Observations of the recurrent M 31 transient XMMU J004215.8+411924 with Swift, Chandra, HST, and Einstein

R. Barnard¹, M. Garcia¹, S. Murray¹, N. Nooraee², and W. Pietsch³

¹ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138, USA
e-mail: rbarnard@head.cfa.harvard.edu
² Dublin Institute for Advanced Studies, Dublin, Republic of Ireland
³ Max-Planck-Institut für extraterrestrische Physik, Garching, Germany

Received 23 July 2010 / Accepted 9 November 2010

ABSTRACT

Context. The transient X-ray source XMMU J004215.8+411924 within M 31 was found to be in outburst again in the 2010 May 27 Chandra observation. We present results from our four Chandra and seven Swift observations that covered this outburst.

Aims. X-ray transient behaviour is generally caused by one of two things: mass accretion from a high mass companion during some restricted phase range in the orbital cycle, or disc instability in a low mass system. We aim to exploit Einstein, HST, Chandra and Swift observations to determine the nature of XMMU J004215.8+411924.

Methods. We model the 2010 May spectrum, and use the results to convert from intensity to counts in the fainter Chandra observations, as well as the Swift observations; these data are used to create a lightcurve. We also estimate the flux in the 1979 January 13 Einstein observation. Additionally, we search for an optical counterpart in HST data.

Results. Our best X-ray positions from the 2006 and 2010 outbursts are 0.3′′ apart, and 1.6′′ from the Einstein source; these outbursts are likely to come from the same star system. We see no evidence for an optical counterpart with mB ≈ 25.5; this new limit is 3.5 mag fainter than the existing one. Furthermore, we see no V band counterpart with mV ≤ 26. The local absorption is ~7 times higher than the Galactic line-of-sight, and provides ~2 mag of extinction in the V band. Hence MV ≈ −0.5. Fits to the X-ray emission spectrum suggest a black hole primary.

Conclusions. We find that XMMU J004215.8+411924 is most likely to be a transient LMXB, rather than a HMXB as originally proposed. The nature of the primary is unclear, although we argue that a black hole is likely.

Key words. X-rays: general – X-rays: binaries – galaxies: individual: M 31

1. Introduction

The bulge region of M 31, the nearest spiral galaxy neighbour, is one of the best laboratories in the Universe for studying X-ray binaries. Accordingly, it has been observed hundreds of times by various X-ray observatories over the past 30 years. In the last ~10 years alone, it has been observed 120 times by Chandra, 90 times by Swift and 31 times by XMM-Newton. Most of the Chandra and XMM-Newton observations were short, monitoring observations looking for transient X-ray sources, while the Swift observations generally followed these transients (see e.g. Williams et al. 2005, 2006).

XMMU J004215.8+411924 was identified as a new X-ray transient in 2006, August 9 observation of M 31 (Haberl et al. 2006), with a positional uncertainty of 2″. Haberl et al. (2006) found that the emission spectrum was well described by a power law with photon index 1.57, suffering absorption equivalent to 4.2 × 10⁻²¹ H atoms cm⁻²; the unabsorbed 0.5–10 keV luminosity was 9.1 × 10³⁷ erg s⁻¹, assuming a distance of 780 kpc. The follow-up Swift observation made on 2006 September 1 revealed a UV counterpart within the X-ray error circle, leading Haberl et al. (2006) to identify XMMU J004215.8+411924 as a high mass X-ray binary (HMXB). A further Swift observation on 2006 September 11 yielded only three photons from XMMU J004215.8+411924 (Pietsch et al. 2006); this corresponded to a 0.5–10 keV luminosity of 5 × 10³⁶ erg s⁻¹ when assuming the above emission model.

Galache et al. (2006) subsequently reported a Chandra detection of XMMU J004215.8+411924 in a July 31 observation, finding the 0.9–6 keV spectrum to be well modeled by a power law model with photon index −1.8, with absorption equivalent to 4.4 × 10³¹ H atoms cm⁻². They found the 0.5–10 keV luminosity to be 1.1 × 10³⁸ erg s⁻¹.

