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cluster and �eld IR LFs, and con�rmed that there is an increase
in the fraction of luminous IR galaxies (LIRGs1) with cluster-
centric distance, out to 1.5 virial radii2, where it is still below
the �eld value. Temporin et al. (2009) also noted the absence
of LIRGs from the central regions of a sample of 32 X-ray se-
lected clusters. Recent Herschelobservations provide evidence
of a lack of IR galaxies not only at the bright end but also the
faint end of the IR LF of the nearby Virgo cluster relative to the
�eld (Davies et al. 2010).

The environmental dependence of the fraction of high-SFR
galaxies may not be a simple function of cluster-centric distance.
Fadda et al. (2008, Paper 0) detected a large-scale �lament3 in
the IR, connecting a rich and a poor cluster at z � 0.2. They
observed that the fraction of high-SFR galaxies is largest in the
�lament, i.e. larger than in the cluster core, but also larger than
in other, lower density, regions of the supercluster. The �lament
detected by Fadda et al. (2008) was the �rst to be found via
IR observations (with Spitzer); Herschelobservations have re-
cently revealed other large-scale structure �laments traced by
IR-emitting galaxies (Haines et al. 2010; Pereira et al. 2010),
but the analysis of their galaxy populations is still ongoing.

Koyama et al. (2008, 2010) observed that the medium- and
low-density regions of another (more distant, z� 0.8) superclus-
ter host comparable fractions of star-forming galaxies, while red
mid-IR emitters are preferentially located in medium-density en-
vironments, such as galaxy �laments. Both Fadda et al. (2008)
and Koyama et al. (2010) argued that star-formation is trig-
gered in galaxies in the infall regions around clusters. Gallazzi
et al. (2009) came to the same conclusion after analyzing the
IR galaxy population in a z = 0.165 supercluster. They also
found that while the IR galaxies prefer to live in medium-
density environments, their SFRs are not particularly high for
their stellar masses (M�), i.e. they have normal speci�c SFRs
(sSFR � SFR/M�).

Groups are another environment characterized, as in the case
of �laments, by galaxy densities intermediate between cluster
cores and the �eld. Tran et al. (2009) determined the IR LFs of
a rich galaxy cluster and four galaxy groups at z � 0.35. The
fraction of galaxies with a high SFR was found to be four times
larger in the groups than in the cluster, or equivalently, the group
IR LF has an excess at the bright end relative to the cluster IR
LF. On the basis of this result, Chung et al. (2010) interpreted
the excess of bright IR sources in the IR LF of the Bullet cluster
(z � 0.3) as being due to the galaxy population in an infalling
group (the �bullet� itself).

The IR LF not only depends on the environment, but also
on redshift. Bai et al. (2009) compared the average IR LFs
of two nearby (z � 0.06) and two distant (z � 0.8) clus-
ters (using the data of Bai et al. 2006, 2007). They concluded
that there is an evolution with z of both the characteristic lu-
minosity L�IR and the normalization of the LF, n�, such that
higher-z clusters contain more and brighter IR galaxies. This

1 LIRGs are galaxies with a total (8�1000 µm) IR luminosity
LIR � 1011 L�.
2 The cluster virial radius, r200, is the radius within which the enclosed
average mass density of a cluster is 200 times the critical density. The
circular velocity v200 is de�ned as v200 = 10 H(z) r200. The virial mass
M200 follows from the two previous quantities, M200 = r200v2200/G
3 In Paper 0, we originally identi�ed two �laments, running almost
parallel in projection in the sky, but slightly separated along line-of-
sight velocity space. Subsequent spectroscopic observations indicate
that the two �laments merge into one at large distances from the A1763
cluster core. For simplicity, we therefore here refer to a single �lament
in the supercluster.

evolution of the cluster IR LF results in a rapid increase with
z in the total SFR of cluster galaxies divided by the total clus-
ter mass, �SFR/mass � (1 + z)5.3, a result anticipated by Geach
et al. (2006), who suggested an even faster evolution. Another
way to characterize this evolution is to look at the fraction of
IR-emitting galaxies (above a given IR luminosity, LIR) as a
function of z. This fraction is observed to increase with z, a phe-
nomenon called �the IR Butcher-Oemler e�ect� (Saintonge et al.
2008; Haines et al. 2009a; Temporin et al. 2009), since it is rem-
iniscent of the increasing fraction of blue cluster galaxies with
z (Butcher & Oemler 1984). The increasing fraction of LIRGs
with z appears however to be a common phenomenon in cluster
and �eld environments (Finn et al. 2010).

To shed light on the physical processes responsible for the
environmental and redshift dependence of the IR LF, we present
a study of the IR LF of galaxies in the z = 0.23 A1763�A1770
supercluster. Our analysis is restricted to the part of the super-
cluster that includes the rich cluster A1763, part of the �lament
connecting the two clusters (see Paper 0), and the outskirts re-
gion around the A1763 cluster core, excluding the �lament itself
(see Sect. 3.3).

In Sect. 2, we describe our observational data-set (Sect. 2.1),
assign supercluster memberships to the observed IR galaxies
(Sect. 2.2), and determine their total IR luminosities (Sect. 2.3)
and stellar masses (Sect. 2.4). In Sect. 3, we describe the correc-
tions applied to the IR galaxy counts (Sect. 3.1) to determine the
supercluster IR LF (Sect. 3.2). We then determine the corrected
IR LFs of three di�erent regions of the A1763 supercluster to ex-
plore environmental e�ects (Sect. 3.3). We compare our results
with previous results from the literature in Sect. 3.4. In Sect. 4,
we discuss our results and summarize them in Sect. 5.

We adopt H0 = 70 km s�1 Mpc�1, �m = 0.3, �� = 0.7
throughout this paper. In this cosmology, 1 arcmin corresponds
to 222 kpc at the cluster redshift.

2. The data set

2.1. Observations

The data used in this study were obtained as part of a multi-
wavelength observational campaign conducted with several
space- and ground-based telescopes. Details are provided in
Edwards et al. (2010a, Paper 1). Here we summarize the main
characteristics of the data set. A �eld of �40 × 55 arcmin2 cen-
tered on the A1763 cluster was covered by MIPS 24, 70, and
160 µm observations from Spitzer. Two similar �elds were also
covered by IRAC 3.6, 4.5, 5.8, and 8.0 µm observations from
Spitzer.A similar area was observed with the Palomar 200 inch
telescope in the r 	, J,H, and Ks �lters. In addition, we obtained
spectroscopic observations for galaxies across the supercluster
region, using the KPNO WIYN and TNG telescopes (paper in
preparation). Finally, the A1763 �eld was covered by the Sloan
Digital Sky Survey (SDSS hereafter) in the u	, g	, r 	, i	, z	 photo-
metric bands, and we collected all data available in the A1763
�eld from the SDSS Seventh Data Release (DR7 hereafter). We
use Petrosian magnitudes and total �uxes in the following anal-
yses.

Our sample contains 10876 objects identi�ed at 24 µm in the
MIPS �eld. The observational technique as well as the depth of
our MIPS observations are very similar to those of the �veri�ca-
tion survey� in the SpitzerSpace Telescope Extragalactic First
Look Survey (EFLS hereafter; Fadda et al. 2006). For this rea-
son, we assume that the completeness and purity functions of the
EFLS and those of our survey are identical. This is a conservative
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Fig. 1. The rest-frame velocities versus cluster-centric distances of the
galaxies with available z. The vertical solid pink line marks the distance
to the cluster virial radius, r200. Black dots represent the 357 galax-
ies selected as supercluster members by the algorithm of Mamon et al.
(2010), interlopers are marked by X�s. Red circles identify 24 µm emit-
ters. 153 of them are selected as supercluster members.

assumption because the EFLS sources were selected using the
peak signal-to-noise ratio, while here sources were selected us-
ing the aperture signal-to-noise ratio, which is more e�cient in
the rejection of false detections. Completeness, Cdet, is de�ned
as the fraction of real sources that are detected, and purity, Pdet,
is de�ned as the fraction of real sources among the detected
ones. The completeness is Cdet � 80% at 24 µm �ux densities
f24 = 0.2 mJy, and close to 100% at f24 > 0.4 mJy. The purity
is Pdet � 95% at f24 � 0.2 mJy and above (see Fig.13 in Fadda
et al. 2006).

We base the determination of the IR LFs on the sample
of 24 µm-detected IR-emitting galaxies, since our 70 µm and
160 µm observations are not as deep. About 60% of the 24 µm-
selected objects have f24 � 0.2 mJy and therefore belong to the
sample with �80% completeness and �95% purity. We use these
completeness and purity estimates in the construction of the su-
percluster IR LF (see Sect. 3.1).

2.2. Supercluster membership

To de�ne the supercluster membership of the galaxies in the
cluster �eld, we use both spectroscopic (z) and photometric red-
shifts (zp).

