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ABSTRACT

We confirm Cao’s discovery that in the vicinity of fast rotating black holes jets can be launched centrifugally by cold, magnetized
disks even for nearly vertically shaped magnetic flux surfaces. Outflows produced under such extreme conditions are investigated
via studying kinematics of test particles in the force-free magnetosphere approximation. Implications of a possibility of magneto-
centrifugal launching of very well collimated central outflows around the fast rotating black holes are discussed in the general context
of the jet formation scenarios in AGNs.
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1. Introduction

According to a popular class of astrophysical jet models they are
powered by the rotational energy of accretion disks and mass
loaded via “magnetocentrifugal” forces. For Newtonian accre-
tion disks such models require the poloidal magnetic field lines
to be inclined towards the geometrically thin accretion disk by
less than 60 degrees, independently of the distance from the cen-
tral object (Blandford & Payne 1982). For disks around black
holes (BHs) this angle depends on the radius and the BH spin
(Cao 1997; Lyutikov 2009). The effect is that the smaller the dis-
tance and the larger BH spin, the larger the angle. At the inner
edge of a Keplerian disk (located at the marginally stable orbit –
rms) and for the maximal BH spin it approaches 90◦. We con-
firm these results and investigate the kinematics of test particles
in the fixed force-free magnetosphere. Our paper is organized
as follows. General equations describing the particle kinematics
are derived in Sect. 2. The geometry of the effective equipoten-
tial surfaces and of “light cylinders” are presented in Sect. 3. The
kinematics of test particles and its dependence on the BH spin
and the launching distance is illustrated in Sect. 4. The results
are discussed in a general context of the production of relativis-
tic jets in active galactic nuclei in Sect. 5 and are summarized in
Sect. 6.

2. A rigid rotation of particle trajectories
in the Kerr metric

It is convenient to investigate the kinematics of particles forced
by magnetic fields to move on rigidly rotating trajectories in a
frame co-rotating with magnetic field lines. In a frame like this
the norm of a 4-velocity, uiui = −1, is in the Kerr metric given by(
gtt + 2gtφΩ0 + gφφΩ

2
0

) (
ut
)2
+ 2

(
gtφ + gφφΩ0

)
utuφ

′

+gφφ
(
uφ
′)2
+ grr (ur)2

+ gθθ
(
uθ

)2
= −1, (1)

where φ′ = φ − Ω0t, uφ
′
= uφ − Ω0ut, Ω0 = const., the t, φ, r,

and θ are the Boyer-Lindquist coordinates, and gik = gik(r, θ; a)
are the Kerr metric components. Throughout the paper the fol-
lowing quantities are expressed in dimensionless units: radius

r : r/(GM/c2), BH spin a∗ = J/(GM2/c), and angular velocity
Ω0 : Ω0/(c3/GM), where M and J are the BH mass and angular
momentum, respectively.

For a particle trajectory, which in the rotating frame is de-
scribed by functions r = r(θ) and φ′ = φ′(θ), the r and φ′ com-
ponents of the particle 4-velocity are ur = r,θuθ and uφ

′
= φ′,θuθ,

respectively. Then the norm of the 4-velocity reads
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(
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2
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Noting that

ũt = g̃ttu
t + g̃tθu

θ = −ε̃, (6)

where ε̃ is the specific energy of a particle moving along a rigidly
rotating trajectory, one can find inserting ut from Eq. (6) into (2)
that

uθ =

√
(ε̃)2 − (−g̃tt)

(−g̃tt) g̃θθ + (g̃tθ)2
, (7)

and

ut =
ε̃

(−g̃tt)
+
g̃tθ

(−g̃tt)
uθ
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√
(ε̃)2 − (−g̃tt)

(−g̃tt) g̃θθ + (g̃tθ)2
· (8)

Hence, the kinematics of a test particle is fully determined for a
fixed particle trajectory and a given constant of motion ε̃. This
kinematics can be illustrated in the locally non-rotating frame
(Bardeen et al. 1972), i.e. the frame of zero-angular-momentum-
observers (ZAMO). In this frame the line element is

ds2 =
(
gtt + ωgtφ

)
dt2 + gφφ (dφ − ωdt)2 + grrdr2 + gθθdθ2, (9)
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where ω = −gtφ/gφφ is the angular velocity of “the dragged in-
ertial frames”. Then the projection of the 4-velocity onto the or-
thonormal tetrad of the local Minkowski space can be used to
calculate the Lorentz factor and velocity components of a parti-
cle in the ZAMO frame:

