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ABSTRACT

Radio supernovae (RSNe) are weak and rare events. Their typical maximum radio luminosities are of the order of only
1027 erg s−1 Hz−1. There are, however, very few cases of relatively bright (and/or close) RSNe, from which the expansion of the
shock and the radio light curves at several frequencies have been monitored covering several years. Applying the standard model
of radio emission from supernovae, it is possible to relate the defining parameters of the modelled expansion curve to those of the
modelled light curves in a simple algebraic way by assuming an evolution law for the magnetic field and for the energy density of the
population of synchrotron-emitting electrons. However, cooling mechanisms of the electrons may considerably affect this connection
between light curves and expansion curve, and lead to wrong conclusions on the details of the electron acceleration and/or on the
CSM radial density profile. We study how electron cooling modifies the flux-density decay rate of RSNe for a set of plausible/realistic
values of the magnetic field and for different expansion regimes. We use these results to estimate the magnetic fields of different
RSNe observed to date and compare them to those obtained by assuming energy equipartition between particles and magnetic fields.
For some of the best monitored RSNe, for which deceleration measurements, optically thin spectral index, and power-law time decay
have been observed (SN 1979C, SN 1986J, SN 1993J, and SN 2008iz), we find self-consistent solutions for the index of the power-law
circumstellar density profile (s = 2 for all cases), the index of the power-law relativistic electron population (rather steep values,
p = 2.3−3.0) and the initial magnetic field (ranging from ∼20 to >100 G).
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1. Introduction

Radio supernovae (RSNe), which are the radio counterparts of
core-collapse supernovae (SNe), are weak and rare events. Only
about 10−20% of the observed SNe are detected in radio (e.g.,
Weiler et al. 2002). Moreover, their typical maximum radio lu-
minosities are of the order of 1027 erg s−1 Hz−1 (flux densities of
the order of 1 mJy for extragalactic distances, close to the sensi-
tivity limits of present detectors). There are, however, very few
cases of relatively bright RSNe, from which the expansion curve
of the shock, using Very Long Baseline Interferometry (VLBI)
observations, and radio light curves at several frequencies were
obtained covering in some cases several years, e.g.: SN 1979C,
SN 1986J, SN 1993J, and SN 2008iz. Although there are only a
handful of objects, their detailed study allowed us to check and
refine the current theoretical models of radio emission in super-
novae. This small number of well-observed RSNe may also dra-
matically increase in the near future, thanks to the forthcoming
ultra-sensitive interferometers with a high spatial resolution, like
the Square Kilometre Array (SKA).

Using the standard model of radio emission from supernovae
(Chevalier 1982a,b), it is possible to relate the defining param-
eters of the modelled expansion curve to those of the modelled
light curves in a simple algebraic way by assuming an evolution
law for the magnetic field (and for the density of the population
of synchrotron-emitting electrons) and a radial density profile for
the circumstellar medium, CSM (see, e.g. Weiler et al. 2002).
The decay in the radio-light curves according to this model is
related to the time decay in the magnetic field and the radial

decay of CSM density. However, the continuous energy loss by
the relativistic electrons (electron cooling), mainly owing to syn-
chrotron radiation (i.e., radiative cooling), but also to adiabatic
expansion and inverse-Compton scattering, are not considered
in the derivation of this relation between light curves and expan-
sion curve. Electron cooling may considerably affect the shape
of the light curves for a given expansion curve. For instance,
Martí-Vidal et al. (2011b) succesfully modelled the exponential-
like decay of the SN 1993J radio light curves at late epochs
that were reported in Weiler et al. (2007), using only radiative-
cooling effects, and assuming that the density of the CSM was
negligibly low at large distances to the progenitor star1. In any
case, it seems clear that if electron cooling is not considered in
the modelling of the radio light curves of a supernova, it could
result in wrong estimates of the model parameters. In this paper,
we study how electron cooling modifies the flux-density decay
rate of RSNe for several values of the magnetic field and for dif-
ferent expansion regimes. These results can be used to estimate
the magnetic fields of observed RSNe.

In the next section, we outline the standard model of radio
emission from supernovae. In Sect. 3 we study the effect of elec-
tron cooling in the population of emitting electrons and in the
flux-density decay rate. In Sect. 4 we present the results of sev-
eral simulations of the expansion and radio light curves of RSNe.

1 An additional effect caused by the escaping of the electrons from
the emitting region may also be necessary to model the light curves of
SN 1993J, were the density of the CSM not negligible at those large
distances to the progenitor.
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In Sect. 5 we explain how these results can be used in real cases
to estimate physical quantities in RSNe, report estimates of the
magnetic fields for several observed RSNe, and compare these
estimates with those obtained by assuming particle-field energy
equipartition. In Sect. 6 we summarize our conclusions.

2. Connection between expansion and radio light
curves in RSNe

In the standard model of emission from supernovae (Chevalier
1982a,b), the spherically-symmetric expanding shock is de-
scribed as a contact discontinuity plus two shocks, one moving
backwards (from a Lagrangian point of view) and the other mov-
ing forwards, shocking the CSM. A fraction of shocked CSM
electrons is accelerated to relativistic energies, possibly because
of statistical Fermi processes, and produces synchrotron emis-
sion at radio wavelengths as they interact with high magnetic
fields in the shocked CSM region.

The distance, r, from the contact discontinuity to the centre
of the expansion evolves as a power-law of time (r ∝ tm) with an
expansion index, m, that depends on the radial density profiles of
CSM (ρCSM ∝ r−s) and ejecta (ρej ∝ r−n) in the form (Chevalier
1982a,b)

m =
n − 3
n − s

· (1)

This solution of the shock expansion holds for n > 5 and s < 3.
The structure of the shock (contact discontinuity plus backward
and forward shocks) expands in a self-similar way. Therefore,
the expansion of the forward and backward shocks also follows
the law ∝tm.

On the other hand, the distribution of relativistic electrons in
energy space follows a power law (N ∝ E−p) and the energy-
density of the magnetic field is assumed to be proportional to
the energy-density of the shock (i.e., B2 ∝ n V2, where B2 is
the average magnetic field squared, n ∝ r−s is the particle num-
ber density, and V ∝ r(m−1)/m is the shock expansion velocity).
Hence,

B ∝ tm (2−s)/2−1. (2)

We need to look at a limitation in the standard model at this
point. For a standard CSM particle density of 108 cm−3 at a dis-
tance of 1015 cm from the explosion centre, and an expansion
velocity of 20 000 km s−1, a magnetic field of 50–60 G translates
into a similar energy density for the expanding shock and the
magnetic field. Such a large magnetic-field energy density may
affect the hydrodynamics of the shock2. This effect is neglected
in the model (which, indeed, assumes that the magnetic-field en-
ergy density is a small fraction of that of the shock). Hence, for
the cases of very large magnetic fields reported in Sect. 5, high
CSM particle densities and/or high expansion velocities may ac-
cordingly be considered to make the magnetic-field estimates
consistent in the frame of the standard model.