We use the algorithm of Mamon et al. (2010) to identify the
supercluster members among the galaxies with available z. This
algorithm tries to infer the galaxy cluster membership from the
location of the galaxy in the cluster-centric distance � velocity
diagram shown in Fig. 1, based on the modeling of the mass
and anisotropy pro�les of cluster-sized halos extracted from a
cosmological numerical simulation. The procedure is more ef-
fective than traditional approaches (e.g., Yahil & Vidal 1977) in
rejecting interlopers, while still preserving cluster members.

The galaxy rest-frame velocities with respect to the
cluster mean velocity are obtained from the usual rela-
tion v = c(z� z)/(1 + z) (Harrison & Noonan 1979), where
z= 0.2314 is obtained using the biweight estimator (Beers et al.
1990). We then obtain the galaxy projected distances from
the cluster center, de�ned by its X-ray peak emission, RA =
13h35m17.96s, � = 40
59	55.8		 (Cavagnolo et al. 2009).

The algorithm of Mamon et al. (2010) requires initial es-
timates of the virial radius, r200, and circular velocity, v200,
which we obtain from the cluster velocity dispersion estimate of
Paper 0, by following Mauduit & Mamon (2007, Appendix A),
and using the relation of Gao et al. (2008) to infer the concentra-
tion of the cluster mass-density distribution.

We run the procedure on the whole sample of 1364 objects
with available redshift estimates in the supercluster �eld. The
procedure is run iteratively until convergence on the number of
selected members. We identify 357 supercluster members (they
are shown as �lled dots in Fig. 1). Other algorithms (e.g., den
Hartog & Katgert 1996; Fadda et al. 1996) lead to very similar
membership de�nitions. The average cluster redshift and veloc-
ity dispersion determined for this sample of supercluster mem-
bers are z = 0.2315 – 0.0003 and �v = 1051+51

�54 km s�1. We
use these values to estimate the cluster virial radius and circu-
lar velocity as before, �nding r200 = 2.066 Mpc and v200 =
1623 km s�1, which do not di�er signi�cantly from the initially
adopted values.

Of the 357 identi�ed supercluster members, 153 are
24 µm-emitters.

To estimate the supercluster membership for the subset of
galaxies without z, we rely on zp-estimates. We consider six dif-
ferent zp-estimates for the galaxies in our sample. In particular,
we consider the ANNz (Collister & Lahav 2004) and EAZY
(Brammer et al. 2008) algorithms, as well as a �2 minimiza-
tion �tting of the spectral energy distribution (SED, hereafter)
of the galaxies in our sample using SED model templates from
Polletta et al. (2007). We also consider the three zp estimates di-
rectly available from the SDSS DR7. Of these six zp estimators,
we �nally adopt one of those provided in the SDSS DR7, that
based on the Arti�cial Neural Network technique (Oyaizu et al.
2008). This estimator provides the tightest correlation between z
and zp for the subsample of galaxies in the A1763 �eld that have
both quantities available (see Fig. 2).

To select the supercluster members in the sample of
24 µm-emitters on the basis of their zp, we de�ne a zp-range
around the mean supercluster redshift. The lower and upper
zp-limits that de�ne this selection range must be chosen in such
a way as to maximize the number of real supercluster members
with zp within these limits, and, at the same time, minimize the
number of background and foreground galaxies that also happen
to have their zp within these limits. The choice of these zp-limits
can only be based on the sample of galaxies with zp and z, so that
we can perform the most robust zp-based membership selection
possible based on the well-established spectroscopic member-
ship.

We proceed as follows. We assume that the 153 superclus-
ter members selected on the basis of their z are all real mem-
bers. We then determine the zp-distribution of these 153 galax-
ies (shown as a solid black histogram in Fig. 3), as well as the
zp-distribution of the galaxies with z in either the foreground
or the background of the supercluster (dashed blue histogram
in Fig. 3). Using the whole sample of galaxies with z and
zp, we de�ne the purity and completeness to be, respectively4:
Ppm � Npm�zm/Npm�z and Cpm � Npm�zm/Nzm�p, where Nzm�p
is the number of spectroscopically con�rmed cluster members
with available zp, and Npm�z (respectively, Npm�zm) is the number
of galaxies with z (respectively, the number of spectroscopically
con�rmed cluster members) that have zp within a given zp-range.
Following Knobel et al. (2009) we determine the optimal zp

4 For the sake of simplicity hereafter, we use the letter �p� in lieu of
�zp� in the subscripts.
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Fig. 2. SDSS DR7 photometric redshift zp (Arti�cial Neural Network
estimates, Oyaizu et al. 2008) versus spectroscopic redshift z for the
IR-emitting galaxies with available z and zp in the supercluster �eld
(471 galaxies in the displayed zand zp ranges). The solid pink line is the
identity relation z= zp. The dash-dotted red lines indicate the chosen zp
range for membership selection (see text and Fig. 3).

Fig. 3. The zp distributions for the IR-emitting galaxies with available z
in the supercluster �eld. The solid black (respectively, dashed blue) his-
togram represents the zp distribution for the galaxies selected as mem-
bers (respectively, not selected as members) on the basis of their z. The
two vertical red dash-dotted lines identify the lower and upper zp limits
used to identify supercluster members in the sample of galaxies without
z (not shown here).

range by minimizing
√

(1 � Ppm)2 + (1 �Cpm)2. The minimum
is obtained for Cpm = 0.73 and Ppm = 0.42, corresponding to the
zp-range 0.166�0.290. The dependence of Cpm and Ppm on f24 is
not very strong (see Fig. 4). Among the galaxies without z, 314
have zp within this range.

In Fig. 2, the two red dashed lines indicate the chosen zp-
range. It can be seen that most of the supercluster galaxies fall
in that range, but also many of the galaxies that belong to two

Fig. 4. Completeness (Cpm) and purity (Ppm) of the sample of
IR-emitting supercluster members selected on the basis of their zp
(0.166 � zp � 0.290), as a function of f24. Cpm and Ppm are estimated
using the sample of 24 µm-emitters with both z and zp available, and
assuming the members selected on the basis of their z are all real mem-
bers. The black X�s are for the total sample. The red dots, blue squares,
green stars are for the core, �lament, and outskirts subsamples, respec-
tively (see Sect. 3.3 for the de�nition of these subsamples). Horizontal
bars indicate the f24 bin intervals. Vertical bars indicate 1-� uncertain-
ties.

other z-peaks, one at z � 0.17, another at z � 0.29. We con-
sider whether it is possible to increase the purity of the sample
of zp-selected cluster members by identifying and then remov-
ing the galaxy structures responsible for these two z-peaks. The
lower-z peak does not correspond to a concentrated structure in
space. The higher-zpeak does seem to correspond, at least partly,
to a spatial concentration of galaxies, located at the edge of the
observed Spitzer�eld. However, removing the (small) region
corresponding to this (presumed) galaxy concentration from our
analysis has hardly any noticeable e�ect on the results presented
in this paper.

In total, we select 467 IR-emitting galaxies as supercluster
members, 153 on the basis of z, 314 on the basis of zp. We base
the derivation of the supercluster IR LF on both the total sam-
ple of members (the z� zp sample, hereafter), and the sample
of z-selected members (the z sample, hereafter; see Sect. 3.2).
Using both samples allows us to check the in�uence of possible
systematic errors because the z� zp sample is a�ected by sig-
ni�cant contamination by non-real members (low purity), while
the z sample is a�ected by larger incompleteness than the z� zp
sample.

2.3. Total infrared luminosities

To determine the total IR luminosities (LIR) of the 467 super-
cluster members, we �t the galaxy SEDs with two sets of model
templates, one from GRASIL (Silva et al. 1998), the other from
Polletta et al. (2007). These templates span a wide range of
galaxy types, with di�erent formation redshifts, and were used in
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Paper 0 as well as (in part) in Biviano et al. (2004) and Coia et al.
(2005a,b). In total, we consider 61 SED templates of galaxies of
di�erent ages and types, belonging to the following �ve classes:

– ETGs, early-type galaxies;
– SFGs, normal star-forming galaxies;
– SBGs, starburst galaxies;
– PSBGs, post-starburst galaxies;
– AGNs, active galactic nuclei.

We �nd the best-�t templates by comparing the template and ob-
served �uxes via a �2 minimization procedure. To compute the
template �uxes in the observed photometric bands, the templates
are redshifted to the galaxy (photometric or spectroscopic) red-
shifts and convolved with the �lter response curves. The mini-
mization procedure is run interactively, allowing, when needed,
the eye-rejection of deviant photometric data in the �ts of indi-
vidual galaxy SEDs. We �nally determine LIR by integrating the
best-�t model SEDs over the 8�1000 µm rest-frame wavelength
range.

Given the galaxy IR luminosities, we determine the
galaxy SFRs using the relation of Kennicutt (1998),
SFR[M�/yr] = 1.7 × 10�10LIR/L�. This relation is clearly
valid only when a galaxy IR luminosity is not dominated by the
emission from an AGN. Since most galaxies in our sample lack
far-IR photometry, it may be di�cult for us to distinguish AGNs
from galaxies with IR emission dominated by star formation. It
is therefore also worth considering other AGN diagnostics.