γ = u(t) = ut
√
−gtt + g

2
tφ/gφφ, (10)

v(φ) =
u(φ)

u(t)
=

⎛⎜⎜⎜⎜⎝φ′,θuθut
+ (Ω0 − ω)

⎞⎟⎟⎟⎟⎠
√

gφφ

−gtt + g
2
tφ/gφφ

, (11)

v(p) ≡
√
v(r)2
+ v(θ)

2
=

uθ

ut

√
grrr,θ + gθθ
−gtt + g

2
tφ/gφφ

, (12)

where the physical velocities v(i) are expressed in speed of light
units.

3. Effective potential

An effective potential defined as the minimum energy of test
particles forced to rotate with a given angular velocity Ω0 is
Veff =

√−g̃tt (obtained from Eq. (7) setting uθ = 0). Its equipo-
tential surfaces, Veff(r, θ) = const., are illustrated in Fig. 11. They
are enclosed between the inner and outer “light cylinders” given
by g̃tt = 0 (Lyutikov 2009). Locations of the inner and outer
light cylinders in the equatorial plane are presented in Fig. 2.
For a given spin the cylinders coincide at the photon orbit. For
a∗ > 0.91 and the angular velocity Ω0 corresponding to the
marginally stable orbit rms the outer light cylinder is enclosed
by the BH ergosphere. In Fig. 3 we show the dependence of the
equatorial and asymptotic locations of the outer light cylinder on
the BH spin forΩ0 calculated at the marginally stable orbit. The
asymptotic radius is always close to its equatorial plane value
(e.g. 14.7M vs. 13.6M for a non-rotating BH).

Equipotential surfaces, dVeff = 0, intersect the equatorial
plane at angles

tan ξ = −r

(
dθ
dr

)
θ=π/2

= r

(
Veff,r

Veff,θ

)
θ=π/2

· (13)

Because Veff,θ|θ=π/2 = 0, while Veff,r|θ=π/2 = 0 only at r = r0 at
which the Keplerian law is satisfied, i.e.

Ω0 =
1

r3/2
0 + a

, (14)

this angle is ξ = π/2 for all radii, but r = r0. At r = r0 this angle
can be found by applying in Eq. (13) the L’Hospital’s rule and
by noting that Veff,rθ|θ=π/2 = 0. This gives

tan ξ0 = r0

√
−

(
Veff,rr

Veff,θθ

)
θ=π/2,r=r0

=

√
3

1 − 4ar−3/2
0 + 3a2r−2

0

· (15)

This formula fully agrees with the formula obtained by Cao
(1997) and Lyutikov (2009). The dependence of ξ0 on the radius
r0 and on the BH spin is shown in Fig. 4.

1 Please note that the topology of the equipotential surfaces for a non-
rotating BH case presented in the upper panel of Fig. 1 corresponds
to the topology of similar surfaces obtained in the Newtonian case by
Blandford & Payne (1982).
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Fig. 1. Equipotential surfaces of the effective potential (Veff =
√−g̃tt)

for Ω0 = Ω0(r = rms, a∗) for a non-rotating (top) and spinning (bot-
tom panel) BHs. The thick solid lines represent Veff(r, θ) = V0 ≡
Veff(r = rms, θ = π/2) being the effective potential crossing the equa-
tor at r = rms. The dashed lines present locations of the inner and outer
light cylinders. The thin solid lines are drawn for the following values
of the effective potential: 6

