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ABSTRACT

Theoretical modeling of the driving processes of solar-like oscillations is a powerful way of understanding the properties of the
convective zones of solar-type stars. In this framework, the description of the temporal correlation between turbulent eddies is an
essential ingredient to model mode amplitudes. However, there is a debate between a Gaussian or Lorentzian description of the
eddy-time correlation function (Samadi et al. 2003b, A&A, 403, 303; Chaplin et al. 2005, MNRAS, 360, 859). Indeed, a Gaussian
description reproduces the low-frequency shape of the mode amplitude for the Sun, but is unsatisfactory from a theoretical point of
view (Houdek 2010, Ap&SS, 328, 237) and leads to other disagreements with observations (Samadi et al. 2007, A&A, 463, 297).
These are solved by using a Lorentzian description, but there the low-frequency shape of the solar observations is not correctly
reproduced. We reconcile the two descriptions by adopting the sweeping approximation, which consists in assuming that the eddy-
time-correlation function is dominated by the advection of eddies, in the inertial range, by energy-bearing eddies. Using a Lorentzian
function together with a cut-off frequency derived from the sweeping assumption allows us to reproduce the low-frequency shape of
the observations. This result also constitutes a validation of the sweeping assumption for highly turbulent flows as in the solar case.
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1. Introduction

Excitation of solar-like oscillations is attributed to turbulent mo-
tions that excite p modes (for a recent review, see Samadi 2009).
Their amplitudes result from a balance between excitation and
damping and crucially depend on the way the eddies are tem-
porally correlated as shown for solar p and g modes (Samadi
et al. 2003b; Belkacem et al. 2009b; Appourchaux et al. 2010),
for main-sequence stars (Samadi et al. 2010b,a), for red giants
(Dupret et al. 2009), or for massive stars (Belkacem et al. 2009a,
2010). Hence, the improvement of our understanding and mod-
eling of the temporal correlation of turbulent eddies, hereafter
denoted in the Fourier domain as χk(ω), is fundamental to infer
turbulent properties in stellar convection zones.

There are two ways to compute the eddy-time correlation
function. A direct computation from 3D numerical simula-
tions is possible and was performed by Samadi et al. (2008a).
Nevertheless, Samadi (2009) pointed out that the results depend
on the spatial resolution, and therefore dedicated high-resolution
3D numerical simulations are required. This then becomes an
important limitation when computing mode amplitudes for a
large number of stars, preventing us from applying statistical
astereosismology.

The second way to compute χk consists in using appropriate
analytical descriptions. Most of the theoretical formulations of
mode excitation explicitly or implicitly assume a Gaussian func-
tional form for χk(ω) (Goldreich & Keeley 1977; Dolginov &
Muslimov 1984; Goldreich et al. 1994; Balmforth 1992; Samadi
et al. 2001; Chaplin et al. 2005). However, 3D hydrodynam-
ical simulations of the outer layers of the Sun show that at
the length-scales close to those of the energy-bearing eddies
(around 1 Mm), χk is a Lorentzian function (Samadi et al. 2003a;

Belkacem et al. 2009b). As pointed out by Chaplin et al. (2005),
a Lorentzian χk is also a result predicted for the largest, most-
energetic eddies by the time-dependent mixing-length formu-
lation derived by Gough (1977). Therefore, there is numerical,
theoretical, and also observational evidence (Samadi et al. 2007)
that χk is Lorentzian.

However, Chaplin et al. (2005), Samadi (2009), and Houdek
(2010) found that a Lorentzian χk, when used with a mixing-
length description of the whole convection zone, results in a se-
vere over-estimate for the low-frequency modes. In this case,
low-frequency modes (ν < 2 mHz) are excited deep in the so-
lar convective region by large-scale eddies that give a substan-
tial fraction of the energy injected to the modes. Chaplin et al.
(2005) and Samadi (2009) then suggested that most contributing
eddies situated deep in the Sun have a χk more Gaussian than
Lorentzian because at a fixed frequency, a Gaussian χk decreases
more rapidly with depth.