The fraction of accelerated particles by the shock, or the in-
jection efficiency of the shock, is also assumed to be proportional
to the shock energy density. Under all these assumptions and
considering that the intensity of synchrotron radiation is (e.g.
Pacholczyk 1970)

I ∝ N B(1+p)/2, (3)

2 Detailed magneto-hydrodynamic simulations would be necessary to
study the real impact of large magnetic fields in the evolution of the
expanding shock.

it is possible to derive the intensity, I, in the optically-thin regime
if we neglect electron cooling. Since Ṅ(E) ∝ E−p n r2 V dt, it can
be shown that I ∝ ν−α tβ, with

α =
p − 1

2
, (4)

and

β =
1
4

(m (2 (11 + p) − (5 + p) s) − 2p − 10). (5)

This equation establishes a direct relation between the decay in-
dex of the radio light curves in their optically-thin regime, β, on
one hand, and the supernova expansion index, m, the energy in-
dex of the injected relativistic electrons, p, and the index of the
CSM radial density profile, s, on the other hand. For the case of a
constant pre-supernova mass-loss wind (i.e., s = 2) this equation
reduces to β = (6m − p − 5)/2 (e.g., Weiler et al. 2002).

3. Radiative and adiabatic cooling of the relativistic
electrons

The supernova shock is continuously accelerating electrons from
the shocked CSM. These electrons are distributed as N ∝ E−p.
However, the already shocked electrons, which are emitting syn-
chrotron radiation, loose energy and, therefore, shift towards
lower energies in the electron-energy distribution. Since the
number of electrons is conserved, we can make use of the conti-
nuity equation in energy space, i.e.,

Ṅ = ∇E(NĖ) + S (E, t) − L(E, t), (6)

where S (E, t) is the source function (the new electrons contin-
uously accelerated by the shock) and L(E, t) accounts for the
escaping of electrons from the emitting region. We will assume
that L(E, t) = 0 (in Martí-Vidal et al. 2011b, we use L(E, t) ∝ N
to model the SN 1993J radio data, although the effects of this
term are very small compared with S (E, t) until very late epochs,
when a large drop in the CSM density profile takes place). We
show in Appendix A that the source function is S (t) E−p, where

S (t) = N0 Frel
p − 1

E1−p
m

(
t
t0

)m(5−s)−3

, (7)

where N0 is the number density of shocked CSM electrons at a
reference epoch (t0), Frel is the fraction of accelerated electrons
(of the order of 10−5 for SN 1993J), and Em is the minimum
energy of the relativistic electrons (we set Em = me c2, although
this value is not relevant in the optically-thin regime of the light
curves).

The term Ė takes into account the energy loss (or gain) of
the electrons. The energy loss can be either radiative, adiabatic,
and/or caused by free-free interactions with atoms or ions in the
CSM. The energy gain can come from self-absorption of the syn-
chrotron radiation or from inverse-Compton scattering, although
these effects are negligible in the optically-thin part of the light
curve (and also for large magnetic fields), which is of interest
here. For the case of radiative losses we have

Ėr = −c2B2
⊥ E2

(
t
t0

)m(2−s)−2

, (8)

where c2 = 2.37 × 10−3 in cgs units (see Pacholczyk 1970), and
B⊥ is the magnetic field at a reference epoch (t0) averaged in
the orthogonal planes to the electron trajectories. For a random
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distribution of magnetic-field lines and electron trajectories, B⊥
is equal to

√
2/3 times the total averaged magnetic field, B0, at

the reference epoch. For the case of adiabatic losses we have

Ėa =
1
r

d r
d t

E = m
E
t
· (9)

Therefore, if radiative cooling and adiabatic expansion are the
dominant processes of energy loss by the electrons, we have

Ė = −c2B2
⊥ E2

(
t
t0

)m(2−s)−2

− m
E
t
, (10)

in Eq. (10) we neglected the term that accounts for free-free in-
teractions of the electrons with the surrounding CSM atoms and
ions (Ė ∝ r−s E), because this term is much smaller than the
radiative and adiabatic terms in the optically-thin regime of the
light curves. In Appendix B we analyse under which conditions
the free-free term is not negligible compared with the radiative
and adiabatic terms.

Equation (6) (together with Eqs. (7) and (10)) is a typical
difussion-like partial differential equation that can be numer-
ically integrated using, for instance, a semi-implicit approach
(e.g. Martí-Vidal et al. 2011b). However, since we neglect syn-
chrotron self-absorption, inverse Compton, and free-free interac-
tions (i.e., only the radiative and adiabatic terms in Ė are consid-
ered), it is also possible to find an integral form for the solution
of this simplified version of Eq. (6). We show this solution in
Appendix C.

From the numerical solution of N(E, t), we can estimate the
flux-density decay rate of the light curves, because the inten-
sity is

I ∝ tm(2−s)/2−1
∫ ∞

Em

N F(x) dE,

where the power-law of time is related to the decay of the mag-
netic field (see Eq. (2)), x is the ratio between the observing fre-
quency and the critical frequency at energy E, and F(x) is

F(x) = x
∫ ∞

x
K5/3(z) dz,

where K5/3(z) is a Bessel function of the second kind (e.g.,
Pacholczyk 1970). Then we can estimate β from the time evo-
lution of I for different combinations of m, p, s, B0, N0, and Frel,
and compare the results with Eq. (5) to check the effect of elec-
tron cooling in the light curves.

4. Effect of magnetic fields in the radio light curves

We show in Figs. 1 and 2 the β obtained from our simulations as
a function of m and B0 (the magnetic field at the reference epoch
t0 = 5 days) for six values of p (2.0, 2.2, and 2.4, in Fig. 1; 2.6,
2.8, and 3.0, in Fig. 2) and for three values of s (1.6, 2.0, and
2.4). We computed β at 5 GHz between 300 and 1000 days after
the shock breakout. Different selections of frequencies and/or
age ranges result in deviations in β of a few % at most.

Since we compute β in the optically-thin part of the radio
light curves, N0 is not really important in the simulations (chang-
ing this value would affect the opacity in the early supernova
evolution). In our case, the important quantity would be N0 Frel,
which accounts for the number of relativistic electrons. Indeed,
N(E, t) only depends on B0 regardless of a constant scaling fac-
tor defined by N0 Frel. Therefore, the value of N0 Frel does not

really affect the estimates of β. To ensure that this statement is
correct, we checked that the values of β derived from our simu-
lations are only sensitive to changes in B0, m, p, and s.

