LETTER TO THE EDITOR

The $M_{\text{BH}} - M_{\text{star}}$ relation of obscured AGNs at high redshift*

J. E. Sarria\textsuperscript{1}, R. Maiolino\textsuperscript{2}, F. La Franca\textsuperscript{1}, F. Pozzi\textsuperscript{3,4}, F. Fiore\textsuperscript{2}, A. Marconi\textsuperscript{5}, C. Vignali\textsuperscript{3,4}, and A. Comastri\textsuperscript{4}

\textsuperscript{1} Dipartimento di Fisica, Università Roma Tre, via della Vasca Navale 84, 00146 Roma, Italy
e-mail: roberto.maiolino@oa-roma.inaf.it
\textsuperscript{2} INAF - Osservatorio Astronomico di Roma, via di Frascati 33, 00040 Monte Porzio Catone, Italy
\textsuperscript{3} Dipartimento di Astronomia, Università degli Studi di Bologna, via Ranzani 1, 40127 Bologna, Italy
\textsuperscript{4} INAF - Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy
\textsuperscript{5} Dipartimento Fisica e Astronomia, Università degli Studi di Firenze, Largo E. Fermi 2, 50125 Firenze, Italy

Received 6 September 2010 / Accepted 4 October 2010

ABSTRACT

We report the detection of broad H\textalpha emission in three X-ray selected obscured AGNs at $z \sim 1$–2. By exploiting the H\textalpha width and the intrinsic X-ray luminosity, we estimate their black hole masses, which are in the range $0.1$–$3 \times 10^9 M_{\odot}$. By means of multi-band photometric data, we measure the stellar mass of their host galaxy and, therefore, infer their $M_{\text{BH}}/M_{\text{star}}$ ratio. These are the first obscured AGNs at high-$z$, selected based on their black hole accretion (i.e. on the basis of their X-ray luminosity), that can be located on the $M_{\text{BH}} - M_{\text{star}}$ relation at high-$z$. All of these obscured high-$z$ AGNs are fully consistent with the local $M_{\text{BH}} - M_{\text{star}}$ relation. This result conflicts with those for other samples of AGNs in the same redshift range, whose $M_{\text{BH}}/M_{\text{star}}$ ratio departs significantly from the value observed in local galaxies. We suggest that the obscured AGNs in our sample are in an advanced evolutionary stage, and whose nuclear activity has been temporarily revived by recent galaxy interactions.

Key words. quasars: emission lines – galaxies: active – infrared: galaxies – X-rays: galaxies – Black hole physics

1. Introduction

A major breakthrough in our understanding of galaxy evolution has been the discovery of a tight correlation, in the local universe, between the mass of supermassive black holes ($M_{\text{BH}}$) and the mass of their host spheroids (e.g. Magorrian et al. 1998; Ferrarese & Merritt 2000). The existence of this relation implies a strong physical connection between galaxy formation and growth of black holes at their centers. Various models and simulations have been proposed to explain this relation (e.g. Menci et al. 2006; Marulli et al. 2008; Hopkins et al. 2006; Volonteri & Natarajan 2009). These models predict different evolutionary patterns on the $M_{\text{BH}} - M_{\text{star}}$ diagram through the cosmic epochs. Therefore, determining the location of high-$z$ galaxies on the $M_{\text{BH}} - M_{\text{star}}$ diagram provides a crucial test for galaxy-black hole coevolutionary scenarios.