9 , 7
9 , 8

9 , 10
9 , 11

9 V0.

4. Kinematics of test particles in a force-free
magnetosphere

4.1. Purely poloidal magnetic fields

For a strong dynamical domination of large-scale magnetic fields
driven by an accretion disk, test particles are restricted to move
along magnetic field lines. Being anchored to a differentially
rotating accretion disk, the poloidal magnetic field generates
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Fig. 2. Locations of the inner and outer light cylinders for θ = π/2 as a
function of radius r0 defining the angular velocity Ω0. Inner and outer
cylinders are represented by curves below and above the dashed line
r = r0, respectively. Dotted curves denote locations of light cylinders
for r0 < rms. Profiles for three values of the BH spin (−0.999, 0, 0.999)
are presented.
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Fig. 3. Locations of the light cylinders for Ω0 = Ω0(r = rms) versus BH
spin. The location of the outer light cylinder is shown for the equatorial
plane (thick, dashed line) as well as its asymptotic (θ → 0) value (thin,
dashed line).
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Fig. 4. Critical angle ξ0 dependence on the radius r0. Profiles are shown
for different BH spins, starting at the marginally stable orbits.

differentially rotating magnetosphere. Trajectories of test par-
ticles can then be identified with magnetic field lines rotating
with an angular velocity of their foot-points (Ferraro 1937).
For purely poloidal magnetic fields these trajectories are planar
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Fig. 5. Dynamics of a particle moving along purely poloidal magnetic
field lines achored at rms and inclined at different angles for non-
spinning (solid) and spinning (dashed lines) BHs. The horizontal axis
represents the vertical coordinate z.

(φ′ = const.) in the co-rotating frame, the metric component
g̃tθ = 0 and Eqs. (7) and (8) are reduced to

uθ =

√
(ε̃0)2 − (−g̃tt)

(−g̃tt) g̃θθ
, (16)

ut =
ε̃0

(−g̃tt)
, (17)

where ε̃20 = −g̃tt(θ = π/2, r = r0), g̃ik = g̃ik(θ, r(θ; r0)), and
r(θ; r0) is the shape of the magnetic field surface, which is deter-
mined by the shape of poloidal magnetic field lines.

Test particles can be pulled from the cold disk by centrifu-
gal forces provided the inclination of magnetic field surfaces at
the foot-point is smaller than ξ0 and they can proceed further
provided the shape of poloidal magnetic field lines satisfies the
condition −g̃tt < ε̃

2
0 .

Examples of kinematics of the test particles are plotted in
Fig. 5. The illustrated cases are calculated for magnetic field
lines that are anchored at the marginally stable orbit and have
the shape

r = r0
tan ξ0

(sin θ tan ξ − cos θ)
, (18)

which in the coordinate plane (r cos θ, r sin θ) is the straight line
anchored at r = r0 and inclined at the angle ξ. The presented
velocities and Lorentz factors were calculated in the locally non-
rotating frame (see Eqs. (10)−(12)). As we can see from Eq. (8),
the particles which are forced to move on rigidly rotating pla-
nar trajectories approach the speed of light at the light cylinder.
This simply demonstrates that no physical solution exists on and
beyond light cylinders for purely poloidal magnetic field struc-
tures.

4.2. Force-free magnetosphere with non-zero azimuthal
magnetic field component

These constraints do not apply if a toroidal magnetic field com-
ponent (induced by poloidal electrical currents) is taken into ac-
count. In this case Ferraro’s law about iso-rotation still applies,
i.e. magnetic field lines and therefore particle trajectories still ro-
tate rigidly, but, due to the toroidal magnetic component the ro-
tating trajectories are not planar and the test particles may pass
the light cylinder sliding on magnetic field lines in the oppo-
site direction to the rotation of magnetic field surfaces, i.e. with

Page 3 of 6

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201014076&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201014076&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201014076&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201014076&pdf_id=5


A&A 517, A18 (2010)

vp

vΦ

Γlig
ht

cy
l.

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.5

1.75

2

2.25

1.25

z �M�

v�
c Γ

(a) a∗ = 0, ξ = 60◦

vp
vΦ
Γ

lig
ht

cy
l.