We therefore propose a refined description of the eddy-time
correlation function based on the sweeping approximation to
overcome this issue. This consists in assuming that the temporal
correlation of the eddies, in the inertial subrange, is dominated
by the advection by energy-bearing eddies. This assumption was
first proposed by Tennekes (1975), and was subsequently inves-
tigated by Kaneda (1993) and Kaneda et al. (1999). In this letter,
we demonstrate that the low-frequency shape of the observed en-
ergy injection rates into the solar modes is very sensitive to this
assumption and more precisely to the Eulerian microscale, de-
fined as the curvature of the time-correlation function at the ori-
gin. Hence, modeling of the solar p-mode amplitudes is shown
to constitute an efficient test for temporal properties in highly
turbulent flows.
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The paper is organized as follows: Sect. 2 defines the eddy-
time correlation function. In Sect. 3, we propose a short-time
expansion of the eddy-time correlation function. The use of the
Eulerian microscale as a cut-off is introduced in the computation
of solar p mode amplitudes and the result is compared to the ob-
servations in Sect. 4. Finally, Sect. 5 is dedicated to conclusions
and discussions.

2. The Eulerian eddy time-correlation function

For a turbulent fluid, one defines the Eulerian eddy time-
correlation function as

〈u(x + r, t + τ) · u(x, t)〉 =
∫
E(k, t, τ) eik·x d3 k, (1)

where u is the Eulerian turbulent velocity field, x and t the space
and time position of the fluid element, k the wave number vec-
tor, τ the time-correlation length, and r the space-correlation
length. The function E in the RHS of Eq. (1) represents the time-
correlation function associated with an eddy of wave-number k.

We assume an isotropic and stationary turbulence, accord-
ingly E is only a function of k and τ. The quantity E(k, τ) is
related to the turbulent energy spectrum according to

E(k, τ) =
E(k, τ)
2πk2

, (2)

where E(k, τ) is the turbulent kinetic energy spectrum whose
temporal Fourier transform is

E(k, ω) ≡ 1
2π

∫ +∞

−∞
E(k, τ) eiωτ dτ, (3)

where ω is the eddy frequency, and E(k, ω) is written following
an approximated form proposed by Stein (1967)

E(k, ω) = E(k) χk(ω) with
∫ +∞

−∞
χk(ω) dω = 1, (4)

where χk(ω) is the frequency component of E(k, ω). In other
words, χk(ω) represents – in the frequency domain – the tem-
poral correlation between eddies of wave-number k.

As already discussed in Sect. 1, theoretical and observational
evidence show that χk(ω) is Lorentzian, i.e.

χk(ω) =
1
πωk

1

1 + (ω/ωk)2
, (5)

where ωk is by definition the width at half maximum of χk(ω).
In the framework of Samadi & Goupil (2001)’s formalism, this
latter quantity is evaluated as:

ωk = k uk with u2
k =

∫ 2k

k
E(k) dk, (6)

where E(k) is defined by Eq. (4). However, in the high-frequency
regime (ω � ωk), corresponding to the short-time correlation
(τ ≈ 0), the situation is less clear. We next investigate short-time
correlations (τ ≈ 0).

3. The sweeping assumption for the Eulerian
time-correlation function

3.1. Short-time expansion of the eddy-time correlation
function

The function E(k, t, τ) (Eq. (1)) can be expanded for short-time
scales, in the inertial sub-range (i.e. for k > k0 and k < kd, where

k0 is the wave number of energy-bearing eddies and kd is the
wave-number of viscous dissipation), using the Navier-Stokes
equations and the sweeping assumption, as (see Kaneda 1993,
for a derivation)

E(k, τ) = E(k, τ = 0)

(
1 − αk |τ| − 1

2
(ωEτ)

2 + . . .