Various observational studies have attempted to measure the evolution of the $M_{\text{BH}} - M_{\text{star}}$ relation at high redshift. Most of these studies infer the $M_{\text{BH}}$ in high-$z$ AGNs by using “virial estimators”, involving the AGN luminosity and width of the “broad emission lines” (e.g. Vestergaard & Osmer 2009; Shen et al. 2010). Broad lines, especially in the UV (observed in the optical at high-$z$), are generally detected only in unobscured, type 1 AGNs (AGN1s), whose broad line region can be observed directly. Thus the investigation of the $M_{\text{BH}} - M_{\text{star}}$ relation has focused mostly on AGN1s, especially at high-$z$. Jahnke et al. (2009) use the virial relations to measure the BH masses of ten type 1 AGN at $z \sim 1.4$ and derive the stellar masses of their host galaxy by means of multi band fitting. They find that the BH-to-total stellar mass ratio does not evolve relative to the local relation; however, since several hosts show evidence of a substantial disk component they suggest that the ratio of BH mass to bulge mass (given by the difference between total and disk stellar mass) probably evolves with redshift. Merloni et al. (2010) expand the Jahnke et al. (2009) sample to 89 X-ray selected type 1 AGN at $1 < z < 2.4$ in COSMOS (adopting a different method to measure the stellar masses). They infer that the $M_{\text{BH}}/M_{\text{star}}$ ratio increases significantly, by a factor of about two, relative to the local relation. A similar result was obtained by Peng et al. (2006) by using a sample of lensed quasars in a similar redshift range. At higher redshifts ($z \sim 4$–$6$), dynamical mass measurements, obtained by exploiting CO maps, suggest that the $M_{\text{BH}}/M_{\text{star}}$ ratio in type 1 AGNs increases even further, up to an order of magnitude relative to the local relation (Walter et al. 2004; Maiolino et al. 2007a; Lamastra et al. 2010; Wang et al. 2010).

A possible caveat of these observational studies is that the targets are extracted from AGN-selected samples, i.e. on the basis of the black-hole accretion rate. This is expected to introduce a bias in favor of massive black holes (which can reach higher absolute accretion rates within their Eddington limit)\textsuperscript{1}. More specifically, even if the $M_{\text{BH}} - M_{\text{star}}$ relation does not evolve with redshift, it does have a scatter and the AGN-selection bias favors the selection of objects with $M_{\text{BH}}/M_{\text{star}}$ higher than the true distribution, hence mimicking an evolution. Lauer et al. (2007) estimate that this bias may increase the inferred $M_{\text{BH}} - M_{\text{star}}$ even by a factor of about two, depending on the AGN luminosity and the intrinsic scatter of the $M_{\text{BH}} - M_{\text{star}}$ relation at high redshift. However, Merloni et al. (2010) demonstrate that, at least for their X-ray selected, unobscured AGN 1 sample, this bias should not significantly affect their own results.

\textsuperscript{1} Quasars with dynamical masses inferred from CO maps are also selected based on their millimeter continuum, hence for this subsample the bias may be more complex.

* Based on data obtained at the VLT through the ESO programs 73.A-0598, 076.A-0681, 077.B-0368.
et al. (2004). (Mignoli et al. 2004), i.e. are extremely red objects (EROs). This
AGNs, that display a broad component of H\alpha,
these obscured AGNs di-
Miguel et al. 2003). Most of these optically faint AGNs have also very
ELAIS-S1 field (Feruglio et al. 2008). From these samples, we
scured AGNs at high redshift selected from wide-area hard X-
gram designed to determine the redshift of and characterize ob-
2. Sample selection, observations, and data
analysis
These near-IR spectroscopic observations are part of a pro-
gram designed to determine the redshift of and characterize ob-
sured AGNs at high redshift selected from wide-area hard X-
ray surveys. These AGNs are too faint at optical wavelengths
to be observed spectroscopically. The parent sample consists
of XMM hard X-ray sources from the HELLAS2XMM ex-
tended survey (Cocchia et al. 2007) and the XMM survey of the
ELAIS-S1 field (Feruglio et al. 2008). From these samples,
we selected 14 sources characterized by a X-ray to optical flux ra-
tio $X/O > 10$, which is typical of most obscured (Compton-thin)
AGNs at high redshift and, in particular, obscured QSOs (Fiore
et al. 2003). Most of these optically faint AGNs have also very
red optical-to-near-IR colors and, more specifically, $R - K > 5$
(Mignoli et al. 2004), i.e. are extremely red objects (EROs). This
class of objects is generally found to consist mostly of either qui-
escent, evolved galaxies or dust-reddened star-forming galaxies
at $z \sim 1$–2, with a fraction of obscured AGNs (e.g. Campisi et
al. 2009). In the specific case of X-ray selected EROS, Mignoli et
al. (2004) find that most of them are resolved in the K-band with
typical sizes of 0.5 and elliptical-like profiles, implying that the
K-band light is generally dominated by an early type host. The
The latter result is also confirmed in most objects by a SED analysis
(Pozzi et al. 2007, 2010).
Our observations were performed in three observing runs.
In the first run, we used ISAAC at the VLT to observe three
HELASSXMM sources. We used ISAAC in its low spectral
resolution mode ($R \sim 500$), covering the bands $J$, $H$, and $K$
bands. These observations were presented in Maiolino et al.
(2006) and we refer to that paper for further details. In the second
run, we used SINFONI, the near-IR integral field spectrometer
at the VLT, to observe three HELASSXMM sources. We used
both the $H + K R > 1500$ grating and the $J$-band $R \sim 2000$
grating. The on-source integration times ranged from 40 min
to 4 h per target in each band. In the third run, we observed
nine sources from the ELIAS-S1 sample with SINFONI, with
the same instrumental setting as for the previous SINFONI run
and similar integration times. The seeing during the observations
ranged from 0.7 to 1.5. Data reduction was performed using the
ESO pipeline.
All targets were detected in the continuum. However, only
for seven of them could we identify emission lines that allow us
to unambiguously determine their redshift. At the inferred redshift
($1 < z < 2.1$) the inferred X-ray luminosity and X-ray spectral
shape imply that these are all type 2, obscured QSOs
($L_{2-10 keV} > 10^{44}$ erg s$^{-1}$). Here we focus on
three sources for which we detect a broad component of H\alpha that
allowed us to infer their BH masses. Their main observational
and physical properties are reported in Table 1.

