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ABSTRACT

CoRoT-3b is a 22 Jupiter-mass massive-planet/brown-dwarf object, orbiting an F3-star with a period of 4.3 days. We analyzed the
out-of-transit CoRoT-3 red-channel lightcurve obtained by the CoRoT mission and detected the ellipsoidal modulation, with half the
orbital period and an amplitude of 59 ± 9 ppm (parts per million), and the relativistic beaming effect, with the orbital period and an
amplitude of 27 ± 9 ppm. Phases and amplitudes of both modulations are consistent with our theoretical approximation.
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1. Introduction

Close binary stellar systems display two well-known periodic
photometric modulations – the ellipsoidal effect, due to the dis-
tortion of each component by the gravity of its companion (see
a review by Mazeh 2008), and the reflection/heating effect (re-
ferred to here as the reflection effect), induced by the luminosity
of each star, which affects only the close side of its companion
(e.g., For et al. 2010). These two effects can be observed even for
non-eclipsing binaries, but are much easier to study in eclips-
ing binaries, where the binarity of the system and the phases
of the orbital motion are well known from the observations of
the eclipses. Most algorithms that analyze lightcurves of eclips-
ing binaries, such as EBOP (Etzel 1980; Popper & Etzel 1981)
and its derivative EBAS (Tamuz et al. 2008), WD (Wilson &
Devinney 1971), and ELC (Orosz & Hauschildt 2000), include
by default these two effects in their model of the out-of-eclipse
lightcurve.

A much smaller and less studied photometric modulation is
the relativistic beaming effect, sometimes also called Doppler
boosting, induced by the stellar motion relative to the observer –
Vrel, whose amplitude is on the order of Vrel/c, where c is the ve-
locity of light. Before the era of space photometry this effect has
been noticed only once, by Maxted et al. (2000), who observed
KPD 1930+2752, a binary with a very short period, of little
longer than 2 h, and a radial-velocity amplitude of 350 km s−1.
The beaming effect of that system, which should be on the order
of 10−3, was hardly seen in the photometric data.

Space photometry, which was developed to detect the minute
transits of exoplanets, has substantially improved the precision
of the produced lightcurves. The CoRoT (Rouan et al. 1998;
Baglin et al. 2006; Auvergne et al. 2009) and Kepler (Borucki
et al. 2010; Koch et al. 2010) missions are producing hundreds
of thousands of continuous photometric lightcurves with times-
pan of tens and hundreds of days, with precision that can reach
as high as 10−3–10−4 per measurement. It was therefore antici-
pated that CoRoT and Kepler should detect all three effects (e.g.,
Drake 2003), in particular the beaming effect for both planets
(Loeb & Gaudi 2003) and eclipsing binaries (Zucker et al. 2007).

As predicted, van Kerkwijk et al. (2010) detected in the
Kepler lightcurve the ellipsoidal and the beaming effect of two
eclipsing binaries, KOI 74 and KOI 81 (Rowe 2010). They used
the radial-velocity photometric beaming effect to derive the mass
of the secondary in the two systems and showed that in both
cases it was probably a white dwarf. Welsh et al. (2010) identi-
fied the ellipsoidal effect in the Kepler data of HAT-P-7, a system
with a known planet of 1.8 Jupiter masses (=MJup) and a period
of 2.2 days (Pál et al. 2008). Snellen et al. (2009) detected in the
CoRoT data the reflection effect of CoRoT-1.

In this paper, we report the detection of the ellipsoidal
and the beaming effects of CoRoT-3, induced by its massive-
planet/brown-dwarf companion. CoRoT-3b (Deleuil et al. 2008)
is a 22 Jupiter-mass object, orbiting an F3-star with a period
of 4.26 days. The stellar rotation is probably synchronized with
the orbital period. We analyzed the CoRoT-3 out-of-transit red-
channel lightcurve and detected two modulations, one with the
orbital period and the other with its first harmonic. We attributed
the two modulations to the beaming and the ellipsoidal effects,
respectively, as their phases and amplitudes were consistent with
our order-of-magnitude approximation. Section 2 presents our
data analysis, Sect. 3 compares our findings with theoretical ap-
proximations, and Sect. 4 summarizes our results.