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.6

1.8

2

1.4

2.2

z �M�

v�
c Γ

(b) a∗ = 0.99, ξ = 78.14◦

Fig. 6. Velocity components and the Lorentz factor γ of particles mov-
ing along magnetic field lines with non-zero azimuthal component an-
chored at rms and inclined at the critical angle ξ = ξ0 for non-spinning
(top) and spinning (bottom panel) BHs. The poloidal and azimuthal ve-
locity components are marked by dotted and dashed lines, respectively.
The solid curves present the Lorentz factor profiles.

dφ′/dt < 0, which takes place if φ′,θ < 0. This can be concluded
from Eq. (8) after rewriting it in the form

ut =
ε̃0

(−g̃tt)

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
√

1 − (−g̃tt) /ε̃20
1 + (−g̃tt) g̃θθ/g̃2

tθ

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (19)

where the metric functions g̃ik are calculated along trajectories
r = r(θ; r0) and φ′ = φ′(θ; r0). At the light cylinder both denomi-
nator and numerator (−g̃tt and the expresion in brackets) become
zero, and applying L’Hospital’s rule one can check that ut and,
therefore, γ given by Eq. (10) is finite. Hence, the test particle
can pass the light cylinder and proceed further provided

(g̃tθ)2 > g̃tt g̃θθ, (20)

i.e. for respectively high negative values of φ′,θ,

(
φ′,θ

)2
>
g̃tt

(
gθθ + grr

(
r,θ

)2
)

(
gtφ + gφφΩ0

)2 − gφφg̃tt

· (21)

Examples of kinematics of test particles for a helical magnetic
field structure are illustrated in Fig. 6. The velocity components
and the Lorentz factor are computed for r(θ; r0) given by Eq. (18)
and for

φ′ = − ηΩ0

cos ξ
(r sin θ − r0) . (22)
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Fig. 7. Shape of the magnetic field lines with η = 1.0 for ξ = 30◦ (the
thickest solid line), ξ = 45◦ and ξ = 60◦ (the thinnest solid line). For the
latter (ξ = 60◦) two other curves are presented for η = 0.95 (dotted line)
and η = 1.05 (dashed line). All lines are anchored at rms and the BH has
zero spin. The black spot denotes the location of the BH horizon.

This choice of particle trajectories corresponds with the poloidal
and toroidal magnetic field components scaling as Bp ∼ 1/
(r sin θ)2 and Bφ ∼ 1/(r sin θ), respectively, and equating at the
Alfvenic radius which in the force-free limit approaches the light
cylinder, r sin θ ≈ 1/Ω0 (in Fig. 7 we plot a visualisation of such
a shape of the magnetic field lines).

The upper panel of Fig. 6 presents the velocity and Lorentz
factor profiles for a non-spinning BH. The particle is initially at
rest with respect to the disk – its poloidal velocity component
in the ZAMO frame is zero, while its azimuthal velocity corre-
sponds to the Keplerian angular velocity at r0. Once the parti-
cle leaves the equilibrium it starts to be centrifugally accelerated
along the magnetic field line. The poloidal velocity component
rapidly increases. Because the magnetic field lines are inclined
also in the azimuthal direction the particle starts to slide along
them in the direction opposite to the disk rotation. Therefore,
its angular velocity decreases below the initial value Ω0. The
corresponding profile of the physical velocity in the azimuthal
direction v(φ) is shown. The light cylinder is crossed at z ≈ 14 M
with both velocity components close to 0.5c. The profile of the
Lorentz γ factor is shown by the solid line (please note the ver-
tical scale for γ is marked on the right axis). Initially, it corre-
sponds to the Keplerian angular velocity ar rms (≈1.2 for a∗ = 0
case). At the light cylinder γ ≈ 1.7. The bottom panel of Fig. 6
presents a similar study of particle dynamics for a rotating BH
case. Its behavior is similar, with exception that the γ factor is
initially strongly dominated by the azimuthal velocity compo-
nent.

We show the dependence of the test particle kinematics on
ξ, r0 and η in Fig. 8. The upper panel shows that the lower
the inclination angle ξ, the more rapid the particle acceleration.
The middle panel presents the dependence on the η parameter,
which determines the magnetic field line torsion. The higher the
value of η, the larger the azimuthal component of the particle
trajectory. As a result, the particle ‘slides’ more easily in the
azimuthal direction, making the centrifugal acceleration less ef-
ficient. Finally, the lower panel presents the dependence on the
radius r0 defining the location of the magnetic field line foot-
point.

The particle kinematics illustrated in this section has an
exemplary character and may be applied only to the regions
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A. Sądowski and M. Sikora: Launching of jets

Ξ�60o

Ξ�45o

lig
ht

cy
l.