In Edwards et al. (2010b, Paper 2), we identi�ed AGNs in the
A1763 region using optical, radio, X-ray data, and IRAC colors.
Nine of the AGNs identi�ed in Paper 2 are in our sample, and
only one of them has been classi�ed as an AGN based on its
SED. This is unsurprising, since AGNs become visible in dif-
ferent bands at di�erent stages of their evolution (Hickox et al.
2009), and since the AGNs identi�ed in Paper 2 in the IRAC
color diagram are at the margin of the AGN-identi�cation region
(see Fig. 6 in Paper 2). We also adopt the AGN classi�cation of
Paper 2 for the 8 galaxies with non-AGN SED classi�cation,
bringing the total of AGNs in our sample to 35 (13 with avail-
able z). We are therefore con�dent we have identi�ed most (if
not all) galaxies with AGN-dominated IR emission.

The relative contribution of the di�erent SED classes in dif-
ferent LIR bins is shown in Fig. 5 for the z�zp sample (the equiv-
alent �gure for the z sample is very similar and not shown here).
Figure 5 shows that SBGs contribute mostly at high LIR, but a
signi�cant fraction of the LIRGs are normal SFGs. The fraction
of SFGs and of PSBGs increases at lower LIR, and SFGs domi-
nate at intermediate LIR. Most of the galaxies at the faint-end of
the IR LF are ETGs. In line with previous results and with our
previous analysis (Paper 2), we �nd the contribution of AGNs to
the IR LF of A1763 to be small (e.g., Geach et al. 2009; Krick
et al. 2009; Chung et al. 2010), and to increase with LIR(e.g.,
Bothwell et al. 2011; Goto et al. 2011).

In order to check the robustness of our SED-based LIR es-
timates we consider alternative estimates based on direct rela-
tions between f24 and LIR, from Rieke et al. (2009) and Lee
et al. (2010). When comparing the di�erent LIR estimates, we
only consider the subsample of 140 spectroscopically con�rmed
non-AGN A1763 members, to be sure that the comparisons are
una�ected by the additional scatter introduced by photometric
redshift errors. In discussing the results of these comparisons,
we refer to our LIR estimates as LIR,SED, to the f24-based LIR es-
timates of Rieke et al. (2009) as LIR,R09, and to the f24-based LIR
estimates of Lee et al. (2010) as LIR,L10.

Fig. 5. The cumulative fractions of galaxies of di�erent SED classes as
a function of LIR, for the z�zp sample. The pink, blue, green, and black-
shaded regions correspond to the fractions of SBGs, PSBGs, SFGs, and
ETGs, respectively (as labeled). The orange and red-shaded regions cor-
respond to the fractions of SED-identi�ed AGNs (mostly at low LIR)
and AGNs identi�ed in Paper 2 from X-ray or radio emission, respec-
tively.

Fig. 6. Comparison of two IR luminosity estimates, LIR,SED/LIR,R09 ver-
sus LIR,SED. Di�erent symbols identify di�erent galaxy SED classes.
Black crosses for early-type galaxies (ETGs), red X�s for active-galactic
nuclei (AGNs), pink diamonds for starburst galaxies (SBGs), blue
squares for post-starburst galaxies (PSBGs), and green circles for nor-
mal star-forming galaxies (SFGs). The dashed line is the biweight aver-
age ratio of the sample of non-AGN galaxies.

The relation between LIR,R09 and f24 is obtained by combin-
ing Eqs. (10), (11), (14), and (A.6) in Rieke et al. (2009), and
by interpolating the values of Table 1 in that same paper at the
mean redshift of A1763. Figure 6 shows LIR,SED/LIR,R09 versus
(vs.) LIR,SED for our sample. There is a reasonably good agree-
ment between the two LIR estimates, with a rather small system-
atic o�set, 
LIR,SED/LIR,R09� = 1.12 – 0.05 (biweight average,
see Beers et al. 1990).

Lee et al. (2010) adopted an empirical approach to the LIR
estimate from 24 µm �ux densities. They stacked 70 and 160 µm
images (taken with Spitzer) around sources detected at 24 µm,
in di�erent redshift and f24 bins. They then determined LIR by
�tting the SEDs of the median �ux densities in the stacks. To
compare our LIR estimates to theirs, we scale their lowest-z bin
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Fig. 7. Upper panel: LIR,SED versus f24 for the galaxies of the z sample
(spectroscopically con�rmed supercluster members). The dash-dotted
line indicates the completeness limit of 0.2 mJy (see Sect. 2). The solid
red line indicates the relation of Rieke et al. (2009), and the solid black
histogram the tabulated values of LIR,SED for di�erent f24 from Lee et al.
(2010), scaled from their lowest redshift bin to the average redshift of
A1763. The meaning of the symbols is the same as in Fig. 6. Lower
panel: ratios of the biweight averages of LIR,SED (AGNs excluded) to
either the tabulated values LIR,L10 (black dots), or the biweight averages
of LIR,R09 (red squares), in bins of f24. In the y-axis label, we generically
use the notation LIR,24 to refer to either LIR,R09 or LIR,L10. Vertical bars are
1� uncertainties in the means; horizontal bars indicate the bin ranges.
The red squares have been slightly displaced along the horizontal axis
for clarity.

values (at an average redshift z= 0.263, private communication
by Lee) to the redshift of A1763, and we estimate the average LIR
of our spectroscopically con�rmed, non-AGN, A1763 members
in the same f24 bins used by Lee et al. (2010).

In the upper panel of Fig. 7, we show the LIR,SED vs. f24 value
for the galaxies of our z sample (spectroscopically con�rmed
supercluster members), as well as the relations of Rieke et al.
(2009) and Lee et al. (2010). In the lower panel of the same
�gure, we display the ratios of the biweight averages of LIR,SED
to either the tabulated values LIR,L10 or the biweight averages of
LIR,R09 in bins of f24. It appears that our LIR-estimates are in-
between those obtained using the relations of Rieke et al. (2009)
and Lee et al. (2010). Overall, these comparisons lend support
to the accuracy of our LIR-estimates.

The small systematic o�sets we observe between our LIR,SED
and either the estimates of Rieke et al. (2009) or those of Lee
et al. (2010) may occur if the SEDs of some galaxies in high-
density regions are not represented by the used model templates,
and if they are atypical of the median SED of the �eld galaxy
population sampled by Lee et al. (2010). We note in particular
that PSBGs from our z sample tend to have LIR,SED > LIR,R09,
and SBGs LIR,SED < LIR,R09 (see Fig. 6). Moreover, we observe
that LIR,SED/LIR,R09 increases with increasing 70 to 24 µm �ux
density ratio, a correlation that is signi�cant at the 99% con-
�dence level. This correlation is similar to that observed by

Fig. 8. The ratio between the 70 and 24 µm �ux densities, f70/ f24 as
a function of f24 for the sample of spectroscopically con�rmed super-
cluster members with available f70. The vertical line indicates the com-
pleteness limit of 0.2 mJy. The two parallel dotted and dash-dotted lines
indicate the detection and, respectively, completeness limit of the 70 µm
catalog, 4.0 and 6.3 mJy, respectively. See Fig. 6 for the meaning of the
symbols.

Rawle et al. (2010) for galaxies in the Bullet cluster, between
the 100 to 24 µm �ux density ratio and the ratio of the SFR
obtained from SED �tting, to the SFR obtained from f24 via the
relations of Rieke et al. (2009). Rawle et al. (2010) pointed out
that the SFRs obtained from f24 via the relations of Rieke et al.
(2009) tend to underestimate the true SFRs in �40% of the clus-
ter galaxies. We note however that no such discrepancy exists for
�eld galaxies (Rex et al. 2010), or at least not for z < 0.5 (Lee
et al. 2010).

Lee et al. (2010) found a trend of decreasing f160/ f24 with
f24, and a less pronounced trend of f70/ f24 vs. f24. They at-
tributed these trends to an increasing AGN contribution to the
IR luminosities of galaxies with higher 24 µm �ux densities. For
our sample, there is an anti-correlation between f70/ f24 and f24
(see Fig. 8), even stronger than the one observed by Lee et al.
(2010). This anti-correlation may however be entirely spurious.
It may originate from an increasing scatter in the f70/ f24 galaxy
colors with decreasing f24, combined with the sensitivity lim-
its of our surveys (see dotted and dot-dashed lines in Fig. 8). A
similar, albeit smaller, e�ect might explain at least part of the
anti-correlation seen by Lee et al. (2010). As for their interpreta-
tion of the anti-correlation, we note that the galaxies with AGNs
do not occupy a special place in our f70/ f24 vs. f24 diagram (red
X�s in Fig. 8). Clearer insight into this issue will however come
from our future analysis of the spectral properties of the A1763
supercluster galaxies (paper in preparation).