If radiative cooling is negligible (i.e., for low values of B0),
the β computed from our simulations approaches the values
computed from Eq. (5) for all combinations of m, p, and s. This
is an expected result, because the adiabatic losses alone (which
are ∝E) do not affect the power-law of the electron distribution
(Pacholczyk 1970). However, as the magnetic field increases, β
decreases in absolute value (i.e., the light curves become flat-
ter). This result is in principle non-intuitive, since one would
expect the light curves to be steeper as the radiative cooling (i.e.,
the energy loss of the electrons) becomes more important. The
light curves in the optically-thin stage are flatter for larger B0,
because the magnetic field decreases as the supernova expands
(see Eq. (2)) and cooling effects (which are smaller for smaller
magnetic fields) are consequently less important as time goes
by. Thus, Ṅ assymptotically approaches the value without cool-
ing as the supernova expands. As a consequence, Ṅ/N (which
affects the value of β) takes a higher value if we consider radia-
tive cooling. In Appendix D we show the mathematical details
of this discussion.

The largest deviations of β with respect to the cooling-free
value (i.e., that of Eq. (5)) correspond in all cases to the smallest
decelerations of the shock (i.e., values of m close to 1) and/or to
the steepest CSM radial density profiles (i.e., higher values of s).

For the case s = 2 we can approximate the β shown in Figs. 1
and 2 with the phenomenological equation

β(B0)
β(B0 = 0)

=

(
F1/(1 − m)

B0 + F1/(1 − m)

)F2/((1−m)(2p−1))

, (11)

where β(B0) corresponds to a magnetic field B0 and β(B0 = 0)
is the same as given in Eq. (5) (i.e., with no radiative cooling
considered). The parameters F1 and F2 take the values 7.725 G
and 0.184, respectively. The maximum deviation between the β
computed from Eq. (11) and those shown in Figs. 1 and 2 (for
s = 2) is only ∼3.5%.

4.1. Changes in the spectral index

If electron cooling is not considered, there is a direct relationship
between p and the spectral index α (see, Eq. (4)): p = 1 + 2α.
However, when electron cooling is taken into account, there is
a flux of electrons towards smaller E, which increases the value
of α. This effect is more important as we increase the observing
frequency. We must notice, however, that new electrons are con-
tinuously being injected in the emitting region, and their energy
distribution is assumed to be always ∝E−p, so this fraction of
electrons is unaffected by cooling. Therefore, the effect of cool-
ing in the spectral-index steepening is somewhat mimicked by
the new electrons entering the shocked CSM. The integration of
Eq. (6) takes into account this trade-off between electron cooling
and the source function. In Figs. 3 and 4 we show the simulated
spectral indices averaged between 300 and 1000 days after shock
breakout and centred at 5 GHz. We show α for the same values
of p and s as in Figs. 1 and 2.

We notice that radiative cooling is more important at higher
energies, so the (effective) spectral index should slightly increase
with the observing frequency. for instance, the difference be-
tween the spectral indices centred at 5 GHz (which are higher)
and those at 1.7 GHz (which are lower) is typically 2–3% for
magnetic fields of 10 G and 5–6% for magnetic fields of 100 G.
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s = 1.6 ; p = 2.0

-1.05 -0.90 -0.75 -0.60 -0.45 -0.30 -0.15 0.00 0.15 0.30

s = 2.0 ; p = 2.0

-1.40 -1.20 -1.00 -0.80 -0.60 -0.40

s = 2.4 ; p = 2.0

-1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10 -1.00

s = 1.6 ; p = 2.2

-1.05 -0.90 -0.75 -0.60 -0.45 -0.30 -0.15 0.00 0.15

s = 2.0 ; p = 2.2

-1.50 -1.30 -1.10 -0.90 -0.70 -0.50

s = 2.4 ; p = 2.2

-2.00 -1.84 -1.68 -1.52 -1.36 -1.20

s = 1.6 ; p = 2.4

-1.20 -1.05 -0.90 -0.75 -0.60 -0.45 -0.30 -0.15 0.00 0.15

s = 2.0 ; p = 2.4

-1.60 -1.40 -1.20 -1.00 -0.80 -0.60

s = 2.4 ; p = 2.4

-2.10 -2.00 -1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20

Fig. 1. β as a function of m and B0 (reference epoch t0 = 5 days) for a selection of values for s and p. For B0 ∼ 0, we roughly recover the β given
in Eq. (5). As we increase B0, β approaches 0. This effect is more pronounced for higher values of s (i.e., for steeper CSM radial density profiles).

The values of α obtained from our simulations tend to the
expected values without cooling (i.e. α = (p − 1)/2) when the
magnetic field approaches 0, also as expected. An increase in B0
steepens the spectrum of the radiation (i.e., α increases) for all
combinations of s, m, and p, because Ėrad ∝ E2.

For the case s = 2 we can also approximate the α shown in
Figs. 3 and 4 with a phenomenological equation

α(B0)
α(B0 = 0)

=

(
B0

F1(2m − 1)(2p + 5)
+ 1

)m/(2p−1)

, (12)
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s = 1.6 ; p = 2.6

-1.20 -1.05 -0.90 -0.75 -0.60 -0.45 -0.30 -0.15 0.00

s = 2.0 ; p = 2.6

-1.70 -1.50 -1.30 -1.10 -0.90 -0.70

s = 2.4 ; p = 2.6

-2.24 -2.08 -1.92 -1.76 -1.60 -1.44

s = 1.6 ; p = 2.8

-1.35 -1.20 -1.05 -0.90 -0.75 -0.60 -0.45 -0.30 -0.15 0.00

s = 2.0 ; p = 2.8

-1.80 -1.60 -1.40 -1.20 -1.00 -0.80

s = 2.4 ; p = 2.8

-2.40 -2.20 -2.00 -1.80 -1.60 -1.40

s = 1.6 ; p = 3.0

-1.35 -1.20 -1.05 -0.90 -0.75 -0.60 -0.45 -0.30 -0.15

s = 2.0 ; p = 3.0

-1.90 -1.70 -1.50 -1.30 -1.10 -0.90

s = 2.4 ; p = 3.0

-2.48 -2.32 -2.16 -2.00 -1.84 -1.68

Fig. 2. Same as Fig. 1, but for a different set of values for p.

where α(B0) corresponds to a magnetic field B0 and α(B0 = 0) is
(p − 1)/2 (i.e., no radiative cooling considered). The parameter
F1 takes the value 3.04 G, and the maximum deviation between
the α computed from Eq. (12) and those from the simulations is
also ∼3.5% for all analysed values of m, p, and B0.

Figures 1–4 (and eventually Eqs. (11) and (12)) can be used
to estimate the magnetic field in a supernova by using the α, m,
and β inferred from the observations (provided light curves and

the expansion curve of the supernova have been observed). In
the next section, we will estimate magnetic fields in a number
of radio supernovae for which expansion curve and radio light
curves are available.