Ξ�30o

0 10 20 30 40 50
1.0

1.5

2.0

2.5

Γ

Η�0.95

Η�1.00

Η�1.05

0 10 20 30 40 50
1.0

1.5

2.0

2.5

Γ

r0�rms�6 M
r0�7 M
r0�8 M

0 10 20 30 40 50
1.0

1.2

1.4

1.6

1.8

2.0

2.2

z �M�

Γ

Fig. 8. Lorentz γ factor dependence on the magnetic field line inclina-
tion angle ξ (top panel), η parameter (middle panel) and the r0 radius
(bottom panel) for a non-spinning BH. The vertical dashed lines denote
the crossing through the outer light cylinder. If not stated otherwise the
parameters are ξ = 60◦, η = 1.0 and r = rms.

where the structure of the outflow is strongly dominated by the
magneto-dynamics. For low mass loading rates, such a force-
free approximation can be used to study the matter kinemat-
ics even far beyond the light cylinder. However, for high mass-
loading rates the force-free approximation can break down even
in the sub-Alfvénic region, deep within the light cylinder. In
other words, as long as the decreasing with a distance magnetic-
to-matter energy flux ratio (σ) remains�1, a particle inertia can
be considered as a small disturbance to the force-free structure
of a flow (see, e.g., Beskin & Nokhrina 2006).

5. Discussion
A magnetocentrifugal scenario is applicable to the production
of nonrelativistic jets in “Newtonian” objects like YSOs (young
stellar objects). However, it is not clear whether it can explain the

production of relativistic jets in BH accretion systems. This is
because at least in idealized, steady, axisymmetric models with
an accretion disk treated only as the boundary surface, efficient
centrifugal mass loading can make the outflows too heavy to
be accelerated up to the observed relativistic velocities. Favored
mass loading scenarios for such objects involve pair production
by photon-photon interactions. For typical BH accretion systems
the coronal activities are powerful enough to support density of
pairs by many orders of magnitude larger than the Goldreich-
Julian density (Phinney 1983; McKinney 2005) in the vicinity of
the BH, which allows us to treat the outflows in the ideal MHD
approximation. At the same time, the rest mass-energy density
of the pair plasma is by several orders lower than energy den-
sity of magnetic fields required to power luminous large-scale
jets in radio-loud objects, and this implies the formation of rela-
tivistic outflows that are at least initially strongly Poynting flux-
dominated.

The e+e− jets can be powered by both rotating BHs
(Blandford & Znajek 1977; Phinney 1983; Beskin 1997) and ac-
cretion disks (Blandford 1976; Lovelace 1976; Lovelace et al.
1987; Ustyugova et al. 2000). These jets need external collima-
tion to be effectively accelerated and converted to the matter-
dominated ones (Begelman & Li 1994; Vlahakis & Königl 2003;
Narayan et al. 2007; Komissarov et al. 2007; Lyubarsky 2009;
Porth & Fendt 2010). The collimation is often considered to
be provided by slower, barionic MHD outflows launched in the
accretion disk (Sol et al. 1989; Bogovalov & Tsinganos 2005;
Gracia et al. 2005; Beskin & Nokhrina 2006). However, this
jet structure may need modification for jets launched around
fast rotating BHs if the possibility of a centrifugal launching
of proton-electron outflows from the innermost portions of an
accretion disk was taken into account. Because the inclination
angle of the effective potential surfaces is maximal at the inner
edge of a disk and rapidly drops with the radius (see Eq. (15) and
Fig. 4), the p-e-dominated outflow from the innermost portions
of accretion disk is embraced by the Poynting flux-dominated
electron-positron outflow. They both are initially Poynting flux-
dominated and then predicted to be converted to the matter-
dominated ones (see, e.g., Tchekhovskoy et al. 2009; Lyubarsky
2010). This implies less relativistic spines and more relativistic
sheaths of jets produced by the accretion disk around fast rotat-
ing BHs, or a respective triple jet structure if taking into account
the central contribution to the outflow from the BH magneto-
sphere. In both cases they still may require collimation by non-
relativistic MHD outflows produced by the outer portions of a
disk.