2.4. Stellar masses

To determine the galaxy stellar masses, M�, we �t the SEDs
of the 467 supercluster members with the (purely stellar) model
templates of Maraston (2005), adopting the Kroupa (2001) ini-
tial mass function and solar metallicity. We consider only the
short-wavelength parts of the SEDs (rest-frame wavelength � �
4 µm), and allow for dust extinction by modifying the tem-
plate SEDs according to the extinction law of Calzetti et al.
(2000), with E(B� V) a parameter free to vary between 0 and 1
(Fontana et al. 2004). On average, we �nd that E(B� V) = 0.44
with a dispersion of 0.42.
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Fig. 9. Top: the g� i color vs. stellar mass for the z sample (the spectro-
scopically con�rmed supercluster members). Bottom: log sSFR vs. M�
for the same z sample, AGNs excluded. The dash-dotted line represent
the expected sSFR vs. M� relation for a 24 µm source of 0.2 mJy �ux
density (i.e. at the completeness limit of our Spitzersurvey), obtained
using the relations of Lee et al. (2010) and Kennicutt (1998). The dashed
line is the relation of Oliver et al. (2010) for galaxies from the Spitzer
Wide-area InfraRed Extragalactic Legacy Survey in the redshift range
0.2 < z < 0.3. In both panels, symbols have the same meaning as in
Fig. 6.

The resulting supercluster galaxy stellar masses are corre-
lated with the galaxy colors (see Fig. 9, top panel). The corre-
lation suggests a physical relation between the ages of galaxy
stellar populations and galaxy masses. ETGs have both high M�
and red colors. The scatter in the correlation must be largely in-
trinsic as it is not di�erent for galaxies with di�erent values of
E(B� V).

The galaxy stellar masses M� are used to determine the
galaxy speci�c star formation rates sSFRs (sSFR � SFR/M�).
In the bottom panel of Fig. 9, we display the anti-correlation
between M� and sSFR in our sample of spectroscopically con-
�rmed supercluster members, AGNs excluded. The slope of the
correlation is close to �1, which is indicative of an almost �at
M�-LIR relation. SBGs have a higher sSFR per given M�, rela-
tive to other galaxies. This was also found by Chung et al. (2010)
in their study of the Bullet cluster. In addition, the slope of their
sSFR-M� relation is very similar to ours, while Oliver et al.
(2010) found a much �atter relation using a sample of galax-
ies from the SpitzerWide-area InfraRed Extragalactic Legacy
Survey. This di�erence is probably related to the way the dif-
ferent samples were selected, that of Oliver et al. (2010) being
closer to a M�-selected sample, while our sample is selected on
the basis of the 24 µm �ux density. The dashed line in Fig. 9
represents the average expected relation between sSFR and M�
for a 24 µm source of 0.2 mJy �ux density, corresponding to
the limit below which our sample becomes severely incomplete.
This relation has been obtained using the relation of Lee et al.
(2010) between f24 and LIR at the average redshift of the A1763
supercluster, and the Kennicutt (1998) relation. Very few sources
lie below the sSFR-M� relation for an f24 = 0.2 mJy source,

suggesting that the steeper slope we �nd for the global sSFR-M�
is indeed due to the �ux-density limit in our sample.

3. Infrared luminosity functions

3.1. Completeness and purity corrections

The determination of the A1763 supercluster IR LF requires the
estimations of the completeness and purity of our sample. We
evaluate three types of completeness and purity corrections, the
�rst for the source detection, the second for the (spectroscopic
or photometric) redshift determination, the third for the mem-
bership assignment.

In the �rst step, we need to consider the completeness and
purity of the detected 24 µm sources in the photometric catalog,
and we model these corrections following Fadda et al. (2006,
see Sect. 2). We �t a third order polynomial to the completeness
function of Fadda et al. (2006) to determine the completeness
correction

Cdet = 1 + 0.04 x+ 0.36 x2 + 0.97 x3, (1)

for x � log f24[mJy] � 0, and Cdet = 1 for x > 0. The purity was
approximated by a constant, Pdet � 0.95 at all �ux levels.

In the second step, we consider the completeness of the sam-
ple of sources for which we could establish the cluster member-
ship, i.e. the sample of sources with either a spectroscopic red-
shift (z) or a photometric redshift (zp) estimate. We call Nz�p the
number of sources with either z or zp, and N the total number of
sources in the 24 µm catalog. The completeness of the sample of
sources with either a zor zp estimate is given by Cz�p � Nz�p/N,
as a function of f24.

In the third step, we estimate the completeness and purity
of the sample of selected cluster members (467 in total, see
Sect. 2.2) based on their z or zp. Since the membership assign-
ment is imperfect, we need a purity correction to account for the
erroneous membership assignments, and a completeness correc-
tion to account for those real members that have not been se-
lected.

We �rst evaluate the membership corrections for the spectro-
scopic sample. The fraction of galaxies incorrectly assigned to
the cluster on the basis of their z cannot be directly determined
from the data. On the basis of the analyses of cluster-sized halos
extracted from cosmological simulations (Biviano et al. 2006;
Wojtak et al. 2007; Mamon et al. 2010), we assume a member-
ship purity Pzm = 0.8 and no completeness correction for the
sample of spectroscopic members.

We then consider the corrections to be applied to the sam-
ple of galaxies without available z, whose membership can only
be established from their zp. We proceed in a way similar to
that adopted in Sect. 2.2 except that now the zp-range for mem-
bership selection is �xed to the values previously determined,
0.166 � zp � 0.290. As in Sect. 2.2, we have to determine
the completeness and purity by considering galaxies with z that
would qualify as members based on their zp, Npm�z. A subset of
the galaxies in this subsample, Npm�zm, are spectroscopic mem-
bers. We therefore de�ne the membership purity of the sam-
ple of Npm galaxies as the fraction Ppm � Npm�zm/Npm�z as a
function of f24. Among the Nzm�p z-selected members that also
have zp estimates, there are Npm�zm that would also be identi�ed
as members based on their zp. The membership completeness
of the sample of zp-selected members is therefore given by
Cpm � Npm�zm/Nzm�p as a function of f24.
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We de�ne Nzm to be the number of galaxies de�ned to be
cluster members based on their z, and Npm the number of galax-
ies de�ned to be supercluster members based on their zp. The
corrected number of members is

Nc �
Pdet

Cdet

1
Cz�p

(
PzmNzm +

Ppm

Cpm
Npm

)
. (2)

By combining the data for galaxies with available zp with those
for galaxies with available z, we obtain a larger sample of mem-
bers, but at the expense of a larger uncertainty in the membership
assignments. The resulting sample (the z� zp sample) is there-
fore more complete, but less pure than the sample of supercluster
members constructed using only galaxies with available z (the z
sample). To check for possible systematics related to our purity
corrections, we also determine the IR LF for the z sample. We
call Nz the number of galaxies with available zamong the total of
24 µm-selected sources. The completeness of this spectroscopic
sample is Cz � Nz/N. Therefore, the corrected number of mem-
bers of the z sample is

Ncz �
Pdet

Cdet

1
Cz

PzmNzm. (3)

We note that in Eqs. (2), (3) we have omitted the explicit
f24-dependence of the individual terms to simplify the notation.

3.2. The supercluster luminosity function

We determine the IR LF of the supercluster by counting the
galaxies in (logarithmic) luminosity bins, and weighting the
counts by the correction functions described above (Sect. 3.1;
the same procedure was used by Rujopakarn et al. 2010). Since
the correction factor becomes very high at low �uxes, we only
consider galaxies with f24 � 0.2 mJy (317 out of the originally
selected 467 cluster members, 124 selected as members on the
basis of their z). We multiply the counts by the fractions of non-
AGN galaxies in each LIR-bin (see Fig. 5) to remove the AGN
contribution from the IR LF.

We obtain two determinations of the IR LF by using in one
case the z� zp sample, and in the other case the z sample (see
Sect. 2.2). The error bars of the IR LF are estimated with a boot-
strap re-sampling technique (Efron & Tibshirani 1986). Both
the galaxy counts and the correction functions are computed for
each bootstrap re-sampling.

The resulting IR LF determinations are shown in Fig. 10.
Filled symbols represent the corrected counts, open symbols the
uncorrected counts, and the ratios of the two give the correction
factors applied (based on Eqs. (2) and (3) for the z� zp and z
sample, respectively). The two determinations agree within the
error bars down to LIR/L� � 4 × 1010; at lower LIR the correc-
tion factor for the counts in the z sample is very large (>10),
and therefore rather uncertain. The agreement of the two IR LF
determinations down to LIR/L� � 4×1010 suggests that the com-
pleteness and purity corrections that we have applied to the two
subsamples are reasonably accurate.

The vertical dash-dotted line in Fig. 10 indicates the LIR
lower limit corresponding to the adopted limit of f24 = 0.2 mJy
for the IR LF determination, LIR � 2.5× 1010 L� (see Fig. 7; this
limit is not very precise because of the dispersion in the LIR- f24
relation).