2. Data analysis
CoRoT-3 was discovered (Deleuil et al. 2008) in the data ob-
tained during the first long run of the CoRoT mission – LRc01,
which lasted for 152.012 d, from May 26 until October 25, 2007
(for details about this run see Cabrera et al. 2009). The optics
of the mission include a bi-prism that disperses the stellar light
into three channels, red, green, and blue, the sum of which is
called the white channel. For bright stars, including CoRoT-3,
the light intensity coming through each of the three channels
is available. We used the so-called N2 data level (Baudin et al.
2006) of CoRoT-3, which is now public.

As the modulations we searched for were quite small, we
had to prepare and clean the data before searching for any peri-
odic effect. We decided to concentrate on the red-channel data,
because this channel included most of the stellar light detected
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by CoRoT, and the other two channels only added noise to the
data (see below). Snellen et al. (2009) adopted a similar strat-
egy when analyzing the lightcurve of CoRoT-1. This section de-
scribes how we “cleaned” the data, removed the long-term vari-
ation, and searched for the periodic modulation with the orbital
period and its harmonics.

2.1. Cleaning the lightcurve

The “cleaning” of the CoRoT-3 lightcurve had the following
stages:

– rebinning: Corot-3b was detected before the CoRoT run was
completed and therefore the cadence of the observations was
changed during the run – the first part of the lightcurve is
composed of 512 s exposures, while the later part contains
32 s exposures. Since we were interested in modulations
with periods equal to or longer than half the orbital period,
at about 2.1 d, the entire light curve was re-binned into 512 s
bins. Altogether, we derived 22 072 valid measurements;

– removing transits: 1165 measurements taken during the tran-
sits of CoRoT-3 were removed from the analysis;

– jump removal: one “jump”, at CoRoT HJD of 2746.99, prob-
ably caused by a “hot pixel” event, was identified and cor-
rected. The counts after the jump were adopted to the stellar
flux before the jump, while 24 measurements following the
jump were removed;

– outlier removal: we identified 106 outliers by calculating the
running median and RMS around each point, and rejecting
measurements that differed by 4σ or more from their corre-
sponding median. We were left with 20 801 data points.

2.2. Long-term detrending with a cosine filter

The CoRoT-3 lightcurve clearly contained a long-term varia-
tion, as can be seen in Fig. 1, where we plot the relative red-
channel flux, after subtracting and dividing the original flux by
its median.

To remove this trend we used a discrete cosine transform
(Ahmed et al. 1974), adopted to the unevenly spaced data we
had in hand. We fitted the data with a linear combination of the
first N low-frequency cosine functions
{

fi(t j) = cos

(
2π
2T

i × t j

)
; i = 0,N

}
,where N=Round

(
2T

4Porb

)
= 18, (1)

T = 152.012 d is the timespan of the observations, Porb =
4.2568 d is the orbital period of CoRoT-3, and t j is the timing
of the jth measurement. The fitting finds the linear coefficient ai

for each of the cosine functions, so that the fitted model is

M(t j) =
∑

ai fi(t j). (2)

We then subtracted the modelM(t j) from the lightcurve.
The general idea was to perform a high-pass filter, so

we removed all the low-frequency cosine components of the
lightcurve without altering the periodic modulation of the orbital
period. In a similar manner we also removed the satellite and
earth frequencies, which appeared in the N2 data (e.g., Mazeh
et al. 2009).