4.2. The special case p = 2

For the special case p = 2 the effect of radiative cooling in
the electron energy distribution should be negligible for all E,
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s = 1.6 ; p = 2.0

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

s = 2.0 ; p = 2.0

0.48 0.56 0.64 0.72 0.80 0.88

s = 2.4 ; p = 2.0

0.51 0.57 0.63 0.69 0.75 0.81

s = 1.6 ; p = 2.2

0.60 0.68 0.76 0.84 0.92 1.00

s = 2.0 ; p = 2.2

0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96

s = 2.4 ; p = 2.2

0.60 0.66 0.72 0.78 0.84 0.90

s = 1.6 ; p = 2.4

0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15

s = 2.0 ; p = 2.4

0.68 0.76 0.84 0.92 1.00 1.08

s = 2.4 ; p = 2.4

0.69 0.75 0.81 0.87 0.93 0.99

Fig. 3. Spectral index α, centred at 5 GHz, as a function of m and B0 (reference epoch t0 = 5 days) for a selection of values for s and p. For B0 ∼ 0
we roughly obtain the canonical value α = (p− 1)/2. As we increase B0, the spectra become steeper (α increases). This effect is more pronounced
for lower values of s (i.e., for flatter CSM radial density profiles).

because NĖr would not depend on E and its contribution to the
energy gradient of N would therefore be null (see Eq. (6)). In
principle, one would expect the population of electrons to evolve
as if there were only adiabatic cooling, so neither β nor α should
depend on the magnetic field. However, when p = 2, the evo-
lution of N(E, t) is not only determined by the source function,

S (E, t), and the adiabatic term, but also by tF (see Appendix C,
Eq. (C.6)), which is the time at which all electrons with energies
higher than E have energies below E at time t. The time tF is
longer than t0 for high energies and/or long t and depends on the
magnetic field. Thus, even for p = 2 the light curves and spectra
will be somewhat modified by radiative electron cooling at high
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s = 1.6 ; p = 2.6

0.80 0.88 0.96 1.04 1.12 1.20

s = 2.0 ; p = 2.6

0.80 0.84 0.88 0.92 0.96 1.00 1.04 1.08 1.12 1.16

s = 2.4 ; p = 2.6

0.80 0.85 0.90 0.95 1.00 1.05

s = 1.6 ; p = 2.8

0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35

s = 2.0 ; p = 2.8

0.88 0.96 1.04 1.12 1.20 1.28

s = 2.4 ; p = 2.8

0.90 0.95 1.00 1.05 1.10 1.15

s = 1.6 ; p = 3.0

1.00 1.08 1.16 1.24 1.32 1.40

s = 2.0 ; p = 3.0

1.00 1.04 1.08 1.12 1.16 1.20 1.24 1.28 1.32 1.36

s = 2.4 ; p = 3.0

1.00 1.05 1.10 1.15 1.20 1.25

Fig. 4. Same as in Fig. 3, but for a different set of values for p.

frequencies and late epochs (those frequencies and supernova
ages depend, of course, on the strength of the magnetic field and
the deceleration of the shock), as shown in Figs. 1 and 3 (upper
rows).

5. Estimate of magnetic fields in observed RSNe

If a radio supernova is strong enough to be monitored with
VLBI, it is possible to estimate m from the expansion curve and

β and α from the light curves3. If cooling is not considered, it
is possible to derive p from α and, using Eq. (5), it is possible

3 We assume that all these quantities are determined in the optically-
thin regime, which corresponds to a positive α (i.e., a steep spectrum)
and a decreasing (or non-increasing) flux density, with the exception of
very special cases (s 	 2 together with m ∼ 1, see Figs. 1 and 2). In
all observational cases studied here, the conditions for an optically-thin
regime hold for all quantities used in our analysis.
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to derive s. Additionally, assuming a constant temperature of the
CSM electrons, the opacity caused by free-free processes de-
creases as tδ, being δ = m (1 − 2s) (e.g., Weiler et al. 2002).
Therefore, if the light curves are well sampled in the optically-
thick regime, another condition can be imposed on the parame-
ters if we assume dominance of free-free absorption (FFA) over
synchrotron self absorption (SSA). Self-consistency between all
the parameters can then be checked.

However, it is unclear to which extent FFA dominates the
light curves of usual RSNe. For instance, SSA has shown to be
by far the dominant absorption mechanism in the whole evolu-
tion of the SN 1993J light curves (Fransson & Björnsson 1998;
Pérez-Torres et al. 2001; Martí-Vidal et al. 2011b). Moreover,
different forms of electron cooling, as we showed in the previ-
ous section, affect the values of β and α for a set of m, s, and
p, depending on the strength of the amplified magnetic field. In
this section, we will infer the values of magnetic fields of several
RSNe based on the the values of α, β and m estimated from the
observations. An a priori value for s and/or p must be assumed
however to estimate B0 using this approach.

5.1. SN 1979C

Weiler et al. (1991) reported more than 10 years of observations
of the SN 1979C radio light curves at 15, 5, and 1.4 GHz. These
authors fit α = 0.74+0.05

−0.08 and β = −0.78+0.02
−0.03. In regard of the

expansion curve, different results have been reported by differ-
ent authors. Marcaide et al. (2002) reported a strong deceler-
ation in SN 1979C and, from a more complete VLBI dataset,
Bartel & Bietenholz (2003) reported an almost free expansion
(i.e., m ∼ 1) for 22 years. More recently, Marcaide et al. (2009b)
reanalysed their VLBI data and complemented them with new
1.6 GHz observations and the data from Bartel et al. These au-
thors arrived at the conclusion that the expansion of SN 1979C
was indeed almost free (m = 0.91 ± 0.09) for over 25 years.

The fitted α is very close to the value corresponding to p =
2.5 without radiative cooling. Therefore, we conclude that either
the magnetic field is very small (and hence α ∼ (p − 1)/2), or
p is lower than 2.5. Assuming p = 2.2 (or p = 2.4) and s = 2,
we estimate from Fig. 1 a magnetic field of ∼20 G (or ∼40 G) at
day 5. There are no solutions neither for s = 1.6 nor s = 2.4.
Now, from Fig. 3, the observed α and m imply B0 ∼ 20−30 G
(for p = 2.2) and B0 ∼ 5−10 G (for p = 2.4). Therefore, based
on the radiative-cooling assumption, the magnetic field at day 5
should be between 20 and 30 G if p ∼ 2.2. Indeed, from Eqs. (12)
and (11) we find self-consistent estimates of α and β for p = 2.3
and B0 = 30 G.

How do these estimates of B0 compare to the equipartition
magnetic field? For an energy equipartition between particles
and fields, we can estimate the magnetic field in the radiating
region provided the size and the total luminosity of the source
are known. The expression used for this estimate is taken from
Pacholczyk (1970):

Beq = (4.5c12(1 + k)/φ)2/7R−6/7L2/7
R , (13)

where c12 depends on the spectral index, α, and on the frequency
range in the spectrum integration. φ is the filling factor of the
emitting region to a sphere (0.66 for a shell-like structure of 30%
fractional width), R is the source radius, LR is the integrated ra-
dio luminosity, and k is the ratio between the heavy particle en-
ergy density and the electron energy density. We do not know
the details of the particle acceleration, and the efficiency of ac-
celeration could depend on the particle mass. Hence, k can vary

Table 1. Model parameters for several RSNe.