We try �tting the IR LF at LIR � 2.5 × 1010 L� with a
Schechter (1976) function, but the best-�t parameters are poorly
constrained. This is mostly because the Schechter function de-
creases steeply at high luminosities, beyond L�IR, while our IR

Fig. 10. The IR LF of A1763. Filled and empty symbols represent the
counts after and, respectively, before purity and completeness correc-
tions. Counts have been multiplied by the fractions of non-AGN galax-
ies in each LIR-bin (see Fig. 5) to remove the AGN contribution from the
IR LF. Blue dots (respectively, red squares) represent the counts based
on the z� zp (respectively, z) sample. 1� error bars based on 100 boot-
strap re-samplings are shown. The square symbols have been displaced
by �0.02 in log LIR for clarity. The vertical dash-dotted line indicates the
LIR lower limit (LIR/L� = 2.5 × 1010) that corresponds to the 0.2 mJy
�ux density limit adopted for the determination of the IR LF. The solid
blue (respectively dashed red) line represents the power-law best-�t to
the IR LF represented by the blue �lled dots (respectively, red squares)
with LIR/L� � 2.5 × 1010.

Table 1. Slope parameters from power-law �ts to the IR LFs.

Sample Region � �2 d.o.f.

z� zp Whole �1.7 – 0.1 3.3 6
z� zp Core �2.2 – 0.7 0.5 4
z� zp Filament �1.5 – 0.3 3.1 5
z� zp Outskirts �2.4 – 0.4 8.8 6

z Whole �2.1 – 0.5 0.6 5
z Core �1.8 – 0.6 0.1 3
z Filament �1.8 – 0.3 1.6 5
z Outskirts �2.2 – 0.9 0.2 3

LF does not show a change in slope over the full range of lu-
minosities. Some authors have advocated the use of a double
power-law as a �tting function for IR LFs (Babbedge et al. 2006;
Goto et al. 2011). The characteristic luminosity at which the IR
LF of �eld galaxies changes slope in this case is �5 × 1010 L�
(Goto et al. 2011), which is close to our adopted completeness
limit. A single power-law function can thus be expected to pro-
vide a good �t to our IR LF over the full range of luminosi-
ties down to the completeness limit. This is indeed the case, as
shown in Fig. 10, where the solid and dash-dotted lines represent
the best-�t power-law functions for the two samples. The best-
�t values of the slope parameter are given in Table 1 (region
�Whole�); the quality of the �ts, as indicated by the listed �2

values, is good, and indicates that a two-parameter �t (e.g., with
a Schechter function) is not required (note that the �2 values are
not reduced �2). The values we obtain for the two samples are
compatible within the 1-� error bars.
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Fig. 11. Diagram illustrating the three mutually exclusive regions for
which independent IR LFs have been de�ned. The red circle de�nes the
�core� region, which is centered on the cluster A1763 and extends to a
radius r500 = 1.34 Mpc. The two almost parallel blue segments delimit
the extended over-density of supercluster members outside the core,
which we identify with the large-scale ��lament� region, discovered
in Paper 0. The �outskirts� region is delimited by the green parallelo-
gram, which represents the extent of the 24 µm observations, excluding
the core and �lament regions. We also show the region corresponding
to the Palomar r-band observations (connected dashed black segments).
The (brown) contours are isocontours of galaxy number density, linearly
spaced, obtained by running an adaptive-kernel technique on the spatial
distribution of the 432 non-AGN, IR-emitting supercluster members of
the z�zp sample. Positions of these galaxies are indicated by the (black)
circles, with sizes proportional to the galaxy sSFRs. Filled (pink) sym-
bols mark the positions of the LIRGs in the z� zp sample, squares for
spectroscopically con�rmed members, dots for members selected on the
basis of their zp.

3.3. Environmental dependence

To investigate possible environmental e�ects on the IR LF, we
consider three di�erent regions of the A1763 supercluster. To
more clearly de�ne the location of the large-scale �lament iden-
ti�ed in Paper 0, we determine the galaxy density map of the
supercluster, as traced by IR-emitting, star-forming galaxies, by
running an adaptive-kernel technique (see, e.g., Biviano et al.
1996) on the sample of 432 non-AGN supercluster members (see
Sects. 2.2 and 2.3). We consider only the z� zp sample in this
case, because it is more complete than the z sample, and com-
pleteness is more important than purity when determining the
density map, as long as there are no contaminating background
or foreground structures in the sample (and we think there are
not, see Sect. 2.2).

The result is shown in Fig. 11. A clear over-density of galax-
ies is seen extending to the north-east direction from the central
cluster region5. This region coincides with the �lamentary struc-
ture(s) found in Paper 0. We draw two almost parallel lines

5 Follow-up spectroscopic observations show that this galaxy over-
density continues beyond the region covered by our Spitzerobserva-
tions. The apparent cut-o� of the �lamentary structure visible at the

delimiting this over-density region in order to identify the ��l-
ament� region. We clearly de�ne the ��lament� region by ex-
cluding the �core� region, which we de�ne to be the 1.34 Mpc
circular region centered on the A1763 cluster center. This region
corresponds to the projection of the sphere with a mass over-
density 500 times the critical density, and its radius is estimated
as r500 = 0.65 r200, using the mass pro�le of Navarro et al. (1997)
with a concentration parameter c = 4, typical of massive galaxy
clusters (e.g., Katgert et al. 2004). We �nally de�ne the �out-
skirts� region as the remaining part of the observed 24 µm survey
region, excluding the core and the �lament.

The IR LFs of the three di�erent regions were determined as
described in Sect. 3.1, using completeness and purity corrections
that are appropriate for each considered region, and multiplying
the counts by the fractions of non-AGN galaxies in each LIR-bin
and each region to remove the AGN contribution from the IR
LFs. Error bars were determined via a bootstrap re-sampling pro-
cedure. The three IR LFs are displayed in the left-hand panels of
Fig. 12, for both the z� zp (top panel) and the z sample (bottom
panel). Power-law function �ts to the three IR LFs are shown as
dashed lines, and the best-�tting values of the slope parameter
are given in Table 1.

The slopes of the three region IR LFs do not di�er signi�-
cantly, but taken at face value they suggest that the �lament has
a �atter IR LF than both the outskirts and (for the z� zp sam-
ple) the core. The IR LF of the �lament region is �atter because
of an excess of LIRGs relative to the other regions. This is also
apparent from a visual inspection of Fig. 12 and also of Fig. 11,
where we show the spatial positions of all supercluster members
in the z� zp sample and indicate the LIRGs with pink symbols
(square symbols for LIRGs of the z sample).

Figure 12 (left panels) also shows that at lower LIR, the num-
ber densities of IR-emitting galaxies are similar in the core and
in the �lament regions, and lowest in the outskirts region. When
considering the implications of this comparison, one must take
into account that the three selected regions are characterized by
di�erent densities of normal galaxies, highest in the core, low-
est in the outskirts. Similarities in the IR LFs of di�erent re-
gions could be caused by a combination of di�erent densities of
normal galaxies and di�erent fractions of IR-emitting galaxies
among the total. Viceversa, di�erent IR LFs could simply re�ect
di�erences in the densities of normal galaxies combined with
similar IR-emitting galaxy fractions among the total.

It is therefore also important to compare the relative frac-
tions of IR-emitting galaxies in the di�erent regions. For this,
we must determine the densities of normal galaxies in the three
di�erent regions. By adopting the same methodology used for a
derivation of the IR LF (see Sect. 3.1), we determine the r-band
LFs in the three regions. These LFs are well �tted by Schechter
functions, and their shapes are not statistically di�erent accord-
ing to a �2 test (DeGroot 1987). We then integrate these LFs
to derive the number densities of r-band selected galaxies with
r-band luminosity6 Lr � 7 × 109 L�. This luminosity represents
the lower limit above which our determinations of the r-band
LFs appear to be robust, i.e. independent of sample choice (the
z� zp sample or the z sample). It corresponds to a stellar mass

edge of the Spitzer�eld in Fig. 11 is an edge-e�ect of the adaptive-
kernel algorithm.
6 Because of the similar shapes of the r-band LFs of the three regions,
the exact choice of the luminosity limit for the integration of the r-band
LFs does not strongly a�ect the relative ratios of the three regions num-
ber densities (�–10% when the luminosity limit is increased by up to a
factor three).
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Fig. 12. The IR LFs of three di�erent regions in the A1763 supercluster: core (red dots), �lament (blue squares), and outskirts (green stars). 1�
error bars based on 100 bootstrap re-samplings are shown. All IR LFs are corrected for purity and completeness in the corresponding regions.
Counts have been multiplied by the fractions of non-AGN galaxies in each LIR-bin and in each region to remove the AGN contribution from the
IR LFs. The IR LFs of the upper(respectively, lower) panelshave been obtained using the z� zp sample (respectively, z sample) of supercluster
members. Left panelsshow the number densities of IR-emitting galaxies. Lines represent the best-�t power-law functions to the IR LFs. In the
right panels, the number densities of IR galaxies have been normalized by the average number densities of galaxies with a r-band luminosity
�7 × 109 L� within each region.