Figure 1 shows the red-channel lightcurve before and after
the removal of the long-term trend and the satellite and earth
modulation. The RMS of the cleaned lightcurve is 904 ppm
(parts per million). A similar analysis of the blue- and green-
channel data yielded lightcurves with highly correlated noise, of
an RMS of 1600 and 2000 ppm, respectively. The white-channel
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Fig. 1. The lightcurve of CoRoT-3, before (blue) and after (red) de-
trending. The long-term model is presented by the wide line. Time is
the CoRoT time=BJD – 2 451 545.0. Flux is relative to the mean red-
channel flux. The detrended lightcurve is shifted by 0.02.

lightcurve, which includes the blue and the green data, is af-
fected by similar problems. These results supported our decision
to consider the red-channel data only.

2.3. Fitting the amplitudes of the ellipsoidal, beaming,
and reflection effects

We finally proceeded to fit a model that includes the ellipsoidal,
beaming and reflection effects. We approximated each of the
three effects using pure sine/cosine functions, relative to the mid-
dle of the transit, ttran, denoted as phase zero. The reflection and
the beaming effects were approximated by sine and cosine func-
tions, respectively, with the orbital period, and the ellipsoidal ef-
fect by a cosine function with half the orbital period (see next
section). In this approximation, we expressed the stellar flux
modulation ΔF as a fraction of the averaged flux F̄, and a func-
tion of t̂ ≡ t − ttran:

ΔFellip(t̂)

F̄
= −Aellip cos

(
2π

Porb/2
t̂

)
, (3)

ΔFbeam(t̂)

F̄
= Abeam sin

(
2π

Porb
t̂

)
, (4)

ΔFrefl(t̂)

F̄
= −Arefl cos

(
2π

Porb
t̂

)
, (5)

where the coefficients, Aellip, Abeaming, and Arefl are all positive.
We therefore fitted the cleaned, detrended lightcurve of

CoRoT-3 with a 5-parameter model, Mebr, consisting of two
frequencies

Mebr(t j) = a0 + a1c cos

(
2π

Porb
t̂ j

)
+ a1s sin

(
2π

Porb
t̂ j

)

+a2c cos

(
2π

Porb/2
t̂ j

)
+ a2s sin

(
2π

Porb/2
t̂ j

)
, (6)

as performed by Sirko & Paczyński (2003). The fitting process
could find any value, positive or negative, for the five parame-
ters. However, we did expect a1s to represent the beaming ef-
fect and therefore be positive, a1c to represent the reflection ef-
fect and therefore be negative, a2c to represent the ellipsoidal
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Table 1. The fitted coefficients and the theoretical expected amplitudes
of the three effects of CoRoT-3.

Coefficient Derived value Expected amplitude Effect
(ppm) (ppm)

a1c −14 ± 9 −αrefl(7.2 ± 0.3) Reflection
a1s 27 ± 9 αbeam(29 ± 0.5) Beaming
a2c −59 ± 9 −αellip(32 ± 5) Ellipsoidal
a2s 0.1 ± 9 – –

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

x 10
−4 Corot−3  red−channel lightcurve

Orbital Phase

R
el

at
iv

e 
F

lu
x

Fig. 2. The folded cleaned lightcurve of CoRoT-3, binned into 100 bins,
with the fitted model. The residuals are plotted at the bottom of the
figure.

effect and therefore be negative, and a2s to be close to zero. The
last expectation is important because it ensures that the ellip-
soidal modulation is detected with the correct phase. The a0 pa-
rameter was induced to remove any DC component left in the
data. Obviously, the expected absolute values of the three co-
efficients depended on the parameters of the CoRoT-3 system.
Thus, after the analysis was performed we were able to verify
our results by comparing them with the expected values.

The results of the fitting are given in Table 1 (with some
order-of-magnitude theoretical expectations; see next section)
and plotted in Fig. 2. In the figure one can easily discern the el-
lipsoidal modulation, with half the orbital period, and the beam-
ing effect, which causes the difference between the two peaks.
One indication of the consistency of our results with the ex-
pected modulations is the correct sign of the three first coef-
ficients and that the fourth coefficient is smaller than the third
one by at least one order of magnitude. This suggests a close
agreement between the orbital phase of the ellipsoidal modula-
tion and that of the transit. We note that the errors in the four
coefficients are all 9 ppm, or somewhat smaller than 10−5 in rel-
ative flux. This precision does not allow a significant detection
of the reflection modulation. However, the detection of both the
ellipsoidal and the beaming effect is highly significant. A boot-
strap test indicates that the probability of detecting the beaming
modulation by chance is 2 × 10−4.