Supernova Observed Assumed Derived
m α β s p B0 (G)

SN 1979C 0.91 0.74 −0.78 2.0 2.5 ∼0
2.0 2.3 20–30

SN 1986J 0.69 0.7 −1.18 1.7 2.4 ∼0
2.0 2.0 30–50

SN 1993Ja 0.87 0.98 −0.78 2.0 2.5 60–80
SN 2008iz 0.89b 1.08 −1.43 2 ∼3 ∼0

2.4 2.6 ∼100

Notes. Observed refers to those obtained from the fitted expansion and
radio light curves; Assumed and Derived refer to those obtained from
comparison with the results shown in Figs. 1–4. Cases with two possible
solutions are given in two rows, one row for each solution. (a) Fit to data
between days 300 and 1000 after explosion (see text). (b) Derived from
VLBI observations (Brunthaler et al., in prep.)

from 1 (case of a much higher acceleration efficiency of the elec-
trons compared to the protons) to mp/me ∼ 2 × 103 (case of a
similar acceleration efficiency for electrons and protons).

Using the spectral index and flux densities given by Weiler
et al. (1991), the expansion curve given by Marcaide et al.
(2009b), and the distance to the host galaxy (M 100) given by
Ferrarese et al. (1996) of 16.1 Mpc, we estimate LR = 1.6 ×
1033 erg s−1 at day 5 after explosion. Therefore, the equipartition
magnetic field could range between 10 and 85 G (for k = 1 and
k = 2000, respectively). Our estimated B0, assuming p = 2.3
and s = 2, corresponds to low-to-intermediate values of k, i.e.
low-to-intermediate efficiency in the acceleration of ions.

The cooling-free prediction of β (Eq. (5)) for s = 2 and
p = 2.5 is consistent with the observed one if m = 0.99 (i.e. for
an essentially non-decelerated expansion), which is indeed com-
patible with the value of m reported in Marcaide et al. (2009b)
at a 1σ level. This latter possibility would imply a very low
magnetic-field energy density, compared with the energy density
of the particles.

In Table 1 (row 1) we summarize the values of s, p, and B0
discussed for this supernova.

5.2. SN 1986J

There are a number of peculiarities in the radio light curves of
SN 1986J compared with those of other RSNe. The spectral in-
dex cannot be well fitted to a single value from 1.4 to 23 GHz
(Weiler et al. 1990). In the optically-thin part of the light curves,
α = 0.7 ± 0.1 between 5 and 15 GHz, but α = 0.2 ± 0.2 between
15 and 23 GHz. Additionally, Bietenholz et al. (2004) reported
the discovery of a compact source in the shell centre of SN 1986J
with an inverted spectrum, and interpreted this source as the re-
sult of accretion onto a black hole or to a young pulsar nebula.

The best-fit parameters reported in Weiler et al. (1990) are
α = 0.67+0.04

−0.08 and β = −1.18+0.02
−0.04, based on observations up to

the year 1989. Bietenholz et al. (2002) reported a much lower
β for later epochs, which slightly depends on the observing fre-
quency (ranging from −2.7 at 8.4 GHz to −3.5 at 23 GHz). In
this work we will use the α and β obtained from the early epochs
(i.e., those up to year 1989) and between 5 and 15 GHz.

With regard to the expansion curve, Bietenholz et al. (2010)
reported m = 0.69 ± 0.03, a value much lower than those of the
other RSNe observed with VLBI (∼0.8−0.9).

From the extrapolated size at day 5, a distance to the host
galaxy (NGC 891) of 8.4±0.5 Mpc (Tonry et al. 2001), and using
α = 0.7, we obtain an equipartition magnetic field between 14
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and 100 G (k = 1 and 2000, respectively) using Eq. (13) for day 5
after explosion.

How do these estimates of B0 compare with those that can
be obtained with our approach? A spectral index of 0.7 can only
be obtained with p = 2.4 or lower. Inserting the lowest value,
p = 2, in Eqs. (11) and (12) (or Figs. 1 and 3) self-consistent
values of α and β with B0 = 30−50 G. Using p = 2.2 and s = 2,
we estimate from Fig. 1 a magnetic field of ∼60 G at 5 days af-
ter explosion. From Fig. 3 and assuming the same values for s
and p, a magnetic field of ∼10 G is estimated. Both estimates are
incompatible. For s = 2.4 or s = 1.6 we cannot obtain a coher-
ent estimate of the magnetic field either; using now p = 2.4, the
observed α requires, of course, B0 ∼ 0 and the observed β can
only be explained with our simulations if s ∼ 1.6. Therefore,
a compatibility between Figs. 1 and 3 is found for low values
of the magnetic field and a fairly flat CSM radial density pro-
file (s ∼ 1.6). Indeed, the cooling-free prediction of β given by
Eq. (5) (which is similar to the one with cooling considered if
B0 is very small) is equal to the observed one for p = 2.4 and
s ∼ 1.7. Hence, we conclude that either p = 2, s = 2, and
B0 = 30−50 G, or s < 2, p ∼ 2.4 and B0 ∼ 0 G, can explain the
radio data for this supernova. In Table 1 (row 2) we summarize
the values of s, p, and B0 discussed for this supernova.

5.3. SN 1993J

This is the radio supernova with best-observed light curves and
expansion curve (see Pérez-Torres et al. 2001; Bartel et al. 2002;
Marcaide et al. 2009a; Weiler et al. 2007; Martí-Vidal et al.
2011a,b, and references therein).

Fitting their observed light curves (taken until ∼4900 days
after explosion), Weiler et al. (2007) obtained α = 0.81, δ =
−1.88, and β = −0.73. Therefore, without considering electron
cooling, we obtain p = 2.6 from the fitted α, and from the expan-
sion index reported in Martí-Vidal et al. (2011b) at late epochs
(m = 0.87), we obtain s = 1.6. Applying now Eq. (5), we derive
β = −0.44, which is inconsistent with the value fitted to the light
curves (β = −0.73).

However, if we decrease m to 0.82, we can obtain a self-
consistent solution for β with Eq. (5). This seems to be a strong
evidence of a CSM radial density profile with an index s < 2.
Also, Mioduszewski et al. (2001) simulated radio images and the
radio light curves of SN 1993J without taking radiative cooling
into account, and claimed that s ∼ 1.7 provides the best fit to the
data.

However, the evidence of s < 2 from Eq. (5) and from the
fit of the optically-thick part of the radio lightcurves holds as
long as the temperature of the thermal CSM electrons is taken
to be constant throughout the whole extent of the CSM (to be
able to use δ = m (1 − 2s)), which is not likely to apply in
the case of SN 1993J (Fransson & Björnsson 1998; Martí-Vidal
et al. 2011b). Additionally, more recent analyses of the X-ray
data from SN 1993J also discard the models with s < 2 (Nymark
et al. 2009; Chandra et al. 2009).