Table 2. Properties of di�erent supercluster regions.

Property Supercluster regions
core �lament outskirts R� 0.5 r200

Area 5.9 17.4 90.4 3.6
[Mpc2]

nr 36.0 – 6.7 8.5 – 1.8 3.0 – 0.4 39.8 – 7.3
[Mpc�2]

�SFR/(Area •nr) 1.7+0.7
�0.5 6.7+3.3

�2.2 3.8+1.2
�1.0 1.3+0.7

�0.5
[M�yr�1]

�SFR/M200 26+11
�9

[M� yr�1/1014 M�]

Notes. �SFR is the total SFR of IR-emitting galaxies. �SFR/M200 is the
�SFR normalized by the total gravitational cluster mass.

M�� 6�7×109 M� (Bell et al. 2003; Bernardi et al. 2010), which
roughly matches the lower stellar mass limit of the IR detected
galaxy population in A1763 (see Fig. 9).

The r-band number densities (nr) are given in Table 2. The
number density of r-band selected galaxies in the �lament is in-
between those of the core and the outskirts, as expected.

We divide the IR LFs of the three regions by their nr to pro-
duce the plots shown in the right-hand panels of Fig. 12 (top
panel: z� zp sample; bottom panel: z sample). When scaled by
the relative densities of r-band selected cluster members in the
di�erent regions, the �lament displays the highest over-density

of IR-emitting galaxies, with respect to both the core and the
outskirts, at all LIR. According to a �2 test (DeGroot 1987), the
di�erence is very signi�cant with respect to the core (99.9% sig-
ni�cance level for both the z�zp and the zsample), but not signif-
icant with respect to the outskirts. The global di�erence between
the outskirts and the core IR LFs is marginally signi�cant (98%
signi�cance level for both the z� zp and the z sample).

The di�erence between the IR LFs in the three supercluster
regions re�ects a di�erent SFR per galaxy. By integrating the
IR LF down to our adopted completeness limit, we obtain the
total LIR of galaxies in the three regions, which we then con-
vert to a total SFR (�SFR hereafter) via the relation of Kennicutt
(1998). We divide the �SFR values of the three regions by the
areas of the three regions and the number densities of r-band se-
lected galaxies in the three regions to obtain the average SFRs
per r-band selected galaxy in each region7. The values are given
in Table 2 for the z� zp sample (consistent values are found for
the z sample, within the errors); they are displayed as a function
of the average density of r-band selected galaxies in Fig. 13.
The average SFR is highest for the �lament region, intermediate
for the outskirts region, and lowest for the core region. The dif-
ference between the �lament and the core values is signi�cant
at slightly more than 2-�, i.e. at the 98% con�dence level for
a Gaussian distribution of errors, that between the core and the
outskirts values is signi�cant at the 96% con�dence level, and
that between the outskirts and the �lament values is not signi�-
cant (<90% con�dence level).

7 These averages are clearly not representative of the typical galaxy
SFR, as they are biased high by the high SFRs in the (relatively few)
very bright IR emitting galaxies.
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Fig. 13. �SFR/richness (in units of M� yr�1) as a function of the average
r-band galaxy density within each region. Richnesses and densities are
estimated using galaxies brighter than 7×109 L� in the r-band. Di�erent
symbols identify the three di�erent regions, as in Fig. 12, and the �lled
black diamond identi�es the region within R � 0.5 r200. 1� error bars
are shown. The dashed line represents the expected value at the cluster
mean z, using the relation of Bai et al. (2009) between �SFR/mass and
z, and the richness/mass value of the A1763 virial (R� r200) region (see
Sect. 3.4).

Are the excess LIRGs in the �lament region massive galaxies
or low-mass galaxies with high levels of sSFRs? To understand
this issue, in Fig. 11 we use symbol sizes proportional to the
galaxy sSFRs to represent the spatial positions of the 432 non-
AGN supercluster members. Most of the LIRGs have rather low
sSFRs, meaning that they have both high LIR and high M�.

Another way to look at this issue is to compare the bi-
dimensional distributions of galaxies in di�erent regions in a
sSFR vs. M� diagram, shown in Fig. 14 for both the z � zp
and zsample (left- and right-hand panels, respectively). Galaxies
of di�erent regions of the superclusters appear to have similar
sSFR�M� distributions. A statistical assessment of this result is
obtained by comparing the sSFR�M� distributions two by two
via bi-dimensional Kolmogorov-Smirnov tests (Peacock 1983;
Fasano & Franceschini 1987), under the null hypothesis that the
distributions are drawn from the same parent one. Only in one
case, core vs. outskirts, and only for the z � zp sample we do
�nd that the null hypothesis is rejected, but only with marginal
signi�cance (97% con�dence level).

The similarity between the di�erent sSFR�M�distributions
suggests that similar modes of star formation take place in galax-
ies in di�erent environments. This similarity has been noted be-
fore in di�erent data sets (Peng et al. 2010). Additional support
for this result comes from the analysis of the fractions of IR su-
percluster members in di�erent SED classes. These fractions are
displayed in Fig. 15 for the di�erent regions of the superclus-
ter (results are displayed for the z� zp sample; very similar re-
sults are found for the z sample, and are not shown here). They
are clearly very similar, except perhaps for a very marginal ex-
cess of ETGs in the core region. The fraction of AGNs among
IR-emitting galaxies is similar to that found in Paper 2 and in
other galaxy clusters (e.g., Geach et al. 2009; Krick et al. 2009;
Chung et al. 2010).

3.4. Comparison with previous results

We compare the IR LF of A1763 with those of Bai et al.
(2009), Tran et al. (2009), and Chung et al. (2010), for which

Fig. 14. Galaxy sSFR vs. M� in three di�erent regions of the A1763
supercluster. Open (black) circles represent all non-AGN, IR-emitting
supercluster members. Filled dots identify supercluster members in the
core region (red dots, top panels), in the �lament region (blue dots,
middle panels), in the outskirts region (green dots, bottom panels). The
panels on the leftare based on the z� zp sample, those on the righton
the z sample. The dash-dotted line has the same meaning as in Fig. 9.

Fig. 15. The fractions of IR supercluster members (z�zp sample) in dif-
ferent SED classes in the three di�erent environments. Di�erent sym-
bols identify the three di�erent regions, as in Fig. 12.

the parameters of the best-�t Schechter function are available.
Ideally, one would like to compare IR LFs obtained within re-
gions of similar galaxy number densities, to highlight di�erences
due to di�erent fractionsof IR-emitting galaxies. Since previous
determinations have been limited to the inner, virialized cluster
regions, we consider in this comparison only the IR LF of the
core region of A1763.

The areas where the LFs of Bai et al. (2009), Tran et al.
(2009), Chung et al. (2010), and the A1763 core have been de-
rived correspond to circular regions of e�ective limiting radii
0.90, 0.74, 0.82, and 0.65, in units of the respective cluster r200.
We derive the virial radii of the clusters from their velocity

A77, page 11 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201016174&pdf_id=13
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201016174&pdf_id=14
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201016174&pdf_id=15


A&A 532, A77 (2011)

Fig. 16. The IR LF of the A1763 core region (same as in Fig. 12; �lled
red dots: z � zp sample; �lled red squares � slightly displaced along
the x-axis for clarity � : z-only sample; 1� error bars), compared to the
best-�t Schechter IR LF of Bai et al. (2009, solid green curve), Chung
et al. (2010, dash-dotted pink curve), and Tran et al. (2009, dashed blue
curve). Note that the Schechter IR LFs have been corrected to take into
account the di�erent survey areas and the di�erent cluster redshifts, as
described in the text.

dispersions (taken from Biviano et al. 1996; Quintana et al.
1996; Fisher et al. 1998; Barrena et al. 2002) via the relation
of Mauduit & Mamon (2007, Appendix A). The e�ective lim-
iting radii of the four clusters are similar, but not identical. We
therefore apply scaling factors to the cluster IR LFs proportional
to the estimated number densities of normal galaxies within
these limiting radii. We compute these projected densities as in
Appendix B.2 of Mamon et al. (2010), using the individual clus-
ter virial radii and the model pro�le of Navarro et al. (1997) with
concentration c � 3 (a typical value for rich clusters; see, e.g.,
Biviano & Poggianti 2009). Setting to unity the scaling factor for
the IR LF of the A1763 core, the other scaling factors are 1.40,
1.14, and 1.27, for the LF of Bai et al. (2009), Tran et al. (2009),
and Chung et al. (2010), respectively.

In addition to the density correction, since the di�erent clus-
ters are located at di�erent redshifts, we rescale the best-�t
Schechter parameters obtained for these clusters to the redshift
of A1763, adopting the evolution relation of Bai et al. (2009).
The result is shown in Fig. 16. We note that to compare the dif-
ferent luminosity functions, we divide the number densities of
the A1763 core IR LF by the logarithmic interval we used for
the binning, 0.2.