Voss et al. (2008) examined the Chandra, Swift and XMM-Newton observations of three transients in M 31, including XMMU J004215.8+411924. The June 2 XMM-Newton observation made no firm detection of J004215.8+411924; hence Voss et al. (2008) constrained the outburst duration to 40–79 days. They refined the source position by registering the Chandra data with the 2MASS catalogue of Skrutskie et al. (2006). They obtained RA(J2000) = 00:42:16.1, Dec(J2000) = +41:19:26.7, with a 1σ uncertainty of 0.5″. This new position was ~4″ from the counterpart identified by Haberl et al. (2006), allowing Voss et al. (2008) to reject this association. They searched for a counterpart in the local group galaxy survey (LGGS) images provided by Massey et al. (2006), and found nothing with V ≤ 22; using a distance modulus of 24.46 and 0.4 mag of extinction, they could not rule out a Be companion star.

In Nooraee et al. (2010) we reported a new outburst in the 2010 May 27 Chandra observation within 0.5″ of the position of...
Table 1. Journal of observations.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Obs</th>
<th>Date</th>
<th>Exposure</th>
<th>Net counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einstein HRI</td>
<td>579</td>
<td>1979-01-13</td>
<td>29 ks</td>
<td>29</td>
</tr>
<tr>
<td>Chandra ACIS-I</td>
<td>7139</td>
<td>2006-07-31</td>
<td>4 ks</td>
<td>433</td>
</tr>
<tr>
<td>Chandra ACIS-I</td>
<td>11279</td>
<td>2010-03-05</td>
<td>4 ks</td>
<td>5</td>
</tr>
<tr>
<td>Chandra ACIS-I</td>
<td>11838</td>
<td>2010-05-27</td>
<td>4 ks</td>
<td>279</td>
</tr>
<tr>
<td>Swift XRT</td>
<td>0031255012</td>
<td>2010-06-06</td>
<td>4 ks</td>
<td>44</td>
</tr>
<tr>
<td>Swift XRT</td>
<td>0031255013</td>
<td>2010-06-09</td>
<td>4 ks</td>
<td>37</td>
</tr>
<tr>
<td>Swift XRT</td>
<td>0031255014</td>
<td>2010-06-12</td>
<td>4 ks</td>
<td>24</td>
</tr>
<tr>
<td>Swift XRT</td>
<td>0031255015</td>
<td>2010-06-15</td>
<td>1.7 ks</td>
<td>9</td>
</tr>
<tr>
<td>Swift XRT</td>
<td>0031255016</td>
<td>2010-06-18</td>
<td>3 ks</td>
<td>6</td>
</tr>
<tr>
<td>Chandra ACIS-I</td>
<td>11839</td>
<td>2010-06-23</td>
<td>4 ks</td>
<td>27</td>
</tr>
<tr>
<td>Swift XRT</td>
<td>0031255018</td>
<td>2010-06-24</td>
<td>4 ks</td>
<td>1</td>
</tr>
<tr>
<td>Chandra ACIS-I</td>
<td>11840</td>
<td>2010-07-20</td>
<td>4 ks</td>
<td>∼0-9</td>
</tr>
</tbody>
</table>

Notes. For each observation we give the instrument, observation number, date, exposure time and number of net source photons.
(*) Not a secure detection. Derived luminosities are 3σ upper limits.

We were awarded seven observations of M 31 with Swift during 2010, June at three day intervals to monitor the transient CXOM 31 J004253.1+41122 (Henze et al. 2009); results from that transient will be presented by Nooraee et al. (in prep). This work uses data from the X-ray Telescope (XRT), taken in photon counting (pc) mode. Unfortunately, the 2010 June 21 observation had an exposure time of just 35s in pc mode, so this observation was ignored. XMMU J004215.8+411924 was at a large off-axis angle that varied between observations (≈7–10°).

The Swift data were analysed with XSELECT version 2.4a. We were unable to use the recommended source extraction radius of 47″ (containing ~90% of the source photons) due to crowding. Instead we used a circular source extraction region with radius 20″, and a concentric, annular background region with inner radius 20″ and outer radius 28.28″. Lightcurve analysis was not productive, since the Swift data are obtained in chunks of a few hundred seconds, and very few photons were collected each time.