From their simultaneous analysis of the complete light
curves and expansion curve of SN 1993J, Martí-Vidal et al.
(2011b) reported B0 = 65.1±1.6 G and p = 2.59±0.01 for s = 2.
It was also noted by these authors that using values of s < 2 re-
sulted in poor fits to the data. From a very time-limited set of
flux-density measurements, Fransson & Björnsson (1998) fitted
a similar magnetic field for day 5 after explosion (B0 ∼ 68 G)
also using s = 2, although they fitted a different energy index for
the electron distribution (p = 2.1).

Which magnetic field do we obtain for SN 1993J with our
approach? Opacity effects in the supernova ejecta may affect
the spectral index and β at different frequencies and for dif-
ferent times (Marcaide et al. 2009a; Martí-Vidal et al. 2011b).
Therefore, in our approach we must use the values of β and
α fitted to the subset of data where these ejecta-opacity ef-
fects are minimum or non-existent, and not those fitted to the
whole dataset. Using the 5 GHz and 8.4 GHz data of Weiler et al.
(2007) from day 300 to day 1000 after explosion, we obtain
β = −0.78±0.05 at 5 GHz and β = −0.79±0.08 at 8.4 GHz. The
average spectral index between 8.4 and 5 GHz at these epochs is
α = 0.98 ± 0.19.

This spectral index implies p = 3.0 or lower. For any value of
p, neither s = 1.6 nor s = 2.4 yield self-consistent estimates of
B0 using our approach. This is an additional evidence of a CSM
with s = 2 for SN 1993J. Assuming now that s = 2, we estimate
from Eqs. (11) and (12) that p ∼ 2.4 and B0 = 60−80 G.

In Table 1 (row 3) we summarize the values of s, p, and B0
discussed for this supernova.

The range of values of B0 estimated this way agrees with
the estimates reported in Fransson & Björnsson (1998) and
Martí-Vidal et al. (2011b). Nevertheless, here we used a subset
of the observed light curves to avoid the undesired contribution
of ejecta-opacity effects in our rough radiative-cooling model.

Fransson & Björnsson (1998) and Martí-Vidal et al. (2011b)
also discussed the particle-field energy equipartition based on
their fitted magnetic fields. In both papers, the conclusion is that
to obtain energy equipartition, an acceleration efficiency of the
ions similar to that of the electrons (i.e., k 
 1 in Eq. (13))
should take place in the shock.

5.4. SN 2008iz

Marchili et al. (2010) reported a 5 GHz light curve for this super-
nova, taken with the Urumqi telescope. Brunthaler et al. (2010)
reported VLBI observations from which the explosion date and
the expansion velocity could be estimated. Marchili et al. (2010)
estimated an equipartition magnetic field between 0.3 G and
2.1 G (for k = 1 and k = 2000, respectively) at day 63 after
explosion. Assuming s = 2 (i.e., B ∝ t−1), this results in a mag-
netic field between 3.8 and 26.5 G at day 5 after explosion.

If we use our approach, the spectral index, α = 1.08 ± 0.08
(Marchili et al. 2010; Brunthaler et al. 2010), is compatible with
p ∼ 3 or lower. However, using β = −1.43±0.05 (Marchili et al.
2010) and m ∼ 0.89 (derived from a set of VLBI observations;
Brunthaler et al., in prep.), we find a self-consistent magnetic
field of ∼100 G for p = 2.6 and s = 2.4 (see Figs. 2 and 4),
much larger than that reported in Marchili et al. (2010).

However, if p ∼ 3, the magnetic field would be close to 0 G,
regardless of the value of s (in order to explain the spectral in-
dex). Now, if we set s = 2, we obtain β ∼ −1.3 for m = 0.89.
This value is close to, but lower than, the observed one, and
would increase if s would be slightly larger than 2. Indeed, the
uncertainties in m, α, and β can still make s = 2 possible for
p ∼ 3. In any case, the magnetic field in the emitting region can
be arbitrarily small if p ∼ 3, and we cannot favour either this
possibility or the estimate of B0 ∼ 100 G obtained for p = 2.6.

In Table 1 (row 5) we summarize the values of s, p, and B0
discussed for this supernova.

5.5. Other RSNe

For RSNe where only the radio light curves are available, it is
still possible to infer some information on magnetic fields and
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density structure of the CSM and/or ejecta, although with several
additional assumptions. In this section, we study two cases that
we consider more interesting than other typical RSNe.

5.5.1. Radio transient in M 82

The discovery of a new transient in M 82 has been recently re-
ported in Muxlow et al. (2009), and a light curve with a prac-
tically constant flux density has been reported in Muxlow et al.
(2010), with an spectral index of ∼0.7. Indeed, looking at their
Fig. 2, the flux density at 1.6 GHz seems to be slightly increas-
ing. If this transient in the starburst galaxy M 82 is a supernova,
it would be a very special case, because β ∼ 0. It is not possi-
ble to obtain this value of β unless s < 2 (see Eq. (5)), because
the highest value of m is 1 and p is assumed to be larger than 1.
Indeed, from Eq. (5) we obtain s ∼ 0.6, for p = 2, and s ∼ 1.3,
for the extreme case p = 1. Therefore, a plain light curve is a
strong evidence of a CSM density profile much shallower than
the canonical case s = 2. In any case, another condition for
β ∼ 0, regardless of the strength of the magnetic field, is that
m ∼ 1 (see Fig. 1). Therefore, two clear conclusions can be ex-
tracted for this transient, provided it is a supernova: 1) the index
of the CSM density profile is s < 2 and 2) the deceleration in-
dex must be m ∼ 1. Both conclusions imply that the index of
the ejecta density profile, n, must be very large (n = 20, or even
higher, see Eq. (1)). With regard to the spectral index, we con-
clude from Figs. 3 and 4 that the magnetic field would be up to
B0 ∼ 20 G, assuming s = 1.6 and p = 2, and lower for larger p.

5.5.2. SN 2000ft

Supernova SN 2000ft was discovered by Colina et al. (2001).
Pérez-Torres et al. (2009) presented an eight-year long radio
monitoring of this supernova, which is located in the circumnu-
clear starburst of NGC 7469 (a luminous infra-red galaxy, LIRG,
at a distance of 70 Mpc; Sanders et al. 2003). Pérez-Torres et al.
(2009) followed the approach of Weiler et al. (2002) to fit the
evolution of the radio light curves, using a standard value of
s = 2 for the CSM. This analysis resulted in a value for the spec-
tral indexα = 1.27 and a power-law time decay index β = −2.02.
In addition, they also needed to include a foreground absorber,
likely an H II region, to account for the non-detection of radio
emission at frequencies around and below 1.7 GHz, in agreement
with the observations reported by Alberdi et al. (2006).