The production of powerful jets by accretion disks, both
centrifugally loaded and by pairs, requires strong large-scale
magnetic fields. The possibility of dragging of these fields by
accreting plasma, originally suggested by Bisnovatyi-Kogan &
Ruzmaikin (1974), is still debated (Lubow et al. 1994; Spruit &
Uzdensky 2005; Bisnovatyi-Kogan & Lovelace 2007; Rothstein
& Lovelace 2008; Beckwith et al. 2009). The radial distribu-
tion of the magnetic field line inclination is another question
that is related to this lack of a profound model for the mag-
netic field evolution in accretion disks. The radial distribution
is pivotal to establish a launching distance domain of centrifu-
gal outflows and their initial collimation. And finally, even for a
fixed large-scale magnetic field intensity and geometry, the mass
loading rate and therefore the terminal speed of the centrifugal
outflow depends very much on details of the vertical disk struc-
ture (Wardle & Königl 1993; Li 1995; Campbell 1999; Casse
& Ferreira 2000; Shalybkov & Rüdiger 2000; Ogilvie & Livio
2001; Levinson 2006), which are usually ignored due to severe
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uncertainties, which mostly concern the structure of radiation
pressure dominated magnetized accretion disks in AGNs.

In particular the proton-electron outflow may need some ini-
tial boost to pass a potential barrier which may be produced
as a result of the sub-Keplerian character of the boundary lay-
ers (due to partial losses of angular momentum taken away by
the outflow) or, even for nearly Keplerian boundary layers, the
disk finite height (Wardle & Königl 1993; Ogilvie 1997). This
boost can be provided by heating or mechanically by some mag-
netic flaring activities and/or by radiation pressure of effectively
super-Eddington flux. An existence of the additional potential
barrier may significantly limit mass loading rate which allows
proton-electron loaded outflows to reach at least mildly rela-
tivistic speeds. The resulting jet structure – a mildly relativis-
tic proton-electron component sandwiched between the pair-
dominated relativistic spine and sheath – albeit very speculative
at the moment, is very promising from the observational point
of view because it may explain a significant proton content of
AGN jets deduced from analyses of a matter content in blazars
(Sikora & Madejski 2000; Ghisellini et al. 2009) and in radio
lobes of powerful radio galaxies (Stawarz et al. 2007; Perlman
et al. 2010).

6. Conclusions

The main results of this paper can be summarized as follows:

– An effective potential and light cylinders are investigated in
the rigidly rotating frame in the Kerr metric. The intersec-
tion of equipotential surfaces with a geometrically thin disk
at the annulus, where a given angular velocity is equal to
the Keplerian velocity, gives the critical angle below which a
cold outflow can be launched by centrifugal forces. The loca-
tion of the outer light cylinders is shown to depend strongly
on radius and BH spin. Bacause for relativistic Poynting
flux-dominated outflows they coincide with the cylindrical
radii of Alfvénic surfaces, their location provides approxi-
mate information on the spatial scale of the region where
the poloidal and toroidal magnetic components are compara-
ble. Noting different scalings of poloidal and toroidal com-
ponents, one can use this to derive the pitch of magnetic he-
licity at any distance from the center, which can in turn be
verified by polarization measurements (see, e.g., Marscher
et al. 2008).

– The condition for the magnetocentrifugal launching of jets
obtained for Keplerian disks rotating around Kerr BHs by
Cao (1997) and Lyutikov (2009) is confirmed. It tells us that
the maximum inclination angle of magnetic flux surfaces at
which cold matter can be extracted from the disk depends on
the distance from the BH and on the BH spin. The condition
shows that for very fast rotating BHs the central outflows can
be launched even along almost vertically shaped magnetic
surfaces.

– We show how kinematics of test particles pulled by cen-
trifugal forces from a Keplerian disk can be algebraically

determined for a given magnetic field structure in the force-
free outflow approximation. Examples of test particle kine-
matics are illustrated and the condition for the toroidal mag-
netic field component is derived to allow the particle to cross
the light cylinder.

– Possible implications for a jet structure are discussed as im-
posed by the condition for magnetocentrifugal launching of
jets by inner portions of magnetized disks around fast ro-
tating BHs. In this case a triple-component structure of a
jet can be envisaged, with a proton-electron component of a
jet being sandwiched between the relativistic pair-dominated
spine and sheath.
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