Since there were too few photons for spectral analysis in each Swift observation, we converted from background-subtracted intensity to 0.5–10 keV flux by calculating the flux equivalent to 1 count s⁻¹ assuming the best fit model derived from our analysis of the Obs 11838 Chandra data. To do this we obtained source and background spectra for each observation, and created an ancillary response file using the tool XRTMKARF; the appropriate canned response matrix was used. For each observation we loaded these files into XSPEC version 12.6 and normalised the best fit emission model to give 1 count s⁻¹. This enabled us to obtain the unabsorbed 0.5–10 keV flux equivalent to 1 count s⁻¹, which we refer to as the conversion factor.

2. Observations and data analysis

A journal of observations is provided in Table 1.

2.1. Analysis of Chandra data

The 2006 July 31 Chandra observation (7139) of XMMU J004215.8+411924 has already been discussed by Voss et al. (2008). However, we registered the image to the LGGS B band image of M 31 Field 6, which has positional uncertainties of 0.25″, using globular clusters (GCs) in the Revised Bologna Catalogue V4 (Galleti et al. 2004, 2006, 2007, 2009) that were X-ray bright. To do this, we used the IRAF tool IMCENTROID to determine the position of each cluster in the Chandra and LGGS observations in image coordinates, then checked the positional uncertainties of each GC. We then used X2SKY to get the sky coordinates for each GC in the X-ray and LGGS images. This allowed us to map the LGGS coordinates to the X-ray positions with CCMAP. The position of XMMU J004215.8+411924 was at a concentration of 47″ (Henze et al. 2009); results from this concentration will be presented by Nooraee et al. (in prep). This work uses data from the X-ray Telescope (XRT), taken in photon counting (pc) mode. Unfortunately, the 2010 June 21 observation had an exposure time of just 35s in pc mode, so this observation was ignored. XMMU J004215.8+411924 was at a large off-axis angle that varied between observations (≈7–10°).

The Swift data were analysed with XSELECT version 2.4a. We were unable to use the recommended source extraction radius of 47″ (containing ~90% of the source photons) due to crowding. Instead we used a circular source extraction region with radius 20″, and a concentric, annular background region with inner radius 20″ and outer radius 28.28″. Lightcurve analysis was not productive, since the Swift data are obtained in chunks of a few hundred seconds, and very few photons were collected each time.

Since there were too few photons for spectral analysis in each Swift observation, we converted from background-subtracted intensity to 0.5–10 keV flux by calculating the flux equivalent to 1 count s⁻¹ assuming the best fit model derived from our analysis of the Obs 11838 Chandra data. To do this we obtained source and background spectra for each observation, and created an ancillary response file using the tool XRTMKARF; the appropriate canned response matrix was used. For each observation we loaded these files into XSPEC version 12.6 and normalised the best fit emission model to give 1 count s⁻¹. This enabled us to obtain the unabsorbed 0.5–10 keV flux equivalent to 1 count s⁻¹, which we refer to as the conversion factor.

2.2. Analysis of Swift data

We triggered two HST observations after the 2006 outburst, designed to observed the counterpart in the on phase and off phase. The first observation was made with the ACIS/WFC on 2006 August 27 using the F435W filter. Unfortunately, the ACS was not operational during our second observation in 2007 July, and the observation was made with WFPC/FIX-1 using the F439W filter. However, the position of XMMU J004215.8+411924 was serendipitously covered by an ACS/WFC1 observation in 2004, October using the F555W filter.

We obtained the drizzled images of these observations from the Hubble legacy archive, and registered them with the B image of M 31 Field 6 in the LGGS; we used stars that were visible in both images, but not so bright that the centroid determination had large uncertainties.

3. Results

3.1. Fitting the 2010 May Chandra spectrum

The 2010 May observation of XMMU J004215.8+411924 yielded 279 net source counts. We grouped the source spectrum to get a minimum of 15 counts per bin. The best fit power law emission model had a photon index of 1.8 ± 0.5, with absorption equivalent to 6 ± 3 × 10⁻²¹ H atom cm⁻²; χ²/d.o.f. = 7/15. These parameters are entirely consistent with those found by Voss et al. (2008).

The XMM-Newton observation analysed by Voss et al. (2008) yielded the tightest constraints on the absorption (4.2 ± 0.5 × 10⁻²¹ H atom cm⁻²); we therefore fixed the absorption
to 4.2×10^{21} H atom cm$^{-2}$ for our Chandra spectrum. This gave a best fit photon index of 1.6 ± 0.2, and χ^2/d.o.f. = 8/16. This yielded an unabsorbed 0.5–10 keV luminosity of $1.2 \pm 0.3 \times 10^{38}$ erg s$^{-1}$. This fit is presented in Fig. 1.