)
, (7)

where the characteristic frequency αk is defined by the relation

ε = −1
2

d
dt
〈u · u〉 =

∫
αk E(k, τ = 0) d3 k (8)

with ε the dissipation rate of energy. Hence, αk is the typical
frequency of energy dissipation at the scale k. It can be esti-
mated by assuming that a large fraction of the kinetic energy
of eddies is lost within one turnover time (Tennekes & Lumley
1972). Hence, αk is approximated by the turn-over frequency
αk = k uk = ωk (see Eq. (6)).

The second characteristic frequency, ωE(k), is the curvature
of the correlation function near the origin (Kaneda 1993), and is
defined by

ωE = k u0. (9)

The associated characteristic time τE(k) = 2πω−1
E is also referred

to as the Eulerian micro-scale1 (Tennekes & Lumley 1972). An
approximate expression for ωE(k) can be obtained by assuming
the random sweeping effect of large eddies on small eddies. This
assumption consists in assuming that the velocity field u(k) as-
sociated with an eddy of wave-number k lying in the inertial-
subrange (i.e. large k compared to k0) is advected by the energy-
bearing eddies with velocity u0 (i.e. of wave-number k0). This
time-scale is obtained by assuming uniform density, which is
valid in the Sun for k > k0 (i.e. in the inertial sub-range) since
the density scale-height approximately equals the length-scale
of energy-bearing eddies ((dln ρ/dr)−1 ≈ 2π/k0). It also assumes
the quasi-normal approximation (see Kaneda 1993; Kaneda et al.
1999; Rubinstein & Zhou 2002, for details). The Eulerian micro-
scale then corresponds to the timescale over which the energy-
bearing eddies of velocity u0 advect eddies of size 2πk−1. It is
the lowest time-scale (highest frequency) on which those eddies
can be advected.

3.2. Eulerian time micro-scale as a cut-off frequency

The issue is now to estimate to what extentωE can be considered
as a cut-off frequency, i.e. that there is a sharp change in the slope
of χk at high ω.

To this end, we first remark that the zero-th- and first-order
terms in Eq. (7) are consistent with an exponential decrease of
width αk (i.e. a Lorentzian in the frequency domain of width
ωk, Eq. (5)) for small τ. In contrast, the zero-th-order term to-
gether with the second order term in Eq. (7) are consistent with
a Gaussian behavior of width τE. Hence, the relative importance
of those two regimes depends on the relative magnitude of the
second and third terms in Eq. (7). Let us define the ratio (R) of
the first to the second order term in the expansion of E (Eq. (7))

R = 2 (ωEτ)−1

(
ωk

ωE

)
, (10)

To evaluate this ratio, we compare the typical frequenciesωk and
ωE using Eq. (9) together with Eq. (6). Adopting a Kolmogorov

1 It is the time equivalent of the Taylor micro-scale, which corresponds
to the largest scale at which viscosity affects the dynamic of eddies.

Page 2 of 4



K. Belkacem et al.: Turbulent eddy-time-correlation in the solar convective zone

Fig. 1. Schematic time-correlation (χk) versus normalized eddy fre-
quency (ω/ωE) at k = 5k0 (i.e. in the inertial subrange such as kd � k >
k0), where k0 = 6.28×10−6 m−1. Note that the value of k0 does not influ-
ence the result. The solid line (resp. dashed triple dot line) correponds
to the Lorentizan functional form of χk for ω < ωE (resp. ω < ωE).
The dashed line corresponds to a Gaussian modeling (χk ∝ e−(ω/ωE)2

)
of characteristic frequency ωE. (we numerically verified that e−(τ/τE)2

is a good approximation of Eq. (7), see also Sect. 3.2). We stress that
the sharp decrease the functional form given by Eq. (7), in the temporal
Fourier domain, then justifies to consider ωE as a cut-off frequency. In
other words, χk is computed according to Eq. (12).

spectrum E(k) = CK ε
2/3 k−5/3, with CK the Kolmogorov univer-

sal constant (close to 1.72), we have u2
k = β u2

0 (k/k0)−2/3 , where
β = 0.555. Hence

ωE

ωk
=

u0

uk
= β−1/2

(
k
k0

)1/3

· (11)

From Eq. (11) we conclude that for k � k0 (i.e. at small scale)
we have ωE/ωk ≈ β−1/2 (k/k0)1/3 � 1, then τE 
 τk. And for
k ≈ k0 (i.e. at large scale), we have ωE/ωk = β

−1/2 ≈ 1.4. Hence,
we always are in the situation where ωE > ωk.