The IR LF of the A1763 core lies signi�cantly above all other
IR LFs at the faint end, while it is consistent with them at the
bright end. It is most similar to the IR LF established by Chung
et al. (2010) for the Bullet cluster. There clearly seems to be a
large variance in the cluster IR LFs, even after correcting for evo-
lutionary e�ects and after rescaling for the di�erent galaxy den-
sities in the cluster areas sampled by the di�erent surveys. Part
of the variance is caused by observational errors, and the IR LF
of Tran et al. (2009), which appears to lie below that of Bai et al.
(2009) in Fig. 16, is consistent with it within the uncertainties
(see Fig. 7 in Tran et al. 2009). As a source of intrinsic variance,
one could consider the e�ect of an increasing fraction of IR-
emitting galaxies with clustercentric radius (e.g., Bai et al. 2009;
Haines et al. 2009a). However, this trend is far too small to ac-
count for the variance we see in the IR LFs, given that they were
obtained within rather similar limiting e�ective radii. Moreover,

Fig. 17. �SFR/M200 (in units of M� yr�1/1014 M�), where �SFR is es-
timated within a region of radius 0.5 r200, as a function of redshift
for A1763 (�lled diamond) and for other clusters from the literature.
Triangles and open diamonds denote values taken from Bai et al. (2009)
and Chung et al. (2010), respectively. 1� error bars are shown. The
downward-directed (respectively upward-directed) arrow denotes an
upper (respectively lower) limit. The curve represents the �tting rela-
tion of Bai et al. (2009) �SFR/mass = 1.2(1 + z)5.3.

among the four LFs displayed in Fig. 16, that of the A1763 core
has been determined within the smallest e�ective radius, and yet
it appears to lie above all the others.

Another way of comparing IR LFs for clusters of di�erent
masses and at di�erent redshifts is to look at the variation in the
total cluster SFR within a �xed aperture � in units of r200 � nor-
malized by the cluster total mass, M200 (Geach et al. 2006; Bai
et al. 2009; Chung et al. 2010). The mass of the virial region of
A1763, M200 = 9.9 × 1014 M�, is obtained from the values of
r200 and v200 (see Sect. 3.3). The estimate is based on 357 mem-
ber galaxies (see Sect. 2.2). According to Biviano et al. (2006),
a mass estimate based on a galaxy sample of this size has an
uncertainty of �25%.

Following Bai et al. (2007, 2009), we evaluate �SFR within
R � 0.5 r200 and normalize it by the global cluster mass M200.
The value is reported in Table 2. The quoted error includes the
contribution from both the �SFR uncertainty (estimated via a
bootstrap procedure) and the mass uncertainty, the latter being
the main source of error. To compare it with the determinations
of Bai et al. (2007) we need to apply a correction to account for
the di�erent LIR limit of our IR LF (2.5×1010 L�) and that of Bai
et al. (2007) (1.2×1010 L�). Using the IR LF of Bai et al. (2009)
evolved to the mean redshift of A1763, we estimate a correction
factor of 1.4. We plot the corrected value for the A1763 0.5 r200
region in Fig. 17 together with the values for other clusters taken
from the literature (Geach et al. 2006; Bai et al. 2009; Chung
et al. 2010) and based on IRAS (Meusinger et al. 2000), ISO
(Fadda et al. 2000; Duc et al. 2002, 2004; Metcalfe et al. 2003;
Biviano et al. 2004; Coia et al. 2005b), and Spitzer(Geach et al.
2006; Bai et al. 2006, 2007, 2009; Haines et al. 2009b; Chung
et al. 2010) data. The value for A1763 lies in the same locus of
the diagram as other clusters at similar redshifts. There is a trend
of increasing �SFR/mass with redshift, a sort of IR Butcher-
Oemler e�ect (Butcher & Oemler 1984; Saintonge et al. 2008;
Haines et al. 2009a; Temporin et al. 2009). This trend has been
noticed before and modeled with a power-law relation in (1 + z)
by Geach et al. (2006) and Bai et al. (2009), mimicking the trend
found by Cowie et al. (2004) for the number of ultra-LIRG radio
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sources in the �eld, or the trend found by Kodama et al. (2004)
for the �SFR of cluster galaxies, based on optical-line spectro-
scopic estimates of the galaxy SFRs. The best-�t relation ob-
tained by Bai et al. (2009) is shown in Fig. 17. It clearly fails to
�t the data in the z-range 0.2�0.4. The quantity �SFR/mass ap-
pears to evolve rapidly from z� 0.4 to 0, while it remains almost
constant for z>� 0.4.

To explore the environmental dependence of the mass-
normalized SFR, we would need to determine the masses of
the �lament and outskirts regions, but this is not possible since
these regions do not correspond to virialized, collapsed struc-
tures. With the A1763 mass M200 and r-band richness within
r200, we de�ne a mass-to-richness ratio that we use to deter-
mine �SFR/richness at the average redshift of A1763 from the
evolutionary relation of Bai et al. (2009). This is displayed in
Fig. 13 with a dashed line and allows an indirect comparison of
Fig. 17 with Fig. 13, where we show the �SFR/richness of the
R � 0.5 r200 region and also of the core, �lament, and outskirts
regions (see Sect. 3.3). We can summarize the results illustrated
in Figs. 17 and 13 by saying that the SFR per galaxy increases
with z in clusters, and it is not a monotonic function of the den-
sity of the environment.

4. Discussion

Our analysis of the IR LF of the A1763 supercluster has con-
�rmed our �ndings of Paper 0, namely the �lament is the most
probable site of galaxy star formation. We have shown that the
IR LF of �lament galaxies lies above those of the core and the
outskirts, when these three IR LFs are normalized by the aver-
age densities of normal, r-band selected, galaxies in the three
regions (Fig. 12, right panels). In other words, �lament galaxies
have a higher chance of being IR-emitting than both core and
outskirts galaxies. Since we have corrected the IR LFs for the
contribution of galaxies with AGNs, the excess fraction of IR
galaxies in the �lament can also be read as an excess fraction
of star-forming galaxies8. The result of our analysis extends the
original �nding of Paper 0 by showing that there is an excess
fraction of star-forming galaxies in the �lament relative to other
supercluster regions, at all levels of star-formation down to our
LIR completeness limit, which corresponds to SFR� 4 M� yr�1

(see Sect. 3.3).
Several authors have previously noted the increasing fraction

of IR-emitting, star-forming galaxies with increasing cluster-
centric distance and the lack of LIRGs in cluster cores (Bai et al.
2006, 2009; Haines et al. 2009a; Temporin et al. 2009; Davies
et al. 2010; Finn et al. 2010). Our �nding indicates that the re-
lation is not simply one of galaxy SFR with cluster-centric dis-
tance or local density (see Fig. 13). Galaxy �laments are regions
of intermediate galaxy densities between cluster cores and clus-
ter outskirts, and galaxies in the A1763 �lament are not farther
out from the A1763 cluster center than galaxies in the A1763
outskirts (see Fig. 11). The higher fraction of star-forming galax-
ies in medium-density environments has already been noted in
other IR (Koyama et al. 2008; Gallazzi et al. 2009; Koyama et al.
2010) or optical (Braglia et al. 2007; Porter & Raychaudhury
2007; BouØ et al. 2008; Porter et al. 2008; Braglia et al. 2009)
studies of superclusters.

An interesting aspect of the higher fraction of star-forming
galaxies in the A1763 �lament is that these galaxies are rela-
tively massive, with a relatively low sSFR (see Fig. 11). The

8 Had we omitted to correct the IR LFs for the presence of AGNs, the
results of this paper would not have been signi�cantly a�ected.

sSFR�M� relation is very similar in the core, the �lament,
and the outskirts regions (see Fig. 14), i.e. at a given M� �l-
ament galaxies do not have enhanced sSFRs. Both the univer-
sality of the sSFR�M� relation across di�erent environments
and the relatively low-sSFR of dust-reddened high-SFR galaxies
in medium-density environments have been noted before (Peng
et al. 2010; Gallazzi et al. 2009).

The similarity of the sSFR-M� relation of galaxies in di�er-
ent supercluster regions suggests that the regions share a simi-
lar mode of star formation. This conclusion is supported by the
similarity of the SED-class distributions in the di�erent regions
(Fig. 15). About 65% of the IR-emitting galaxies in all the super-
cluster regions belong to the normal SFG SED-class. Only �6%
and, respectively, �15% belong to the SBG and, respectively,
PSBG classes, �10% to the AGN class, and �4% (slightly more
in the core) to the ETG class. These fractions indicate that, over-
all, the dominant mode of star formation in IR-emitting galaxies
across the whole supercluster is that of normal late-type galax-
ies. Haines et al. (2011b) reached the same conclusion from their
analysis of IR and UV data for the nearby Shapley supercluster.