We also fitted the spectrum with a disk blackbody model, since black holes in outburst are often in the high soft state, with thermal emission spectra (see e.g. McClintock & Remillard 2006, and references within). The best fit spectrum had an inner disc temperature of 1.4 ± 0.3 keV; N_{H} was fixed to 4.2×10^{21} atom cm$^{-2}$ as before; χ^2/d.o.f. = 16/16. This temperature is somewhat high for a high state black hole binary (McClintock & Remillard 2006), and the fit is rather worse than the power law fit. Hence we prefer the power law fit, but cannot rule out a thermal fit.

A neutron star accreting at $\approx 10^{38}$ erg s$^{-1}$ has a two component emission spectrum, often characterised as a blackbody and a power law, with the blackbody contributing ≈ 10–50% of the luminosity (see e.g. Church & Balucinska-Church 1995; Church et al. 2002). Hence, we fitted the spectrum with a blackbody + power law model. The best fit gave $kT \approx 1$ keV, and a power law slope 1.6 ± 0.6; χ^2/d.o.f. = 7/14; however, the blackbody component was not well constrained, and only contributed $\approx 5\%$ of the flux, significantly less than expected for a neutron star system. We infer from the lack of a strong thermal component that the primary is more likely to be a black hole than a neutron star; however, we cannot rule out a neutron star primary.

3.2. The X-ray lightcurve

The deepest observation made of XMMU J004215.8+411924 is Chandra Obs 1575, with a ≈ 40 ks duration. The 3σ upper luminosity limit is 6×10^{35} erg s$^{-1}$. Hence, the variation in luminosity is a factor ≈ 200 between the outburst peak and quiescence.

XMMU J004215.8+411924 was observed by Chandra three times in 2010 prior to the detection of the outburst, in January, February and March; no observation was made in April, as M 31 was behind the sun. We found no strong detections in any of these observations; the 3σ upper limit for the March observation was $\approx 2 \times 10^{36}$ erg s$^{-1}$. Hence the 2010 outburst lasted at least 30 days, but not more than 140 days. The outburst appears to be of similar duration to the one in 2006.

We have found no evidence of additional outbursts in the 120 Chandra observations and 90 Swift observations of XMMU J004215.8+411924.

3.3. The X-ray position of XMMU J004215.8+411924

For the 2006 July Chandra observation, we chose 12 bright X-ray sources associated with GCs for the registration. Five GCs had unacceptably large uncertainties in their X-ray positions (>0.2″), and these were removed from the registration process. Additionally, one of the GCs showed an unusually large discrepancy between the X-ray and optical positions, so it was discarded and a new solution was found; the final rms offset between Chandra and LGGS was 0.07″ in RA and 0.12″ in Dec. Our best registration solution yielded RA = 00:42:16.063 Dec = +41:19:26.73, with 0.17″ uncertainty in RA and 0.2″ uncertainty in Dec. Combining these with the position uncertainties of the LGGS images gives an error circle with 0.3″ radius.

Our final registration of the 2010 May Chandra observation utilised five GCs; the final rms offset between Chandra and LGGS was 0.19″ in RA and 0.16″ in Dec. Our best location in this observation was RA = 00:42:16.037, Dec = +41:19:26.63, with 0.17″ uncertainty in RA and 0.28″ uncertainty in Dec. Combining these with the LGGS uncertainties results in a 0.3″×0.4″ ellipse. The best fit positions in the two observations are offset by 0.3″. Therefore it is most likely that both X-ray outbursts come from the same source.
4. Discussion

Two mechanisms could be responsible for the huge variation in mass accretion that resulted in the observed outburst (see e.g. Williams et al. 2006, for a discussion of M 31 transients). The system could be a HMXB with a long, eccentric orbital period where accretion is intensified near periastron; this scenario was initially favoured by Haberl et al. (2006) after mistakenly identifying a counterpart in the Swift UVOT image. Alternatively, the system could be a low mass X-ray binary (LMXB) with an unstable accretion disc that oscillates between a cold state (quiescence) and a hot, ionised state (outburst), see e.g. Dubus et al. (2001, and references within). Here we consider the observational constraints on both scenarios.