### Table 1. Properties of the X-ray selected obscured AGN with broad H\alpha.

<table>
<thead>
<tr>
<th>ID</th>
<th>$z$</th>
<th>Instr.</th>
<th>log $L_{2-10 keV}$</th>
<th>log $N_{H}$</th>
<th>log $L_{\lambda\alpha}$</th>
<th>FWHM$H_{\alpha}$</th>
<th>log $M_{BH}$</th>
<th>log $L_{\lambda\alpha}/M_{BH}$</th>
<th>log $M_{star}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab2690#29</td>
<td>2.087</td>
<td>ISAAC</td>
<td>44.95</td>
<td>22.80</td>
<td>46.81</td>
<td>5871 ± 245</td>
<td>9.44</td>
<td>0.31</td>
<td>0.12</td>
</tr>
<tr>
<td>XMMES1_460</td>
<td>1.748</td>
<td>SINFONI</td>
<td>44.86</td>
<td>22.50</td>
<td>46.59</td>
<td>2316 ± 113</td>
<td>8.54</td>
<td>0.31</td>
<td>0.63</td>
</tr>
<tr>
<td>BPM1623#181</td>
<td>1.335</td>
<td>SINFONI</td>
<td>44.20</td>
<td>22.81</td>
<td>45.76</td>
<td>2491 ± 511</td>
<td>8.15</td>
<td>0.36</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Notes. (a) Absorption corrected 2–10 keV luminosity. (b) Bolometric luminosity inferred by using the X-ray bolometric corrections given in Marconi et al. (2004). (c) Full Width at Half Maximum of the broad component of H\alpha in km s$^{-1}$.
difficult to measure. However, we can use both the virial formula for the BH mass involving the optical continuum luminosity $L_{\alpha}(5100 \, \text{Å})$ and $\text{FWHM}_{\beta\alpha}$ (Marconi et al., in prep.)

$$M_{\text{BH}} = 6.16 \times 10^6 \left( \frac{L_{\alpha}(5100)}{10^{42} \, \text{erg s}^{-1}} \right)^{0.5} \left( \frac{\text{FWHM}_{\beta\alpha}}{10^3 \, \text{km s}^{-1}} \right)^2 M_\odot$$

and the relation between $L_{2–10 \, \text{keV}}$ and $L_{\alpha}(5100)$ (Eq. (5) in Maiolino et al. 2007b) to estimate the optical continuum, and replace $\text{FWHM}_{\beta\alpha}$ with $\text{FWHM}_{\text{H} \alpha}$ by using the relation given in Greene & Ho (2005) (Eq. (3) therein). By replacing these relations in Eq. (1), we obtain

$$M_{\text{BH}} = 1.56 \times 10^7 \left( \frac{L_{2–10 \, \text{keV}}}{10^{44} \, \text{erg s}^{-1}} \right)^{0.694} \left( \frac{\text{FWHM}_{\text{H} \alpha}}{10^3 \, \text{km s}^{-1}} \right)^{2.06} M_\odot.$$  