While the value of α reported for SN 2000ft is not surpris-
ing, the value of β is much higher (in absolute value) than those
typically found in RSNe. From Eq. (5), we obtain values of β
similar to that of SN 2000ft if s > 2 (see Figs. 1 and 2), although
a low value of m (together with a large B0) or a large value of p is
also necessary to simultaneously explain the steep spectrum (see
Fig. 4). If s = 2, it is also possible to obtain a self-consistency
between α and β, provided B0 ∼ 0, p = 3.54, and m = 0.75.

In any case, we find that SN 2000ft should be a highly de-
celerated supernova (m between 0.7 and 0.8), the CSM density
index should be s = 2 or higher, and the energy distribution of
the electrons must be quite steep (p = 3 or higher).

6. Conclusions
We showed the impact of energy losses of relativistic electrons
in RSNe and their effect on the flux-density decay rate of the
light curves in the optically-thin regime for different values of
the magnetic fields and for different expansion curves.

If the magnetic-field energy density and the acceleration ef-
ficiency of the shock scale with the shock energy density, which
is very likely the case for RSNe, we find that there is a tight

relation between expansion index, m, spectral index, α, and (op-
tically thin) flux-density decay index β.

This connection between expansion and flux-density evolu-
tion in RSNe can be used to estimate the magnetic field of ob-
served RSNe (B0 at a reference epoch) as well as its evolution
with time for an assumed CSM radial density profile and energy
index, p, of the relativistic electrons.

For a number of well observed RSNe (e.g., SN 1993J in
M 81) we found self-consistent solutions for B0, m, s, and p.
A standard CSM density profile (i.e., s = 2) can explain all ob-
servations, although we found evidence of non-standard values
of s for SN 1986J and SN 1979C. The index of the relativis-
tic electron population takes fairly high values (p = 2.3−3.0),
and the range of magnetic fields between all cases is large
(B0 ∼ 20−100 G). These strong magnetic fields imply effective
amplification mechanisms in the radio-emitting region, which
may be related to plasma turbulence (see, e.g., Gull 1973, or Jun
& Norman 1995, and references therein).

Previous analyses of the radio light curves and expansion
curves of these RSNe did not take into account the correct cou-
pling between m, β, and α for different magnetic fields. Some of
the results previously reported for these supernovae could, there-
fore, be internally inconsistent.

The magnetic fields obtained with our approach are in sim-
ilar to the equipartition magnetic fields. For SN 1979C and
SN 1986J we obtain a range of self-consistent magnetic fields
similar to those derived from equipartition with a lower acceler-
ation efficiency for ions (i.e., low-to-intermediate values of k in
Eq. (13)). Additionally, for SN 1986J there is evidence of s < 2,
provided the magnetic field is low. For SN 2008iz, either a very
low magnetic field (with s ∼ 2) or an extremely large magnetic
field (with s > 2) are necessary to model the light curve, given
the high flux-density decay rate (β = −1.43). For SN 1993J we
obtain a magnetic field similar to that reported in Fransson &
Björnsson (1998) and Martí-Vidal et al. (2011b) although we
use in our approach a subset of flux-density observations (and
not the whole data set), to avoid possible biasing effects coming
from the ejecta opacity (Martí-Vidal et al. 2011b).

For the RSNe that will be detected in the future (the high
sensitivity of the forthcoming radio observatories, like ALMA
and SKA, will allow the detection and monitoring of many other
RSNe), it will be necessary, as our results show, to study the
connection between their expansion and flux-density evolution
to obtain self-consistent results for the CSM profile, the elec-
tron energy index, and the magnetic field based on the observed
spectral index, the expansion curve, and the flux-density decay
rate.
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Appendix A: Derivation of the source function
of relativistic electrons

The source function is related to the acceleration of part of the
electrons from the CSM, because they interact with the expand-
ing supernova shock. If we assume that the acceleration effi-
ciency scales with the energy density of the shock (see Fransson
& Björnsson 1998, for a discussion of different possibilities and
how they fit to the observations of SN 1993J), the density of elec-
trons instantaneously accelerated at a given time, t, will be

nrel ∝ ncs V2, (A.1)
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where V is the velocity of the expanding supernova shock and
ncs is the density of the recently-shocked CSM, both quantities
computed for the same time t. Since the radius of the shock is
r ∝ tm, the number of relativistic electrons injected between r
and r + dr is

Nrel = Frel n0
cs

(
r
r0

)−s

V2 4 π r2 dr, (A.2)

where s is the index of the CSM radial density profile, n0
cs and

r0 are the CSM density and shock radius at a given reference
epoch, t0, and Frel is the acceleration efficiency (or fraction of
CSM electrons that are accelerated) at the same epoch t0.

These electrons are distributed according to N ∝ E−p (with
E running from Emin = me c2 to infinity, being me the electron
mass). Therefore, the conservation of the number of electrons
implies

Nrel = K
∫ ∞

m c2
E−p dE. (A.3)

The factor K accounts for the normalization of the electron en-
ergy distribution. This factor is

K =
p − 1

E1−p
min

· (A.4)

Hence, the source function (i.e., the energy distribution of elec-
trons shocked between r and r + dr) is

S (E, r) = Frel N0
cs

p − 1

E1−p
min

(
r
r0

)5−s−3/m

E−p, (A.5)

which, in terms of time (given that r/r0 = (t/t0)m), reduces to
Eq. (7).

Appendix B: Radiative and adiabatic energy loss
vs. free-free loss in RSNe

The rate of energy loss caused by synchrotron radiation and adi-
abatic expansion, Ėr and Ėa, are given in Eqs. (8) and (9), re-
spectively. With regard to the energy loss caused by free-free
interactions with the CSM, we have (Pacholczyk 1970)

Ėf ∼ f1 ncs E, (B.1)

where f1 ∼ (1−8) × 10−16 in cgs units. The exact value depends
on the level of ionization of the nuclei in the CSM (lower val-
ues of f1 correspond to higher levels of ionization, which are
expected in the shocked CSM)4. Since an electron with energy
E in interaction with a magnetic field B emits synchrotron radia-
tion mostly at its critical frequency (given by ν ∼ c1 B E2, where
c1 = 6.27 × 1018 in cgs units, Pacholczyk 1970), the ratio of ra-
diative loss to free-free loss for electrons emitting at the critical
frequency ν is

Ėr

Ėf
=

c2

f1

√
ν

c1

B3/2
0

n0

(
t
t0

)(m(6−s)−6)/4

, (B.2)

where we used the time evolution of B given in Eq. (2). On the
other hand, the ratio of diabatic to free-free energy loss for elec-
trons emiting at the same frequency is

Ėa

Ėf
=

m
f1 n0 tm s

0

tm s−1. (B.3)

4 There is an additional contribution to Ėf that can be written as a
modifying factor of f1, which depends on log E. We opted to neglect
this small correction.