Even if the SFG SED class characterizes most of the
IR-emitting galaxies, the brightest of them, LIRGs, mostly be-
long to the SBG SED class (10 out of 18 LIRGs belong to the
SBG SED class; see also Fig. 5). It is known that LIRGs are
mostly powered by starbursts (e.g., da Cunha et al. 2010; Fadda
et al. 2010; Finn et al. 2010), which occur as a consequence of
close galaxy-galaxy interactions (e.g., Spitzer & Baade 1951;
Negroponte & White 1983; Bushouse 1987; Sanders et al. 1988;
Barnes 1992; Hwang et al. 2010; Teyssier et al. 2010). In A1763,
LIRGs are more frequently found in the �lament than in other re-
gions of the supercluster (Fig. 11). In cluster cores, interactions
are frequent but do not signi�cantly a�ect the interacting galax-
ies because of the very high speed of these encounters (repeated
fast encounters might however be relevant for dwarf galaxies,
Moore et al. 1996). In �laments, on the other hand, the frequency
of galaxy-galaxy interactions is still relatively high, and they oc-
cur at a relatively low speed, since the �lament environment is
characterized by higher galaxy densities than the �eld, and lower
velocity dispersions than the cluster core (Paper 0). The tidal (or
resonance, see D�Onghia et al. 2010) e�ects of galaxy-galaxy in-
teractions are stronger when the collisions occur at small relative
velocities (Mamon 1996; Makino & Hut 1997), so �laments (and
poor groups) are the ideal environment for signi�cant e�ects to
result from galaxy-galaxy interactions. These interactions may
sporadically lead to (major) mergers.

SBGs are likely to evolve into galaxies of the PSBG class.
Further evolution is hard to predict. It has been argued that AGNs
are a late outcome of the starburst process (e.g., Umemura et al.
1999; Emonts et al. 2006; Younger et al. 2009). In this case, we
could estimate that starburst episodes are a�ecting, or have af-
fected in the past �1 Gyr, �30% of all the IR-emitting galax-
ies in the A1763. According to Wild et al. (2009), there is a
similar fraction of red sequence galaxies that evolved through
a starburst. Filament SBGs and their outcomes are therefore an
important path of galaxy evolution in and around clusters, even
if they do not represent the dominant channel to move galax-
ies from the blue cloud to the red sequence, since the observed
fraction of PSBGs in clusters is too small (De Lucia et al. 2009).

The relative numbers of SBGs and PSBGs probably re-
�ects the relative durations of the starburst and post-starburst
phases, that is �1/3�1/2. If the post-starburst phase typically
lasts �1 Gyr (Hogg et al. 2006; Goto 2007), this ratio implies
that the starburst phase lasts �0.4 Gyr, close to recent estimates
(McQuinn et al. 2010). As a consequence, the SBG infall speed
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(�1 Mpc/Gyr in projection) is insu�cient for them to travel
along the whole �lament into the cluster before the starburst
phase is over, so they enter the cluster as PSBGs (or, maybe,
AGNs). We do however observe SBGs in cluster cores. How do
they originate? Part of them are likely to be found in the cen-
ter only because of projection e�ects. Part of them may form in
subclusters as they are tidally compressed by the cluster gravi-
tational �eld (Oemler et al. 2009). Since the accretion of groups
(i.e. subclusters) in clusters increases with z (Ellingson et al.
2001; van den Bosch 2002), higher-z clusters are expected to
display a higher fraction of SBGs in their central regions, as in-
deed found by Dressler et al. (2009).

As far as the evolution of the IR LF is concerned, our results
con�rm the results of Bai et al. (2009), namely that the number
density of IR-emitting galaxies in clusters increases with z at
all LIR. Similarly, the total SFR of cluster galaxies per cluster
mass also increases with z (Geach et al. 2006; Bai et al. 2009),
at least until z � 0.4 (see Fig. 17). As suggested by Finn et al.
(2010), this evolution is likely to result from the combination of
a general decline in the SFR of �eld galaxies (consequence of the
gradual exhaustion of their gas reservoirs) coupled to a decrease
in the infall rate of �eld galaxies into clusters (Ellingson et al.
2001; van den Bosch 2002) and to a quenching process at work
in the cluster environment, presumably ram-pressure stripping
(Gunn & Gott 1972; Quilis et al. 2000).

This evolution appears to accelerate at z <� 0.4 as expected
if it is linked to the accretion rate of �eld galaxies, which peaks
at relatively low-z for cluster-sized halos (van den Bosch 2002).
More data are needed to con�rm that the evolution is indeed ac-
celerated at z <� 0.4. The current sample of clusters on which
the relation of Bai et al. (2009) is based is not complete, and
we cannot exclude that the clusters that show excess star forma-
tion at 0.2 <� z <� 0.4 may be a biased set. If all these clusters
are currently undergoing mergers, their excess of star formation
may be interpreted as the result of contaminating the pristine
cluster galaxy population with the presumably younger galaxy
population of infalling groups (Chung et al. 2010). A detailed
dynamical analysis of the A1763 cluster will be the subject of a
forthcoming paper in this series, but indications that this cluster
is far from relaxation have already been provided in Paper 0.

In summary, the evolution of the number density of
IR-emitting galaxies in cluster cores could result from the com-
peting processes of accretion of star-forming �eld galaxies, and
quenching. It is possible that most IR-emitting galaxies in clus-
ter cores are star-forming galaxies recently infallen from the �eld
that have not yet spent su�cient time in the cluster environment
for their star-formation to be quenched. The radially elongated
orbits of star forming galaxies in clusters is also suggestive of
their recent infall (Biviano & Katgert 2004). If the quenching
process is fast enough, one expects to see an environmental de-
pendence of the fraction of IR-emitting galaxies but not of their
intrinsic properties. This is what is indicated by the similarities
of the sSFR-M� relations (see Fig. 14), of the distributions of
galaxies in SED classes (see Fig. 15), and of the shape of the
IR LFs (see Table 1; see also the results of Haines et al. 2011a,
for the Shapley supercluster) across the di�erent supercluster re-
gions.

5. Summary and conclusions

We determine the IR LF of the A1763 supercluster of star-
forming galaxies at z� 0.23. Supercluster members are selected
in a sample of 24-µm-detected sources on the basis of their
spectroscopic and photometric redshifts. Total LIR and M� for

supercluster members are obtained by �tting their SEDs. AGNs
are identi�ed by their SEDs and other methods (see Paper 2) and
their contribution removed from the IR LFs. Comparison with
LIR-estimates obtained from monochromatic 24 µm luminosities
shows that a good photometric coverage of the galaxy SEDs is
important for accurate LIR-estimates.

We show that the IR LF changes according to the superclus-
ter environment. We de�ne three environments: the cluster core,
the large-scale �lament, and the cluster outskirts, in order of de-
creasing galaxy density. By normalizing the IR LFs with the av-
erage number densities of optically-selected galaxies, we show
that the �lament hosts the highest fraction of IR-emitting galax-
ies at all LIR. Similarly, the �lament region contains the highest
total SFR per unit galaxy. At the other extreme lies the core re-
gion, where LIRGs are almost absent. The IR LF of the cluster
outskirts (excluding the �lament region) is intermediate between
those of the �lament and the core.

We do not �nd any environmental dependence of the
sSFR-M� relation. Most high-star forming galaxies in the su-
percluster are also massive, and the excess population of LIRGs
in the �lament region is due to massive galaxies with normal
sSFRs for their M�, that is to say, relatively low sSFRs.

Galaxies of the di�erent regions have very similar fractions
of SED-classes. Normal, SFGs dominate; SBGs dominate at the
bright end of the IR LF; AGNs contribute only �10% in fraction.

Comparison with previous results from the literature con-
�rms the evolution of cluster IR LF found by Bai et al. (2009),
as well as the evolution of total cluster SFR divided by cluster
mass (Geach et al. 2006; Bai et al. 2009; Chung et al. 2010). The
evolution is faster at z <� 0.4 than at higher z, unless the clusters
that have so far been investigated in the IR at 0.2 <� z<� 0.4 are a
biased set of dynamically young systems, in which the presence
of infalling groups biases the estimates of total cluster SFR high.

We discuss these results by drawing a scenario for the evo-
lution of galaxies in and around clusters. Massive star-forming
galaxies exist in medium-density environments at z � 0.2;
about two-thirds of them have a mode of star formation resem-
bling that of normal late-type galaxies. As these galaxies enter
the cluster environment, they su�er ram-pressure stripping and
evolve into passive galaxies. The remaining fraction is undergo-
ing or has recently experienced starbursts, probably induced by
galaxy-galaxy interactions (or mergers). They enter the cluster
as PSBGs. Together, these two paths of galaxy evolution lead to
the build-up of the red sequence in clusters.

In future papers of this series, we will present the spectro-
scopic catalog of the A1763 region and the new UV data we
have obtained from GALEX observations; we will investigate
the dynamics of the A1763 cluster and the spectral properties
of the galaxies in the A1763 supercluster. We also plan to de-
termine morphologies for A1763 supercluster galaxies, and to
deepen our investigation into the low-LIR regime with Herschel
satellite observations.
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