Since we know the absorption-corrected 2–10 keV luminosity of our three sources (Table 1), the width of the broad $\text{H} \alpha$ inferred from our near-IR spectra allows us to infer the BH by exploiting Eq. (2). The inferred BH masses are reported in Table 1, and range between $1.3 \times 10^8 M_\odot$ and $2.8 \times 10^9 M_\odot$. The uncertainty in $M_{\text{BH}}$ is dominated by the dispersion in the $M_{\text{BH}} - \sigma_z$ local relation (0.3 dex), which is used to calibrate the virial relations. The uncertainty in the $L_{2–10 \, \text{keV}} - L_{\alpha}(5100)$ relation coefficients also contributes with 0.07 dex (in quadrature), while the uncertainty in the width of the broad lines contributes significantly only in BPM1627181 with 0.19 dex (in quadrature).

For consistency, we checked that the masses inferred by using the $\text{H} \alpha$ luminosity and the relation proposed by Greene & Ho (2005) imply lower BH masses, confirming that $\text{H} \alpha$ is absorbed. Similarly, the direct use of the relation in Eq. (1) involving $L_\beta(5100)$, by taking the observed optical (B rest-frame) continuum of our sources, deduces BH masses lower than those presented in Table 1, confirming that the AGN optical light is absorbed and that the observed rest-frame blue continuum is dominated by the host galaxy (as inferred from the SED fitting).

The BH masses measured by ourselves imply that these three obscured AGNs are accreting at a rate that is about 0.1–0.6 of their Eddington limit (Table 1).

The stellar masses were inferred by exploiting the multi-wavelength photometric points available for these sources and the SED fitting code (Fritz et al. 2006) used in Pozzi et al. (2010) and Vigiali et al. (2009) for a subsample of obscured AGN in the HELLAS2XMM sample. This code combines synthetic stellar libraries, AGN dusty torii models (Fritz et al. 2006) including the intrinsic AGN component (if visible), and starburst IR templates to reproduce the observed SED. We refer to Pozzi et al. (2010) for a detailed description of the method. Here we only emphasize that in the case of obscured AGNs, the rest-frame optical to near-IR radiation is generally dominated by the stellar light from the host galaxy and therefore constraining the stellar mass is easier than for the host galaxies of type 1 AGNs. The stellar masses inferred for the host galaxies of the three obscured quasars presented here are reported in Table 1. We note that to compare with the local relation, which is between the BH mass and the stellar mass of the spheroid, we would need to extract the spheroidal component of the stellar mass in our high-$z$ targets. However, Mignoli et al. (2004) demonstrate that the class of targets in our sample is generally characterized by elliptical-like profiles, hence the bulk of the stellar light is associated with a massive spheroid.

The resulting location of the three X-ray selected, obscured AGNs at $z \sim 1–2$ is shown in Fig. 2 (red diamonds) along with the location of type 1, unobscured AGNs in COSMOS from Merloni et al. (2010). Blue squares are obscured AGNs in SMGs from Alexander et al. (2008) with broad $\text{H} \alpha$ and stellar masses from Hainline et al. (2010). The black line is the local relation obtained by Sani et al. (2010).
deduced by Sani et al. (2010). All of the X-ray selected obscured AGNs are fully consistent with the local $M_{\text{BH}} - M_{\text{star}}$ relation and do not show any evidence of evolution, in contrast to both type 1, unobscured X-ray selected sample and the obscured AGNs selected among SMGs. For our obscured AGNs we find that $(\log(M_{\text{BH}}/M_{\text{star}})) = -3.06 \pm 1.9$, which is fully consistent with the local ratio $(\log(M_{\text{BH}}/M_{\text{star}})_{\text{local}}) = -3.01$ obtained by Sani et al. (2010) in a similar mass range.

4. Discussion

Our sample is small and does not allow us to draw firm conclusions from a statistical point of view. However, it is very intriguing that, in contrast to other high-$z$ AGN samples, the three X-ray selected obscured AGNs do not show any systemic deviation from the local $M_{\text{BH}} - M_{\text{star}}$ relation. If this trend were confirmed for a larger sample of X-ray selected obscured AGNs, it would have important implications for understanding either biases affecting current studies or the evolution of the $M_{\text{BH}}/M_{\text{star}}$ ratio during different evolutionary stages of galaxies.