From Eq. (10), it immediately follows that for ω � ωE the
second order term dominates over the first order one in Eq. (7),
at all length-scales. We then conclude that for frequencies near
the micro-scale frequency (ω � ωE), the eddy-time correlation
function behaves as a Gaussian function (e−(ω/ωE)2

) instead of a
Lorentzian function, resulting in a sharp decrease with ω (see
Fig. 1). Hence, the contributions for ω > ωE are negligible and
the temporal correlation is computed as follows

χk(ω) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

1 + (ω/ωk)2 ifω ≤ ωE

0 ifω > ωE.

(12)

4. Computation of the p-mode energy injection
rates

4.1. Computation of the energy injection rate

The formalism we used to compute excitation rates of radial
modes was developed by Samadi & Goupil (2001) and Samadi
et al. (2005) (see Samadi 2009, for a thorough discussion)

For a radial mode of frequency ω0 = 2π ν0, the excitation
rate (or equivalently, the energy injection rate), P, mostly arises

from the Reynolds stresses and can be written as (see Eq. (21) of
Belkacem et al. 2008)

P(ω0) =
π3

2I

∫ M

0

⎡⎢⎢⎢⎢⎢⎣ρ0

(
16
15

) (
∂ξr
∂r

)2 ∫ +∞

0
Sk dk

⎤⎥⎥⎥⎥⎥⎦ dm (13)

Sk =
E2(k)

k2

∫ +∞

−∞
χk(ω + ω0) χk(ω) dω, (14)

where ξr is the radial component of the fluid displacement eigen-
function (ξ), m is the local mass, ρ0 the mean density, ω0 the
mode angular frequency, I the mode inertia, Sk the source func-
tion, E(k) the spatial kinetic energy spectrum, χk the eddy-time
correlation function, and k the wave-number.

The rate (P) at which energy is injected into a mode is com-
puted according to Eq. (13). In this letter, we consider two theo-
retical models, namely:

– an analytical approach: the 1D calibrated solar structure
model used for these computations is obtained with the
stellar evolution code CESAM2k (Morel 1997; Morel &
Lebreton 2008). The atmosphere is computed assuming an
Eddington grey atmosphere. Convection is included accord-
ing to a Böhm-Vitense mixing-length (MLT) formalism (see
Samadi et al. 2006, for details), from which the convective
velocity is computed. The mixing-length parameter α is ad-
justed in a way that the model reproduces the solar radius
and the solar luminosity at the solar age. This calibration
gives α = 1.90, with an helium mass fraction of 0.245, and
a chemical composition following Grevesse & Noels (1993).
The equilibrium model also includes turbulent pressure;

– a semi-analytical approach: calculation of the mode excita-
tion rates is performed essentially in the manner of Samadi
et al. (2008a,b). All required quantities, except the eddy-time
correlation function, the mode eigenfunctions (ξr) and mode
inertia (I), are directly obtained from a 3D simulation of the
outer layers of the Sun (see Samadi 2009, for details on the
numerical simulation).

In both cases, the eigenfrequencies and eigenfunctions are com-
puted with the adiabatic pulsation code ADIPLS (Christensen-
Dalsgaard 2008). We stress again that in both cases χk is imple-
mented as an analytical function.

4.2. Results on mode amplitudes

When the frequency range of χk is extended toward infinity,
computation of P according to Eq. (13) and Eq. (14) fails to re-
produce the observations, in particular the low-frequency shape.
In order to illustrate this issue, we have computed the solar
model excitation rates, using the solar global model described
in Sect. 4.1. The turbulent kinetic energy spectrum (E(k)) is as-
sumed to be a Kolmogorov spectrum to be consistent with the
derivation of τE as proposed by Kaneda (1993). In addition, the
eddy-time correlation function is supposed to be Lorentzian as
described by Eq. (5) for all ω > 0. In agreement with the re-
sults of Chaplin et al. (2005) and Samadi (2009), it results in an
over-estimate of the excitation rates at low frequency (see Fig. 2
top).