3. Theoretical approximation
This section presents our theoretical approximations of the ellip-
soidal, beaming, and the reflection effects. We are not interested
in detailed calculations, which depend on specific models. For
example, to calculate the ellipsoidal modulation one could inte-
grate the light originating from the individual surface elements

of the rotating star, which is slightly deformed by the tidal force
induced by its small companion (e.g., Orosz & Hauschildt 2000).
Such an analysis was carefully performed very recently to model
the Kepler lightcurve of HAT-P-7 (Welsh et al. 2010). Instead,
we are interested here only in order-of-magnitude approxima-
tion, so we can check the consistency of the detected amplitudes
with the theory. All our approximations are evaluated for an in-
clination angle i close to 90 deg, so we could ignore the sin i
dependence of the three effects.

3.1. Ellipsoidal effect

To derive the order-of-magnitude of the ellipsoidal effect we
used the analytical approximation of Morris & Naftilan (1993),
who used the Kopal (1959) expansion of the periodic variation
into discrete Fourier series with terms that depend on the ratio
R∗/a, where R∗ is the stellar radius and a is the semi-major axis
of the orbit (see also Pfahl et al. 2008). Assuming R∗/a is small,
the leading term of the stellar variation has a semi-amplitude of

Aellip � αellip
mp

M∗

(R∗
a

)3

, (7)

where

αellip = 0.15
(15+ u)(1 + g)

3 − u
(8)

is of order unity. In the above expression, mp is the planetary
mass, M∗ is the stellar mass, g is the stellar gravity darkening
coefficient, and u is its limb-darkening coefficient (e.g., Mazeh
2008).

3.2. Beaming effect

For a circular orbit, the amplitude of the beaming effect can be
written as

Abeam = αbeam 4
Kr

c
, (9)

where Kr is the stellar radial-velocity amplitude and c is the
speed of light (Loeb & Gaudi 2003; Zucker et al. 2007), and
αbeam is of order unity. The factor 4Kr/c represents the beaming
effect for bolometric photometric observations, but ignores the
Doppler shift photometric effect, which appears when the pho-
tometric observations are made in a specific bandpass, so that
some of the stellar light is shifted out of or into the observed
bandpass. The latter is accounted for by the αbeam factor, and we
assume that for the CoRoT red bandpass it is of order unity.

3.3. Reflection effect

In our simplistic approximation we include in the reflection
modulation the thermal emission from the dayside of CoRoT-3b,
assuming both are modulated with the same phase (e.g., Snellen
et al. 2009). The amplitude of the modulation of the reflected
light alone is

Arefl = pgeo

( rp

a

)2
, (10)

where rp is the planetary radius and pgeo is the geometrical
albedo (e.g., Rowe et al. 2008). Rowe et al. (2008) found quite a
small albedo, of 0.03, for HD 209458, but recent study (Cowan
& Agol 2009) suggested that exoplanets may have a much larger
albedo, of up to 0.5. We therefore write the amplitude of the re-
flection effect, including the thermal emission, as

Arefl = αrefl 0.1
(rp

a

)2
, (11)

where αrefl is of order unity.
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Table 2. CoRoT-3 parameters, as derived by Deleuil et al. (2008) and
Triaud et al. (2009).