The SMGs (both the subsample shown in Fig. 2 and the original sample in Alexander et al. (2008)) have a large scatter but tend, on average, to be below the local $M_{\text{BH}} - M_{\text{star}}$ relation. The difference from our results might be caused by the bias discussed in the introduction, i.e. SMG AGN hosts are biased toward higher stellar masses because of the mass-SFR relationship and/or because of their higher dust content (hence more evolved hosts). Alternatively, the two samples may trace different evolutionary stages. According to many theoretical models, black hole accretion occurs predominantly in the phases of galaxy merging and interactions (which destabilize the gas, allowing it to flow towards the nucleus). Lamastra et al. (2010) suggest that SMGs may be objects where previous secular star formation has increased the stellar mass, while the lack of previous mergers and interactions has prevented the BH mass from growing significantly. This may explain their lower BH-to-stellar mass ratio. According to this scenario, SMGs are being observed during their first major-merging event. In contrast, X-ray selected, obscured AGNs (at least in our ERO subsample) may be the descendants of SMGs, observed at a later stage when, at the end of the whole interaction/merging phase, galaxies have already settled onto the local $M_{\text{BH}}/M_{\text{star}}$ relation. Our targets have in general elliptical-like profiles (Mignoli et al. 2004) and an SED typical of quiescent galaxies (Pozzi et al. 2010), therefore supporting the latter scenario. However, we have a few objects in the parent sample have strong far-IR and submm emission indicative of vigorous star-forming activity (Vignali et al. 2009; Pozzi et al. 2010). In the specific case of our three targets, the optical to near-IR photometric points do not allow us to provide tight constraints on the SFR.

The differences between the location on the $M_{\text{BH}} - M_{\text{star}}$ diagram of high-$z$ X-ray selected obscured AGNs and X-ray selected unobscured AGNs is more puzzling. Except for our sample being obscured, our selection criteria do not differ significantly from the Merloni et al. (2010) sample (e.g. similar X-ray luminosity range), hence should not produce differential selection effects (in particular, our sample should also be unaffected by the Lauer et al. bias). However, we note that the distribution of unobscured AGNs has a large scatter. The two high-$z$ obscured AGNs with low stellar masses (i.e. overlapping with the Merloni et al. sample in terms of stellar mass) may at least still be consistent with the tail of the distribution of unobscured AGNs in the same redshift range. Larger number statistics are required for the high-$z$ obscured sample to clarify whether they are, on average, offset or consistent with the unobscured samples in terms of black hole-to-galaxy mass ratio. Were future observations to confirm the difference between unobscured and obscured (X-ray selected) AGNs, this may suggest that the two classes are associated with different evolutionary stages. The general expectation of models is that unobscured, type 1 AGNs represent a later evolutionary stage than to the obscured growth phase. However, the finding that unobscured AGN are offset from the local $M_{\text{BH}} - M_{\text{star}}$ relation and are moving towards it (Merloni et al. 2010), while obscured AGN have already settled onto the local relation, suggests that the latter are in a later evolutionary stage. A possibility is that the obscured AGNs in our parent sample of EROs are in a late phase where the BH and their host galaxy have already reached the local $M_{\text{BH}} - M_{\text{star}}$ relation, but are temporarily rejuvenated by a late accretion episode, making them detectable as quasars. In support of this scenario, we mention that our data reveal that more than 25% of the targets in our parent sample (and all of the sources presented here) are in close interaction with one or more galaxies located within a radius of ~15 kpc, which may be responsible for triggering BH accretion.

A larger sample of high-$z$ obscured, X-ray selected AGNs with broad $H\alpha$ (to infer the BH mass) is certainly required to confirm with higher statistical significance that this class of targets follow the local $M_{\text{BH}} - M_{\text{star}}$ relation and that they differ from other high-$z$ AGN samples, as well as to test the various possible scenarios discussed above.

Acknowledgements.

We thank C. Feruglio for helping with an early analysis of the data. We thank A. Lamastra and D. Alexander for useful comments.

References