In contrast, by assuming that the time-dynamic of eddies
in the Eulerian point of view is dominated by the sweeping,
the Eulerian time micro-scale arises as a cut-off frequency (see
Sect. 3.2). Hence, χk(ω) is modeled following Eq. (5) forω < ωE
and χk(ω) = 0 elsewhere. Using this procedure to model χk(ω)
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Fig. 2. Solar p-mode excitation rates as a function of the frequency ν.
The dots correspond to the observational data obtained by the GONG
network, as derived by Baudin et al. (2005), and the triangles corre-
sponds to observational data obtained by the GONG network as de-
rived by Salabert et al. (2009) for 
 = 0 to 
 = 35. The dashed line
corresponds to the computation of the excitation rates using the ana-
lytical approach together with a Lorentzien description of χk without
any cut-off frequency. Note that this modeling is similar to that men-
tioned by Chaplin et al. (2005). The solid line corresponds to the com-
putation of mode excitation rates using the semi-analytical approach as
described in Sect. 4.1 and using a Lorentzian χk together with a cut-
off frequency at ω = ωE. The dashed triple dot line corresponds to
the analytical approach using a Lorentzian description of χk down to
the cut-off frequency ωE. Finally, the dashed-dot line corresponds to a
semi-analytical approach using a Gaussian description of χk . Note that
both solid (Lorentzian χk) and dashed-dot (Gaussian χk) lines present a
similar frequency dependance, and since both are computed using the
3D numerical simulations for the convective motions the differences
only comes from the way turbulence is temporally correlated.

(i.e. by introducing ωE as a cut-off frequency) permits us to re-
produce the low-frequency (ν < 3 mHz) shape of the mode exci-
tation rates as observed by the GONG network (see Fig. 2). This
is explained as follows: for large-scale eddies near k−1

0 , situated
deep in the convective region, the cut-off frequency ωE is close
to ωk as shown by Eq. (11). As a consequence, the frequency
range over which χk is integrated in Eq. (14) is limited, resulting
in lower injection rates into the modes.

Note that the absolute values of mode excitation rates are not
reproduced by using a mixing-length description of convection,
this is in agreement with Samadi (2009), and arises because that
it underestimates the convective velocities as well as convective
length-scales. It then explains the differences between the com-
putation of mode excitation rates using the MLT and the 3D nu-
merical simulations (Fig. 2).

5. Conclusion and discussion

By using a short-time analysis and the sweeping assumption, we
have shown that there is a frequency (ωE the micro-scale fre-
quency) beyond the temporal correlation χk sharply decreases
with frequency. Including this frequency as a cut-off in our mod-
eling of χk and assuming a Lorentzian shape we are able to
reproduce the observed low-frequency (ν < 3 mHz) excitation
rates.

These results then re-conciliate the theoretical and obser-
vational evidence that the frequency dependence of the eddy-
time correlation may be Lorentzian in the whole solar convective

region down to the cut-off frequency ωE. Finally, it also repre-
sents a validation of the sweeping assumption in highly turbulent
flows.

We note, however, that one must remove several theoretical
shortcomings to go further. For instance, a rigourous treatment
of the energy-bearing eddies is needed. The short-time analysis
and the computation of the Eulerian miscro-scale must be recon-
sidered by including the effect of buoyancy that mainly affects
large scales. Furthermore, some discrepancies remain at high-
frequency (ν > 3 mHz), and to go beyond these one has to re-
move the separation of scales assumption (see Belkacem et al.
2008, for a dedicated discussion) and include non-adiabatic ef-
fects.

Eventually, we note that the modeling of amplitudes under
the sweeping assumption is to be extended. In particular, the
investigation of the effect of the sweeping assumption on solar
gravity mode amplitudes is desirable.
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