2; H/2}.
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Fig. 5. Group speeds of the waves in units of the external Alfvén speed
vairo as the functions of wave number k,w for plasma beta parameter
B = 0.05 (upper panel) and 8 = 0.10 (lower panel). The minimal values
of the group speed v, are shown by arrows, and calculated for the Harris
current sheet.

point Lp was placed at several points in the x-y plane to help im-
prove our understanding of the nature of incoming wave signals.

4.3.1. Wave propagation

The numerical results calculated for the density slab (Fig. 6) and
the Harris current sheet (Fig. 7) are compared. In both of these
figures, we present the pressure variance Ap = p(t) — p(0) at
various times ¢ during the wave evolution.

Comparing the contours of the pressure variance Ap, we can
see that from the global point of view the results are similar.

A46, page 6 of 10

Nevertheless, when we study our resuts in detail (see e.g. Figs. 8
and 9), we can recognize differences, especially in the central
parts of both the structures, where, in the Harris current sheet,
the magnetic field, as well as the Alfvén speed is close to zero.

Since the wave evolution in the waveguide is determined by
the dispersive properties of the waveguide as a whole, the global
similarity of the evolution of both of these structures means that
these structures have similar dispersive properties. However, dif-
ferences found between the central parts of these structures are
caused by local differences between the magnetic field and den-
sity profiles.

4.3.2. Incoming signals at different detection points

We compare the various wave signals entering the Harris current
sheet in Fig. 10. To display the incoming wave signal, we used
the time evolution of the mass density variance Ap = o(f) — o(t)
at the detection point Lp. The point Lp where the data were
collected was placed at six different positions in the numerical
box. The three rows correspond to three points in the x-direction
(L/4,L/2,and 3L/4), whereas the two columns of the figure cor-
respond to two points in y-direction (H/2 and 3H/4).

When we compare the two columns of Fig. 10, it is evident
that the signal at the center of the Harris current sheet has the
shape, consisting of distinct phases, described in Roberts (1984).
Using the wavelet analysis method, the typical tadpole shape was
obtained (see Fig. 11). It is also clearly visible that the number
of wavelengths depends on the position of the detection point
Lp. This is again because the first waves to arrive are the fastest
ones. The farther away the detection point is, the more waves
(long and short period waves) are mixed.

On the other hand, from the second column of both figures
we can see that the changes in the density variance here are not
as high as at the center of the Harris current sheet. The shapes
of these signals also differ from those in the first column. These
signals are probably a mixture of several waves.
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Fig. 6. The time evolution of the pressure variance Ap = p(7) — p(0) at various times ¢, depicted as the contours for the density slab. The borders
of the density slab are drawn as the black lines (wg = 1.0 Mm).
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Fig. 7. The time evolution of the pressure variance Ap = p(t) — p(0) at various times #, depicted as the contours for the Harris current sheet. The
width of the current sheet is bordered by black lines (wcs = 1.0 Mm).
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Fig. 8. Detail of the pressure variance Ap at the time ¢t = 26.4 s for the
density slab. The black lines represent the borders of the density slab
(wg = 1.0 Mm).

4.3.3. Forms of wavelet tadpoles

Figure 11 shows the wavelet tadpoles calculated by means of
the wavelet analysis for three different positions of the detection
point, Lp = {L/4, H/2},{L/2, H/2}, and {3L/4, H/2}, in the den-
sity slab and in the Harris current sheet — as shown in the left and
right column, respectively.

The shapes of the wavelet tadpoles of both of these structures
were found to be very similar at all detection points. This is in
good agreement with our previous findings about the behavior of
the magnetoacoustic waves close to the center of the Harris cur-
rent sheet. The form of these wavelet tadpoles becomes longer
and the heads and tails of the wavelet tadpoles are detected later
in time as the distance |Lp — Lp| of the detection point increases
away from that of the initial wave perturbation. The evolution of
the detected signal with time is in good agreement with our ex-
pectations based on the analytical expressions for the estimation
of the “first signal” arrival as well as the time of the decay (Airy)
phase. The prolongations of the wavelet tadpoles, which depend
on the location of the detection point Lp, are due to the mixing
of different phases of incoming magnetoacoustic waves and are
in ratios of detection and perturbation point distances.

In the same figure, it can be seen that the periods of these
wavelet tadpoles partly change because of the way in which they
depend on the position of the detection point Lp. From the global
wavelet spectrum, we have found that the periods of the wave
signals for the density slab and the Harris current sheet are as
follows: PL/4 = 6.8 S, PL/2 =7.0 S, P3L/4 =73s and, PL/4 =
6.3s, Prjp = 6.8, P3ry4 = 7.2 s, respectively.

5. Conclusions

Using the 2-D MHD model, we have studied numerically the
propagation of magnetoacoustic waves in two different struc-
tures: a) the density slab with the straight magnetic field oriented
along this slab; and b) the Harris current sheet. To obtain the
phase and group speeds of propagating magnetoacoustic waves,
we have numerically solved the wave equation of plasma mo-
tions. For the analysis of numerically calculated wave signals,
we used the wavelet method.

In the case of the density slab, we compared the results of our
numerical computations with analytical expressions. We found
that the numerically obtained periods of wave signals, as well as
their dependence on the slab half-width, are in good agreement

A46, page 8 of 10
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Fig. 9. Detail of the pressure variance Ap for the Harris current sheet at
the time 7 = 26.4 s. The black lines represent the borders of the current
sheet (wes = 1.0 Mm).

with those calculated using analytical formulae. We compared
how the times of the wave signal arrivals depend on the position
of the detection point Lp using the numerically calculated and
analytically derived group speeds of this wave. Since there was
good agreement between the numerical and analytical results,
we applied the numerical model for the Harris current sheet. The
mutual comparisons of the results were made for both of these
studied cases.

We found that from a global point of view magnetoacoustic
waves in both cases evolve in a similar way. Nevertheless, there
are differences in the central parts of these structures because of
their different magnetic field profiles. Owing to the same reason,
the dependences of the wave period on the half-width of these
structures partly differ.

Considering these similarities and differences, one can con-
clude that without any additional information (e.g. information
about the radio source location) it will not be easy to distinguish,
in terms of diagnostics, between both of these cases. There may
be an opportunity to resolve them in the form of the wavelet
spectra derived e.g., in the analysis of the flare radio emission
during solar flares (Mészdrosova et al. 2009c). In particular,
some unusual wavelet tadpoles have already been simulated, as
well as observed, that be able to resolve these cases. However,
this is beyond the scope of this paper and will be studied in more
detail in further studies.

From the point of view of the diagnostics of either flare
current sheets or flare loops, the most important measurements
and findings are: a) the periods that can be used to estimate
the half-width of these structures; and b) that the wavelet tad-
poles become longer and their heads are detected later in time
when increasing a distance between the detection and perturba-
tion points. Thus, it is possible to estimate a distance between
the radio source, for which modulated signal is analyzed, and
the region where the magnetoacoustic wave is initiated. In spe-
cial cases, we can even record the magnetoacoustic wave prop-
agating along the density slab or the current sheet. For exam-
ple, we can permit the magnetoacoustic wave to propagate along
these structures upwards in the solar atmosphere and ensure that
this wave modulates the radio emission (produced by the plasma
emission mechanism) at lower radio frequencies. The wavelet
spectra at these frequencies would then show us how the wavelet
tadpoles have shifted in time, corresponding to the propagating
magnetoacoustic wave train. Each tadpole corresponds to a spe-
cific plasma frequency, i.e. to specific plasma density and height
in the solar atmosphere, if some density model of the solar at-
mosphere is assumed.
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