4.1. Constraints on a HMXB system

The known counterparts of HMXBs in the SMC have apparent V magnitudes in the range $13 \leq m_V \leq 18$, and $B - V$ in the range $-0.32 \leq B - V \leq 0.06$ (see e.g. Coe et al. 2005; Antoniou et al. 2009). For a distance of ~ 60 kpc, this equates to $-6 \leq M_V \leq -1$, all brighter than our threshold of $M_V \gtrsim -0.5$. It is therefore unlikely that a Be star is hidden by the local absorption.

Furthermore, variations in accretion rate on the orbital cycle are of course periodic, and we see no evidence for other outbursts in our ~ 120 other Chandra monitoring observations. Since the outbursts lasted at least ~ 30 days, and the frequency of our monitoring is once per ~ 30 days, we would expect coverage of other outbursts.

If the outbursts in 1979, 2006 and 2010 were due to periodic accretion near perihelion, then a whole number of orbital cycles every ~ 1430 days would be required. Hence, XMMU J004215.8+41192 would have had an unabsorbed 0.5–10 keV luminosity $\sim 10^{38}$ erg s$^{-1}$ during the 2006, July 2 XMM-Newton observation. However, Voss et al. (2008) did not detect XMMU J004215.8+41192 during that observation. We therefore conclude that XMMU J004215.8+411924 is likely to be a LMXB.

4.2. Constraints on a LMXB system

The optical emission of X-ray bright LMXBs is dominated by the accretion disc; since larger discs exist in systems with longer orbital periods, van Paradijs & McClintock (1994) derived an empirical relation between the optical luminosity (L_V), the X-ray luminosity (L_X) and the disc radius (R): $L_V \propto L_X^{1/3} R$. The range in absolute magnitudes of the sample was $-5 \leq M_V \leq 5$.

Including the relation between R and orbital period, and defining Σ as $(L_X/L_{edd})^{1/2} (P/1\text{yr})^{3/2}$, they further found that the relation

$$ M_V = 1.57 \pm 0.24 - 2.27 (\pm 0.32) \log \Sigma $$

produced good results over three orders of magnitude in Σ. This relation allows us to estimate the range in orbital period for XMMU J004215.8+411924. Due to the high local absorption, the upper limit to the orbital period is not particularly constraining: ≤ 40 h for a neutron star and ≤ 130 h for a black hole, longer than typical LMXB periods.

The X-ray spectrum from Observation 11838 is best fitted by a power law fit with spectral index ~ 1.6; this is seen in neutron star and black hole binaries at low accretion rates (van der Klis 1994). However, Gladstone et al. (2007) showed that neutron star LMXBs don’t exhibit this behaviour at 0.01–1000 keV luminosities $\gtrsim 10\%$ of the Eddington limit. Neutron star LMXBs
at higher luminosities have two component emission spectra, with a thermal component contributing \(\sim 10\%\)–\(50\%\) of the flux (Church et al. 2002). Since the 0.5–10 keV luminosity of XMMU J004215.8+411924 is \(\sim 70\%\) of the Eddington limit for a 1.4 \(M_\odot\) neutron star, the primary is likely to be a black hole (Barnard et al. 2008); this conclusion is supported by the lack of a strong thermal component in the two component model. However, the quality of the data prevents us from excluding a neutron star primary.

Acknowledgements. We thank the anonymous referee for their thoughtful comments. We thank the Swift team for carrying out the Target of Opportunity observations. R.B. is funded by Chandra grant GO9-0100X and HST grant GO-11013. MRG is partially supported by NASA grant NAS-03060. This work has made use of the data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/Goddard Space Flight Center, and the Hubble Legacy Archive.

References

Haberl, F., Pietsch, W., Greiner, J., & Ajello, M. 2006, The Astronomer’s Telegram, 881, 1
Henze, M., Pietsch, W., Haberl, F., & Greiner, J. 2009, The Astronomer’s Telegram, 2356, 1
Nooraei, N., Barnard, R., Pietsch, W., Callanan, P., & Garcia, M. 2010, The Astronomer’s Telegram, 2682, 1
Pietsch, W., Haberl, F., Greiner, J., & Steile, H. 2006, The Astronomer’s Telegram, 899, 1

A50, page 5 of 5