The ratios in Eqs. (B.2) and (B.3) evolve as power laws of time,
whose indices depend on s and m. Therefore, for some combi-
nations of s and m, the ratios will grow with time (and radiative
and adiabatic losses will dominate over free-free losses), but for
other combinations the ratios will decrease with time, and free-
free losses may be comparable with the other contributions at
late times.

For radiative vs. free-free losses, the time index in Eq. (B.2)
is positive if

m >
6

6 + s
, (B.4)

which implies values of m higher than 0.75 for the canonical
case s = 2, although slightly higher values of m for lower s (for
instance, m > 0.78 if s = 1.6). However, even if m is lower than
these values (so the ratio Ėr/Ėf decreases with time), radiative
losses will still be higher than free-free losses for the times and
observing frequencies of interest. For instance, with an initial
magnetic field as low as B0 = 10 G (at day 5 after explosion!)
and a CSM density as high as n0 = 109 cm−3, the ratio is ∼15 at
day 1000 after explosion, for m = 0.70, observing at 5 GHz.

The ratio of adiabatic losses to free-free losses increases with
time if m > 1/s. This relation allows expansion indices as low
as 0.63 if s = 1.6, and even lower values for higher s. Even in
the (very special) cases where we would find m < 1/s, adiabatic
losses would still be higher than free-free losses for the times
and observing frequencies of interest. For instance, if m = 0.59
(i.e., the minimum possible value compatible with the Chevalier
model for s = 1.6) and n0 is as large as 109 cm−3, this ratio is
∼10 at day 1000 after explosion observing at 5 GHz.

In any case, for strongly decelerated RSNe (i.e., with low
m) free-free losses may not be completely negligible, depending
also on the CSM density (higher density implies larger free-free
energy losses). In these special cases, the connection between
β and m may not only depend on s, p, and B0, but also on n0.
Hence, Eq. (6) will have to be individually integrated for each of
these cases.

Appendix C: Integral solution of the continuity
equation in energy space

The energy loss of an electron with energy E at time t is given
in Eq. (10). Here we rewrite the equation,

Ė = −c2
2
3

B2
ref

(
t

tref

)ρ
E2 − m

E
t
, (C.1)

where ρ = 2(m − s) − 2 and Bref is the magnetic field at a ref-
erence epoch tref (we do not use the subindex 0, to distinguish
the reference epoch from the initial time of integration, t0, see
below). The solution to this equation is

E(t) =
(1 + ρ − m)tm

0 E0

(1 + ρ − m)tm + 2/3 c2B2
refE0t−ρref (t

1+ρtm
0 − t1+ρ

0 tm)
, (C.2)

where we computed the integration constant by assuming E =
E0 at t = t0 (i.e., the initial time of integration). We now write
E0 in terms of E:

E0 =
(m − 1 − ρ)E

(m − 1 − ρ)(t0/t)m + 2/3 c2B2
refEt−ρref (t

1+ρ(t0/t)m − t1+ρ
0 )
·

(C.3)

At a given time, t0, the electrons being shocked (let us call them
N0(E0)) are distributed as S (t0)E−p

0 (where S (t0) is given in
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Eq. (7)). Since the number of electrons is conserved, at a later
time, t, these electrons (i.e., not all the electrons, but just those
shocked at time t0) will have the distribution N0(E) given by

N0(E)dE = N0(E0)dE0 → N0(E) = N0(E0)
dE0

dE
· (C.4)

Applying Eq. (C.3), and its derivative, to Eq. (C.4), we obtain

Nτ(E) =

S (τ)(m − 1 − ρ)2−pE−p(τ/t)m

(
(m − 1 − ρ)(τ/t)m + 2/3 c2B2

refEt−ρref ((τ/t)
m tρ+1 − τ1+ρ)

)2−p
,

(C.5)

where t0 has been replaced by τ, which can take any value in
the evolution time of the supernova. A similar approach was de-
scribed in Pacholczyk (1970, see his Sect. 6.3), although a con-
stant and homogeneous magnetic field was used. Equation (C.5)
is physically meaningful only when the power in the denomina-
tor is that of a positive number. Let us call tF the value of τ in
a way that the denominator of Eq. (C.5) vanishes. For a given
supernova, this value depends on E and t. For larger t, all the
electrons shocked at time τ will have energies below E. In other
words, no electrons shocked at time tF (and earlier times) con-
tribute to the electron distribution at time t for energies above E.

It is now straightwforward to conclude that the total number
of electrons at time t and energy E will just be the addition of
all the (evolving) contributions of the source function between
the beginning of the expansion, t0, and t (these contributions are
given by Eq. (C.5)). The resulting integral is

N(E, t) =∫ t

tF

S (τ)(m − 1 − ρ)2−pE−p(τ/t)m dτ(
(m−1−ρ)(τ/t)m+2/3 c2B2

refEt−ρref ((τ/t)
m tρ+1−τ1+ρ)

)2−p
·

(C.6)

Appendix D: Why are the light curves flatter if we
consider radiative cooling?

From Eq. (3) we can approximate the value of β by assuming
that at any time the electron energy distribution does not differ
so much from the canonical one, N ∝ Ep. Under this assumption
(valid for a rough qualitative discussion), we can show that

β =
d ln(I)
d ln(t)

∝ İ
I
=

1 + p
2

Ḃ
B
+

Ṅ
N
· (D.1)

The term with Ḃ/B, which is negative and is related to the differ-
ent electron emissivities under different magnetic fields, has the
same effects on β whether radiative cooling is considered or not.
With regard to the term Ṅ/N, which is positive and is related to
the different total emissivity for different number of electrons,
when radiative cooling is not considered it takes the form

Ṅ(E, t)
N(E, t)

=
S (E, t)∫ t

t0
S (E, t′) dt′

,

where S (E, t) is the source function given in Eq. (7). However,
if radiative cooling is considered, we have instead(

Ṅ(E, t)
N(E, t)

)
Cool

=
S (E, t) − c(E, t)∫ t

t0
(S (E, t′) − c(E, t′)) dt′

,

where c(E, t) = −∇E(NĖ) and Ė is given in Eq. (10). The func-
tion c(E, t), which indirectly depends on N, approaches 0 as time
goes by. Therefore, the numerator, Ṅ(E, t), if cooling is consid-
ered, will tend to that of the cooling-free case, while the denom-
inator, N(E, t), will always be smaller in the case with cooling.
Hence,(

Ṅ(E, t)
N(E, t)

)
Cool

>
Ṅ(E, t)
N(E, t)

· (D.2)

From this equation, it is easy to see that the positive contribution
to β provided by Ṅ/N (see Eq. (D.1)) is larger if radiative cooling
is considered. The corresponding value of β is, therefore, closer
to 0 (the light curve is flatter).

The inequality in Eq. (D.2) may have important observa-
tional effects until very late times (several years), when we will
have∫ t

t0

S (E, t′) dt′ 

∫ t

t0

c(E, t′) dt′.

Even then, the average value of β for the whole optically-thin
part of the light curve may still differ from that of the cooling-
free case.
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