Parameter Derived value Unit
a/R∗ 7.8 ± 0.4
rp/R∗ (663 ± 9) × 10−4

mp 21.7 ± 1.0 MJup

M∗ 1.37 ± 0.09 M�
T∗ 6740 ± 140 K deg
Kr 2170 ± 30 m s−1

3.4. Application to CoRoT-3

Table 2 presents the relevant parameters of CoRoT-3. The first
four parameters were derived by Deleuil et al. (2008), while the
last parameter, the radial-velocity amplitude, was deduced by
Triaud et al. (2009). From these parameters we derived the ex-
pected values of the amplitudes of the ellipsoidal, beaming, and
reflection effects, which are given in Table 1.

We emphasize that in each of the three theoretical amplitudes
given in Table 1, the main source of uncertainty is hidden in
the α factor, which we did not calculate. The numerical values,
with their relatively small errors, are only order-of-magnitude
approximations for inclination angles close to 90 deg.

The amplitudes derived from the cleaned lightcurve of
CoRoT-3, as shown in Table 1, are of the same order of mag-
nitude as the expected values, based on our simplistic approxi-
mation. This is true in particular for the beaming effect, where
the theoretical approximation was found to be quite accurate.
We therefore propose that we have detected the ellipsoidal and
beaming effects of CoRoT-3. Our results suggest that the αellip
factor in CoRoT-3 is on the order of 2. The reflection effect was
too small to ensure a significant detection, given the SNR of the
lightcurve.

4. Discussion
Our analysis has demonstrated that the red-channel lightcurve of
CoRoT-3 includes the ellipsoidal and beaming effects. This is the
first time that the beaming effect has been detected for substellar
companion. We have been able to detect the two effects, with 59
and 27 ppm amplitudes, respectively, because of a combination
of three features:

– CoRoT-3 brightness: with r′-mag of 13.1, the star is among
the brightest CoRoT targets, which are typically in the range
of 11 to 16 in r′ (Deleuil et al. 2008);

– the long observational run: the LRc01 lasted for 152 days,
and the CCDs did not show yet any aging signals;

– the mass of CoRoT-3b: This massive-planet/brown-dwarf
companion has one of the largest masses, 22 MJup, discov-
ered by CoRoT for substellar objects.

The last feature suggests that the stellar rotation has achieved
synchronization with the orbital period of 4.3 days, without
which the analysis of the ellipsoidal effect could have been more
complicated.

Had this analysis been performed immediately after the dis-
covery of the transits of CoRoT-3, and in particular before the
radial-velocity confirmation of the planetary nature of the tran-
siting object, we could have estimated the mass of the unseen
object from the observed amplitudes of the ellipsoidal and beam-
ing effects, provided we had been able to accurately derive their
expected values. Such analysis could, in principle, save costly
radial-velocity observations, or at least reduce to a minimum the

number of observed velocities needed to confirm the substellar
mass of the transiting object.

Obviously, the analysis of lightcurves obtained by space
missions is dramatically different from those obtained by
ground-based photometry. For the latter, the appearance of the
ellipsoidal modulation in the data of transit candidates was con-
sidered a sign that the transiting object was of stellar nature, as
suggested by Sirko & Paczyński (2003), and applied, for exam-
ple, by Kane et al. (2008) and Pietrukowicz et al. (2010). This
is so because of the relatively high threshold of detection of
the ellipsoidal modulation in the ground-based photometry. On
the other hand, the present work, and the study of Welsh et al.
(2010), suggest that the detection of the ellipsoidal modulation
with a small amplitude in the CoRoT and Kepler data may in-
dicate that the transiting object is a massive-planet/brown-dwarf
object.

The present analysis suggests that, in principle, the three ef-
fects, or at least two of them, can be detected in the CoRoT
lightcurves for some massive-planet/brown-dwarf objects, even
without any transits, as suggested by Loeb & Gaudi (2003) and
Zucker et al. (2007). The effects can be stronger for systems with
shorter orbital periods, and therefore can be detected in stars
fainter than CoRoT-3 in the CoRoT fields. Many objects simi-
lar to CoRoT-3 should also be detected by Kepler, because of
both higher SNR and longer timespan of its lightcurves.
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